EFmbedded
LINUX

Embedded Linux with Buildroot

PAGE 1

@ Linux Fundamentals
l@ Cross-Compilation and Toolchains

= Buildroot Fundamentals and Filesystem Generation

Course
Outline

@ Bootloaders and Kernel

— Device Tree and Drivers

— Application Development and Debugging

PAGE 2

¥ Learning Objectives: @

Understand the basic structure and philosophy of Linux
Use essential Linux commands and shell features
Navigate the Linux filesystem

Write and execute simple shell scripts

Manage file permissions and processes

— Topics: I_I n UX

Linux history and open-source principles

Filesystem hierarchy (/bin, /etc, /usr, etc.) F u n d a m e nta ‘S
Basic commands: Is, cd, cat, grep, find, chmod, etc.

Shell scripting basics (bash)

File permissions and users

Process management (ps, top, kill)

Text editors (nano, vim)

o

¥| Learning Objectives:
Understand the concept of cross-compilation
Configure and use toolchains for ARM-based targets
Compile user applications for embedded systems
Set up the environment for cross-development CrOSS

— Topics:

Native vs. cross-compilation CO m p I | atl Oﬂ
What is a toolchain? (gcc, binutils, libc) a n d TOO ‘ Ch a I nS

Types of toolchains (glibc, musl, uClibc)
Setting up cross toolchains (Buildroot or external)
Writing and compiling a sample C application for target

Deploying applications to target hardware or emulator

¥ Learning Objectives: @

Use Buildroot to generate a root filesystem, kernel, and
bootloader

Customize the root filesystem
Add applications and libraries to the image

Understand BusyBox and its role in embedded systems

ey Buildroot anad
What is Buildroot? Architecture and workflow Fl |esySte m
Buildroot menuconfig (make menuconfig) G e n e ratl O n

Filesystem types: ext4, initramfs, squashfs
BusyBox: lightweight tools for embedded
Rootfs customization

Adding custom packages or applications

Booting with QEMU or real hardware

¥| Learning Objectives:
Understand the boot process in embedded Linux
Configure and build U-Boot bootloader
Configure and build the Linux kernel
Load kernel and rootfs on target hardware

— Topics:

Boot stages: ROM - SPL - U-Boot - Kernel - Rootfs BOOt‘ Oa d e rS
U-Boot configuration and scripting a n d Ke rn e ‘

Kernel source tree structure

Device driver modules and kernel configuration (make
menuconfig)

DTS (Device Tree Source) basics
Booting kernel via SD, TFTP, NFS

o

¥| Learning Objectives:

Understand the role of the Device Tree in embedded
Linux

Modify Device Tree sources for custom hardware
Load and use drivers in Linux

|dentify and enable device drivers using kernel config

— Topics: DEVICe Tree
Device Tree structure and syntax (.dts, .dtsi) a n d D rlve r‘S

Memory mapping and peripheral definitions
Writing or modifying a basic Device Tree overlay
Kernel modules vs built-in drivers

Loading modules: modprobe, insmod, Ismod

Debugging device drivers

¥| Learning Objectives:
Write and deploy embedded applications on Linux
Use debugging and profiling tools
Connect host-target for remote debugging

Monitor system performance and behavior

G Application
Writing C applications with POSIX APls Deve ‘ O p m e nt
Using gdb, strace, Itrace, perf a n d De b uggl ng

Remote debugging with gdbserver
Logging and system diagnostics (dmesg, syslog)
Accessing GPIO, UART, SPI, 12C from user space

System startup scripts and services

o

We will cover these skills

* Understand the basic structure and philosophy of Linux Ch a pte r 1

* Learn to work efficiently with the Linux command line I_I n UX
* Explore the Linux filesystem hierarchy and device model

* Write simple Bash scripts for task automation F u n d a m e nta ‘S

* Manage processes and access system resources in a
Linux environment

* Build foundational knowledge required for embedded
Linux development

Course Introduction

= QOverview of the training objectives
= Tools and platforms used (Buildroot, STM32MP1, Raspberry Pi)

= Target audience: developers preparing for embedded Linux careers

1 PAGE 10
Chapter 2 Chapter 3 Chapter 4
k -

Development Environment Requirements for
Embedded Linux Training

Host System Requirements

Requirement Description
Host OS Linux-based (recommended: Ubuntu 22.04 LTS or Debian-based distro)
Alternative OS macOS or Windows (with WSL2 or VirtualBox + Ubuntu VM)
CPU x86_64, 2 cores or more (for faster Buildroot builds)
RAM Minimum 4 GB (8 GB recommended)
Disk Space At least 20 GB free (Buildroot outputs and sources are large)
Internet Required for downloading Buildroot, toolchains, kernel sources, etc.
v
Reter 1) Chapter 3 Chapter 4

PAGE 11
-

Development Environment Requirements for @
Embedded Linux Training

= Required Software Packages (on Host Linux)

bash

sudo apt update

sudo apt install -y \
build-essential git wget curl unzip \
gcc g++ make cmake libncurses5-dev \
gawk flex bison \
libssl-dev libelf-dev \

gemu—system—arm

WV

ter 1 PAGE 12
I Chapter 2 Chapter 3 Chapter 4
IIIIIIIIIIIIIIIIIIII;IIIIIllllllllllllllllllliill -

Development Environment Requirements for
Embedded Linux Training

Setting Up a Host Linux System (If the Student Is on Windows/macQS)

A Option 1: Install Ubuntu via VirtualBox
= Download VirtualBox
= Download Ubuntu ISO (22.04 LTS):
= Create a VM with:
= 2+ cores
= 4 GB+ RAM
= 30 GB+ disk space
= |nstall Ubuntu normally inside VirtualBox

B Option 2: Use WSL2 (Windows 10/11 Only)

O Option 3: Use a Native Linux Partition

\ 4

Chapter 1 PAGE 13
i Chapter 2 Chapter 3 Chapter 4
-

https://ubuntu.com/download/desktop

Development Environment Requirements for @
Embedded Linux Training

= Optional Tools for Better Development Workflow

Tool Purpose
VSCode Text editor with terminal integration
minicom / screen Serial console over UART or QEMU
gdb Debugging applications
Wireshark Network debugging (for later modules)
Python3 + PySerial For creating PC tools or testing serial

\ 4

Chapter 1 PAGE 14
il = Chapter 2 Chapter 3 Chapter 4
L -

What is Linux?

= Open-source Unix-like operating system

= Three major components:
= Kernel
= System libraries
= User space

= Philosophy: "Everything is a file”

Linux is not just an operating system — it's a philosophy.

Its open-source nature allows complete control and customization, making it perfect for embedded
development. The kernel interacts with hardware, while libraries and user-space tools provide
functionality and interface.

WV

ter 1 PAGE 15
Chapter 2 Chapter 3 Chapter 4
; -

What is a Linux Distribution?

= Definition: A Linux distribution (or distro) is a complete operating system built around the Linux
kernel, bundled with essential system software, utilities, libraries, and applications needed to
operate a computer or embedded system.

= Key Components of a Linux Distribution
= Linux Kernel — The core of the OS, managing hardware and system calls.
GNU Utilities — Basic tools like bash, Is, cp, gcc, make, etc.
Package Manager — Used to install, update, or remove software packages (e.g., apt, yum, pacman).
System Libraries — Libraries such as glibc or musl that provide low-level functions.
User Applications — Text editors, networking tools, graphical environments, etc.

WV

hapter 1 PAGE 16
I Chapter 2 Chapter 3 Chapter 4
-

N

How Are Distributions Different?

= Different distributions have different goals, structures, and software packaging systems. Some are
designed for desktop users, others for servers, and some are tailored for embedded systems.

Distribution Use Case Package Manager Description
Ubuntu Desktop / Server apt (Debian-based) User-friendly, large community, LTS versions
Debian Server / Base OS apt Very stable, used as a base for many other distros
Fedora Developer Focused dnf Cutting-edge software, upstream-first philosophy
Arch Linux Custom / Advanced pacman Minimalist, rolling release, DIY configuration

Buildroot Embedded Systems No package manager (uses make) Simple, fast, build-from-source for embedded systems

Yocto Industrial Embedded BitBake Flexible, modular, for complex embedded products

WV

hapter 1 PAGE 17
I Chapter 2 Chapter 3 Chapter 4
-

N

Why Use Special Distros for Embedded Linux?

* |n embedded Linux development (like for STM32MP1 or Raspberry Pi):

= Buildroot is a great choice because:
= Lightweight and easy to configure
= Generates a minimal root filesystem
= |deal for quick prototyping or low-resource systems

= Yocto Project is better suited for:
® |ndustrial and commercial products
= Advanced customization and scalability
= But has a steeper learning curve

WV

ter 1 PAGE 18
o Chapter 2 Chapter 3 Chapter 4
; -

Linux Filesystem Hierarchy

= Single-rooted tree: starts at /

= Key directories:
= /bin, /sbin — essential binaries

/etc — configuration files

/dev — device files
/proc, /sys — virtual filesystems
/home, /var, /tmp, /usr

In Linux, everything — from hardware to processes — is treated as a file.
Understanding directories like /proc and /sys is essential, especially in embedded systems where
hardware monitoring is done through these virtual files.

WV

ter 1 PAGE 19
Chapter 2 Chapter 3 Chapter 4
; -

Linux Command Line Basics

= Common commands: Is, cd, mkdir, cp, rm, man
= Pipes |, Redirection >, >>, <

= Command chaining and history

The command line is your best friend in Linux.

Mastering a few basic commands allows you to navigate the system, manipulate files, and monitor
devices.

Piping and redirection are powerful tools for chaining and logging outputs.

WV

ter 1 PAGE 20
- Chaﬁterz Chapter 3 Chapter 4

Introduction to Bash Scripting

= What is a shell script?

= Key elements:
= #1/bin/bash
= Variables, conditions (if), loops (for, while)

= Executing a script: chmod +x, ./script.sh

Shell scripting allows you to automate tasks such as setting up devices, managing services, or

collecting logs.
It’s especially useful in embedded Linux, where automation often replaces GUI interaction.

PAGE 21

il
i Chapter 2 Chapter 3 Chapter 4
-

Introduction to Bash Scripting

#!/bin/bash

echo "Date & Time: $(date)"

echo"

echo "CPU Info:"
grep "model name" /proc/cpuinfo | uniq

echo"

echo "Free Memory:"
free -h | grep Mem

echo"

echo "Disk Usage:"

df-h /| grep/

echo"

echo "IP Address:"

hostname -I

echo"

PAGE 22
-

Chapter 2 Chapter 3 Chapter 4

Device and Process Management

= Device access via /dev, /sys

= Managing processes:
= ps, top, kill

= Mounting file systems: mount, umount, /etc/fstab

Embedded devices often have limited Ul, so managing hardware and software through the terminal
is critical.

Files like /dev/ttySO or /dev/i2c-1 represent real hardware.

Understanding how to mount USB or SD cards is vital in most projects.

WV

-t 1 PAGE 23
i Chapter 2 Chapter 3 Chapter 4
-

Practice Tasks

In-Class Practice:

Use cat /proc/cpuinfo to read CPU details

Write a Bash script that:
= Shows free memory (free -m)
= Prints CPU model
= Logs output to a file

Mini Project:

Create a simple CLI menu script:
= QOption 1: Show IP address
= QOption 2: Display disk usage
= Option 3: Exit

1 PAGE 24
Chapter 2 Chapter 3 Chapter 4
L -

Skills Acquired in This Section

= Navigate and use Linux command line tools

Understand Linux directory structure and virtual file systems

Write basic Bash scripts for automation

Monitor and manage processes

Access and manipulate device files

Chapter 2 Chapter 3

Chapter 4

PAGE 25
-

Linux Filesystem Hierarchy

Directory
/bin
/sbin
Jetc
/dev
/proc
/sys
Jusr
/var
/tmp
/home

/root
/boot

/lib
/mnt and /media
/opt

Purpose
Essential user binaries (e.g., Is, cp, rm)
Essential system binaries (e.g., fsck, init)
System configuration files
Device files (e.g., /dev/sda, /dev/tty0)
Virtual filesystem for process and kernel info
Exposes kernel and hardware info
User utilities and applications
Variable data (logs, mail, spool)
Temporary files
Home directories for users

Home directory of the root user

Files needed to boot (e.g., kernel, grub config)

Essential shared libraries

Mount points for temporary devices (e.g., USB drives)

Optional software packages

Chapter 2

Chapter 3

Chapter 4

PAGE 26
-

N

Linux Filesystem Hierarchy

¢ / — Root Directory

= This is the starting point of the entire filesystem tree. All files and directories in Linux are located under /,
regardless of the device or partition.

¢ /bin — Essential User Binaries

= Contains essential user commands that are required for booting and single-user mode. These binaries are
needed by both the system and regular users.
= Examples:
= |s—list directory contents
= cp—copy files
" mv-— move/rename
= cat — print file content
" rm—remove files

WV

ter 1 PAGE 27
o Chapter 2 Chapter 3 Chapter 4
F -

N

Linux Filesystem Hierarchy

= & /[sbin — System Binaries
= Contains system administration binaries, typically used by the root user. These tools manage disks, filesystems,
network, etc.

= Examples:
= fsck — filesystem check
= jfconfig, ip — network configuration
= mount, umount — mount/unmount filesystems
= reboot, shutdown — system control

¢ /etc — System Configuration
= Stores system-wide configuration files. Most files here are plain text.
= Examples:
= /etc/passwd — user account information
= /etc/fstab — filesystem mount table
= /etc/hostname — system hostname
= /etc/network/interfaces — network settings

WV

- ter 1 PAGE 28
I Chapter 2 Chapter 3 Chapter 4
-

Linux Filesystem Hierarchy

= ¥ /home — User Home Directories
= Contains personal directories for all regular users.

= Examples:
= /home/john
= /home/alice

¢ /root — Root User's Home

* The home directory of the root (admin) user.
= " Not to be confused with /. This is like /home/root, but specifically named /root for the superuser.

¢ /lib and /lib64 — Essential Shared Libraries

= Holds shared libraries needed by programs in /bin and /sbin. They are like .dll files in Windows.
= Examples:

» libc.so.6 —standard C library

» |d-linux.so — dynamic linker/loader

WV

- ter 1 PAGE 29
I Chapter 2 Chapter 3 Chapter 4
-

Linux Filesystem Hierarchy

@ /usr — User System Resources
= Contains non-essential programs and libraries used by users. It is often the largest directory.
= Key subdirectories:
= /usr/bin —user commands (e.g. gcc, python, vim)
= /usr/sbin — non-critical system binaries
= /usr/lib —libraries for /usr/bin

= /usr/share — architecture-independent data (icons, docs)

¢ /var — Variable Data

= Stores variable or frequently changing files like logs, caches, mail spools, and temporary files created by
programs.

= Examples:
= /var/log/syslog — system logs
= /var/spool/cron — scheduled tasks
» /var/cache — package manager caches

WV

- ter 1 PAGE 30
I Chapter 2 Chapter 3 Chapter 4
-

Linux Filesystem Hierarchy

¢ /tmp — Temporary Files
= Holds temporary files used by applications or users.
= " Cleared on reboot.

¢ /dev — Device Files

= Linux represents all hardware devices as files in this directory.
= Examples:

= /dev/sdal — hard disk partition
= /dev/ttyUSBO — USB serial port

® /proc — Kernel and Process Information
= A virtual filesystem that exposes runtime system information provided by the Linux kernel.
= Examples:
= /proc/cpuinfo — CPU details
= /proc/meminfo — memory usage
= /proc/[PID]/ — process-specific info

WV

ter 1 PAGE 31
o Chapter 2 Chapter 3 Chapter 4
; -

Linux Filesystem Hierarchy

@ /sys — System and Device Tree
= Another virtual filesystem. Unlike /proc, this is structured hierarchically and is more hardware-oriented.
= Examples:

= /sys/class/net/ — network interfaces
= /sys/block/— block devices like disks

€ /media and /mnt — Mount Points
= /media - for automounted devices (like USB, CD-ROM)
= /mnt - for temporary/manual mounts by sysadmins
= example
= mount /dev/sdbl /mnt/usb

¢ /opt — Optional Software

= Used for installing third-party applications or proprietary software not managed by the distribution’s package
managetr.

= Examples:
= /opt/google/chrome/
= /opt/teamviewer/

WV

- ter 1 PAGE 32
I Chapter 2 Chapter 3 Chapter 4
-

Linux Filesystem Hierarchy

¢ /boot — Boot Files

= Contains all files required to boot the Linux system, such as the kernel and bootloader configuration.

= Common files:
= vmlinuz — compressed Linux kernel
" initrd — initial RAM disk
= grub/— bootloader config files
= s Often mounted as a separate partition.

Chapter 2

Chapter 3

Chapter 4

N

PAGE 33
-

N

Essential Linux Commands (with Examples)

¢ File and Directory Management
= pwd # Print current working directory
= |s-| #Listfilesin long format
» cd/path # Change directory
* mkdir name # Create directory
= rm -rf name # Remove files/directories
= cp src dest # Copy
= mv src dest # Move or rename
€ Viewing File Content
= catfile.txt # Print file
= |ess file.txt # Scroll file content
= head file.txt # First 10 lines
= tail -f file.txt # View logs in real-time
¢ Finding Files and Text
» find /path -name "*.c
= grep "main" file.c

WV

ter 1 PAGE 34
i Chapter 2 Chapter 3 Chapter 4
; -

N

Essential Linux Commands (with Examples)

@ File Permissions and Ownership
= s | # Show permissions
= chmod 755 # Change permission
= chown user:group file
= r=read, w = write, x = execute
= Owner / Group / Others (e.g., -rwxr-xr--)

@ Useful Tools
= df-h # Disk space
= du-sh* #Directory size
= top / htop # System processes
" psaux #Process list
= kill -9 PID # Kill process

ril PAGE 35
Chapter 2 Chapter 3 Chapter 4
-

Working with Package Managers

= @ For Ubuntu/Debian:
= sudo apt update
= sudo apt install package-name
= sudo apt remove package-name
= dpkg -l | grep package

For Fedora:
= sudo dnf install package-name

-1 PAGE 36
Chapter 2 Chapter 3 Chapter 4
-

Networking Basics

ip a # Show network interfaces

ping 8.8.8.8 # Test connectivity

wget http://... # Download files

scp file user@host:/path # Secure file copy
ssh user@ip # Remote login

PAGE 37
Chapter 2 Chapter 3 Chapter 4
k -

Archiving and Compression

tar -cvf archive.tar folder/
tar -xvf archive.tar

gzip file.txt

gunzip file.txt.gz

PAGE 38
-

- Chaﬁter 2 Chaiter 3

Chapter 4

Disk and Filesystem Management

mount /dev/sdbl /mnt
umount /mnt

Isblk

fdisk -I

df -h

PAGE 39
-

Chapter 4

Systemd and Services @

systemctl status ssh
systemctl start nginx
systemctl enable apache2

PAGE 40
Chapter 2 Chapter 3 Chapter 4
k -

What is Bash? @

Bash stands for Bourne Again Shell.

It is a command-line interpreter used in most Linux distributions.

Developed as a free and improved replacement for the original Unix shell sh.

Bash is used for:
= Running system commands
= Writing shell scripts

= Automating tasks

ril PAGE 41
Chapter 2 Chapter 3 Chapter 4
-

N

What is a Shell?

= Ashell is a program that takes commands from the keyboard and gives them to the operating system.
= Acts as a command-line interface (CLI).

= Types of shells:
= sh (Bourne Shell)
= bash (Bourne Again Shell)
= zsh, ksh, csh, etc.

1 PAGE 42
Chapter 2 Chapter 3 Chapter 4
; -

Key Features of Bash

" |nteractive command execution
= Script writing and execution

= Variables and arrays

= Conditional logic (if, case)

= Looping (for, while, until)

®= Functions

= |Input/output redirection

= Command history and completion

1 PAGE 43
Chapter 2 Chapter 3 Chapter 4
; -

Why Use Bash?

Pre-installed on most Linux systems

Great for automating repetitive tasks

Used widely in:
=" Embedded Linux development
= DevOps and system administration
= Server configuration and deployment

Lightweight and scriptable

il PAGE 44
Chapter 2 Chapter 3 Chapter 4
; -

The Shebang (#!/bin/bash)

= The first line in a bash script is called the shebang:
= #1/bin/bash

= Tells the system to use the Bash interpreter to run the script.

= Must be the first line in the script file.

How to Check Your Shell:
= echo SSHELL

= Displays the path to the current shell (e.g., /bin/bash)

Chapter 2 Chapter 3

Chapter 4

PAGE 45
-

We will cover these skills

* Understand how Embedded Linux differs from Desktop
Linux

e Learn the architecture of Embedded Linux systems

* Get familiar with bootloader, kernel, root filesystem, and
device tree

* Explore toolchains and cross-compilation

e Learn how to prepare and boot Embedded Linux on real
hardware (e.g., STM32MP1 / Raspberry Pi)

* Gain hands-on experience with Buildroot for building a
custom Linux OS

o

Chapter 2

Linux for
Embedded
Development

PAGE 46

What is Embedded Linux

= Embedded Linux is a lightweight, customized Linux OS for embedded systems.

= Used in:
= Routers, TVs, industrial control systems, automotive ECUs
= |oT devices, edge computing devices, etc.
= Typically runs on ARM architecture
= Focuses on performance, size, and reliability

@, Notice:

= Embedded Linux is not a different Linux kernel—it’s the same Linux, just customized and optimized for
small devices with limited resources.

N/

Chapter 2 PAGE 47
-apter 1l L Chapter 3 Chapter 4
-

N

Embedded Linux System Architecture

= An embedded Linux system is made up of several interdependent components, each serving a
distinct purpose. These components work together to create a functional, customizable, and
efficient system suitable for resource-constrained devices.

= Understanding these components is essential before diving into kernel development, driver
integration, or system customization.

= Key Components:
= Bootloader (e.g., U-Boot)
® Linux Kernel
= Device Tree
= Root Filesystem (rootfs)
= User Applications

@, Notice:

= This modular structure allows customization and optimization for different embedded projects.
V-

Chapter 2 PAGE 48
-Chapterl s Chapter 3 Chapter 4
-

N

Embedded Linux System Architecture

3% Bootloader: bootloader is the first software that runs when the embedded system is powered
on. It is responsible for:

= |nitializing low-level hardware (RAM, clocks, pins)
= Loading the Linux kernel and Device Tree into memory
= Passing control to the kernel

7 Examples:
= U-Boot (most popular in embedded Linux)
= Barebox
= Das U-Boot SPL (for minimal hardware init)

@& Why it matters:
= You can customize the bootloader to:
® Choose from multiple kernels
= Boot into recovery
= Update firmware over the network (TFTP, USB, etc.)

N/

Chapter 2 PAGE 49
-hapter 1l s Chapter 3 Chapter 4
-

Embedded Linux System Architecture

& Linux Kernel

= B Whatitis:
= The Linux kernel is the core of the operating system. It interacts directly with hardware and provides an
interface for user-space applications to use the system's resources.
@ Responsibilities:
= Hardware abstraction and driver management
= Process scheduling and memory management
= File system support
= Networking stack
= Power and resource control

7/~ Common Formats:
= zlmage or ulmage (compressed kernel images)
= vmlinuz (used in desktop/server Linux)

® Configuration:
= You can enable/disable kernel features using make menuconfig when compiling the kernel.

N/

Chapter 2 PAGE 50
-hapter 1l s Chapter 3 Chapter 4
-

Embedded Linux System Architecture

3% Device Tree Blob (DTB)

= B Whatitis:
= The Device Tree is a data structure that describes the hardware layout to the Linux kernel, especially on
platforms that do not support self-discovery (like ARM).

I Format:
= Source file: .dts (Device Tree Source)
= Compiled file: .dtb (Device Tree Blob)

@& Contains:
= CPU, RAM, peripherals
= GPIO, UART, I2C, SPI definitions
= |nterrupt mappings

7 Why it's needed:
* |nstead of hardcoding hardware details, the kernel reads the .dtb to know:

= What hardware exists
= How to configure it

= \What drivers to load
V-

Chapter 2 PAGE 51
-apter 1l L Chapter 3 Chapter 4
-

Embedded Linux System Architecture

% Root Filesystem (RootFS)

B What it is:
= The Root File System contains all the user-space binaries, libraries, configuration files, and init scripts required
to run the system.
I Typical directories:
/bin, /sbin: essential command binaries
/etc: system configuration
/lib: shared libraries
/dev: device nodes
/proc, /sys: virtual system info
= /usr: user utilities and applications

7/ Formats:
= extd, squashfs, jffs2, UBIFS

* Created by:
= Buildroot, Yocto, OpenEmbedded, or manually

N/

Chapter 2 PAGE 52
-apter 1l L Chapter 3 Chapter 4
-

Embedded Linux System Architecture

32 Init System

2 Whatitis:
= The init system is the first user-space program launched by the kernel. It manages:
= Starting services
= Mounting filesystems
= Running startup scripts

7 Examples:
= init from BusyBox (lightweight and embedded-friendly)
= systemd (more advanced, less common in embedded)
@ Config File:
= /etc/inittab (BusyBox)
= /etc/init.d/ scripts

N/

Chapter 2 PAGE 53
_pterl L Chapter 3 Chapter 4
-

N

Embedded Linux System Architecture

& User Applications
2 What it is:

= These are the actual programs, utilities, and services you write or integrate for your embedded product.

7 Examples:
= Sensor monitoring scripts
= Network daemons
= Ul interfaces
= Data loggers
= Remote update clients
= These are usually written in C/C++, Shell, or even Python (if resources allow).

N/

Chapter 2 PAGE 54
-ter il R Chapter 3 Chapter 4
-

Embedded Linux System Architecture

20 Summary Table

Component Description

Bootloader Initializes hardware, loads kernel

Kernel Core OS: manages hardware and system calls

Device Tree Hardware description for non-discoverable platforms

Root File System User-space libraries, tools, configurations
Init System Manages boot process and service startup

User Applications Your product logic and software

N/

Chapter 2
-apter il apter Chapter 3

Common Tools
U-Boot, Barebox

Linux mainline, custom
.dts / .dtb files
Buildroot, Yocto
BusyBox, systemd

C, Shell, Python

Chapter 4

PAGE 55
-

Boot Process in Embedded Linux

ROM Code (from SoC): Executes first, loads bootloader

Bootloader (e.g., U-Boot): Initializes RAM, loads kernel

Kernel: Sets up device drivers, mounts root filesystem

Init Process: Launches user space

N/

Chapter 2 PAGE 56
_ter il R Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

The boot process in Embedded Linux typically follows these main steps:
= [1] Power On
Sl

[2] Boot ROM Code

B

[3] First-Stage Bootloader (SPL)

e e

[4] Second-Stage Bootloader (U-Boot)

T

[5] Linux Kernel + Device Tree + Initramfs

e

[6] Root Filesystem Mount

L

[7] Init System & User Applications

N/

Chapter 2 PAGE 57
-ter 1l L Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Boot ROM Code (SoC-specific)

¥ What It Does:
= Burned into the chip by the manufacturer

Initializes minimal hardware (clocks, SRAM)
Detects boot source: SD, NAND, eMMC, USB, UART
Loads the First-Stage Bootloader from boot media

N/

Chapter 2 PAGE 58
_ter il R Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

First-Stage Bootloader (e.g., SPL - Secondary Program Loader)

¥ What It Does:
= |nitializes DRAM (RAM controller, timing)
= Sets up basic I/0 (if needed)
= Loads the Second-Stage Bootloader into RAM

2 Common Example:
= SPL in U-Boot for STM32MP1, Raspberry Pi, etc.

¥ File:
= Often called MLO, SPL, or part of u-boot-spl.bin

N/

Chapter 2 PAGE 59
-pterl L Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Second-Stage Bootloader (e.g., U-Boot)

¥ What It Does:
= Fully initializes hardware (MMC, Ethernet, UART, USB, etc.)
= Provides command-line interface over UART/Serial
= |oads:
= Linux Kernel (zimage/ulmage)
= Device Tree (.dtb)
= |nitramfs (optional)
= Transfers control to the kernel

7/ Features:
= Environment variables (bootargs, bootcmd)
= Network boot (TFTP, NFS)
= Firmware update via DFU, USB, MMC, etc.
= Secure boot support

N/

Chapter 2 PAGE 60
-pterl L Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Linux Kernel Initialization

¥ What It Does:
= Decompresses the kernel image

Parses the Device Tree (hardware info)

Mounts an initial RAM disk (initramfs), if present
Starts the init process (PID 1)

@& Notes:
= This is where most kernel messages (dmesg) are printed

= |nitializes drivers and memory management

N/

Chapter 2 PAGE 61
-ter il R Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Root Filesystem Mounting

¥ What It Does:
= Mounts the final root filesystem (usually on ext4, squashfs, etc.)
= Executes /sbin/init or equivalent based on init system (e.g., BusyBox)

7/~ Mount Sources:
= On-board flash (NAND, eMMC)
= SD card

N/

Chapter 2 PAGE 62
_ter il R Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Init System Execution

¥ What It Does:
Initializes system services

Mounts system partitions (/proc, /sys, /dev)

Starts background daemons and user apps

Prepares system for normal operation

@& Common Init Systems:
= BusyBox init (lightweight, common in Buildroot)
= systemd (advanced, less common in embedded)
= OpenRC, SysVinit (optional)

N/

Chapter 2 PAGE 63
-pterl L Chapter 3 Chapter 4
-

Boot Process in Embedded Linux

Stage
ROM

1st
pAgle
3rd
4th
5th
6th

_terl Chapter 2

Component
Boot ROM

SPL
U-Boot
Kernel

DTB
RootFS

Init

File/Tool
bootcode.bin
u-boot.bin
zlmage
bcm2835-rpi.dtb
rootfs.ext4
/sbin/init

N/

Location
Fixed in SoC
boot partition
boot partition
boot partition
boot partition
root partition

inside rootfs

Chapter 3

Chapter 4

PAGE 64
-

Boot Process in Embedded Linux

Embedded Linux Boot Process

Using the Boot Args, the Kernel locates and mounts the root filesystem
o Root Filesystem Kernel runs the Init process (PID 0) to start userspace
Init Process The Init process now spawns other userspace processes based on its
configuration files

The Second Stage Bootloader reads its configuration settings

(either statically embedded or external file)

Finds and loads the Linux Kernel and the Device Tree Binary into RAM
Sets up the Kernel Boot Arguments

Then passes control to the Kernel which uses the Boot Args and Device
Tree address to initializes itself and hardware devices

Linux Kernel
0 Device Tree File

B 9 Second Stage Bootloader The SoC is powered and begins execution at the reset vector
o Control given to the ROM bootloader
(T) 7 ROM bootloader decides boot device order based on hardware
. pin settings
é 0 FirscatgerBoctioquer ROM bootloader loads the First Stage Bootloader from the boot device
A I into the internal SoC memory and passes control to it
2 The First Stage Bootloader copies the Second Stage Bootloader into
R @ RAM and passes control to it
©PentesterAcademy.com p—
v
Chapter 2 PAGE 65

Chapter 1 Chapter 3 Chapter 4

Toolchains & Cross-Compilation

Cross-compilation: Compiling on a host system (x86) for a target (ARM)

Tools: gcc, Id, as, objcopy, etc.

Toolchains include:
= Compiler (e.g., arm-linux-gnueabihf-gcc)
= C Library (e.g., glibc, musl, uclibc)
= Debugger (e.g., gdb)

Popular toolchains: Buildroot-generated, Yocto-generated

N/

Chapter 2 PAGE 66
-ter il R Chapter 3 Chapter 4
-

Toolchains & Cross-Compilation

X What is a Toolchain?

= A toolchain is a collection of tools used to compile, assemble, and link software for a specific target

system.
Tool
gcc
as
Id
ar
strip
objdump / readelf
gdb
make / cmake

C Library
\ 4

-pterl Chapter 2

Purpose

Compiler (C/C++ source to object code)
Assembler (assembly to object)

Linker (combine objects to executable)

Archiver (library creation tool)

Binary size reducer (removes symbols)

Inspect binary formats

Debugger

Build automation

glibc, musl, or uClibc

Chapter 3 Chapter 4

PAGE 67
-

Toolchains & Cross-Compilation

& Native vs. Cross Compilation

Term Description
Native Compilation Building software on the same machine where it will run
Cross Compilation Building software on one machine (host) for a different system (target)
V-
.y Chapter 2

PAGE 68
-

Chapter 3 Chapter 4

Toolchains & Cross-Compilation

| Why Cross-Compile in Embedded Linux?
= Target (STM32MP1, Raspberry Pi, etc.) may not have enough CPU, memory, or disk to build software
= Speeds up compilation
= Enables development on powerful hosts (x86_64) for limited devices (ARM Cortex-A)

G Host vs. Target vs. Build Systems

Term Definition

Build System Where tools are built (e.g. when building a toolchain)

Host System Where the compiled tools run (e.g. your dev PC)

Target System Where the compiled program will run (e.g. STM32MP1 board)
V-

Chapter 2 PAGE 69
-hapter 1l s Chapter 3 Chapter 4
-

Toolchains & Cross-Compilation

B Prebuilt Toolchains (Ready to Use)
= Many distributions and projects provide prebuilt toolchains:

Provider Link Notes

Buildroot Generates its own toolchain

Yocto SDK Comes with environment-setup script

Linaro https://www.linaro.org Optimized for ARM

ARM GNU Toolchain https://developer.arm.com Official ARM tools
V-

Chapter 2 PAGE 70
_pterl L Chapter 3 Chapter 4
-

https://www.linaro.org/
https://developer.arm.com/

N

Toolchains & Cross-Compilation

Example (Linaro Toolchain for ARM)

wget https://releases.linaro.org/components/toolchain/binaries/latest/arm-linux—gnueabi
tar xf gcc.tar.xz
export PATH=$P :/path/to/toolchain/bin

Now, use:
= arm-linux-gnueabihf-gcc main.c -o main

N/

Chapter 2 PAGE 71
-r1 L Chapter 3 Chapter 4
-

Toolchains & Cross-Compilation

i Toolchain Components (File View)
toolchain/

|—bin/

| |—arm-|inux—gnueabihf—gcc

| |-—arm-|inux-gnueabihf-|d

F—lib/

|—inc|ude/

|-—Iibexec/

TZ How to Build Your Own Toolchain (Optional)
= Buildroot - make menuconfig = Toolchain
= Yocto - bitbake meta-toolchain

N/

Chapter 2 PAGE 72
_ter il R Chapter 3 Chapter 4
-

Toolchains & Cross-Compilation

& How Toolchain Integrates with Buildroot
= |n Buildroot:

Toolchain » Toolchain type: External / Buildroot internal
Target Architecture: ARM Cortex—A7
C Library: musl / uClibc / glibc

= Buildroot can:
= Download and configure an external toolchain
= Or build one from scratch

N/

Chapter 2 PAGE 73
-erl R Chapter 3 Chapter 4
-

Toolchains & Cross-Compilation

® Common Issues & Tips

Problem Cause / Solution

Wrong architecture Check file output of compiled binary

"Command not found" Toolchain bin not in PATH

Linking errors Mismatch between libc and headers

"Illegal instruction" Using wrong CPU flags for your target
V-

Chapter 2 PAGE 74
_ter 1 L Chapter 3 Chapter 4
-

Introduction to Build Systems

= Purpose: Automatically build toolchain, kernel, rootfs

= Common systems:

» Buildroot ¥ (used in this course)
= Yocto

= Why Use Buildroot?

= Simple configuration via make menuconfig
= Fast build process

= |deal for small to medium projects

= Easily integrates custom applications

N/

Chapter 2 PAGE 75
_ter il e Chapter 3 Chapter 4

Introduction to Build Systems

/" Buildroot and Yocto: Full Embedded Build Systems

Feature Buildroot
Simplicity Simple, fast to learn
Toolchain Can build or use external
RootFS Generates minimal Linux rootfs
Package support Manual, defconfig style
Use case Quick development

V-

Chapter 3

- pter 1 Chapter 2

Yocto

Complex, highly customizable
Uses Poky or custom
Generates full-featured images
BitBake recipes (.bb files)

Production-grade customization

PAGE 76
-

Chapter 4

Preparing Your Host Linux System

= Host System Requirements
= Ubuntu/Debian-based Linux recommended
= Required packages:
= sudo apt install build-essential git gcc make python3 unzip bc\
» libncurses5-dev libssl-dev cpio rsync flex bison \
= device-tree-compiler u-boot-tools

N/

Chapter 2 PAGE 77
-r1 R Chapter 3 Chapter 4
-

Folder Structure and Best Practices

= Use separate folders:
= ~/embedded-linux/

= | buildroot/
= | — toolchain/
= | —kernel/
= |[— output/

N/

Chapter 2 PAGE 78
_ il R Chapter 3 Chapter 4
-

Hands-On with Buildroot

= Buildroot - First Build
= Clone repository:

= git clone https://github.com/buildroot/buildroot.git
= cd buildroot

= make raspberrypi4_defconfig # or your target defconfig
" make

= Qutput:
= Kernel image
= Root filesystem (initramfs/rootfs)
= Bootloader (optional)

= Deploying on Hardware:
= Copy images to SD card or flash storage

= Configure bootloader (U-Boot) if needed

= Boot and debug using serial console
V-

Chapter 2 PAGE 79
_pter 1l L Chapter 3 Chapter 4

o

We will cover these skills

* Download, extract, and configure Buildroot. Ch a pte r 3

e Understand Buildroot’s directory structure (, , ,).

* Select and cor-wfigure: B U I ‘ d rOOt
et Fundamentals
» Kernel optionse a n d Fl |esySte m

* Root filesystem type (ext4, squashfs, cpio, etc.)

e Build minimal and full-featured root filesystems. G e n e ratl O n

* ntegrate custom packages into Buildroot.
 Generate bootable images for SD cards or flash

memory.

PAGE 80

Buildroot Fundamentals

What is Buildroot?

= Definition:
Buildroot is an open-source tool that automates the process of creating a complete embedded
Linux system for your target hardware.

= Purpose:
It cross-compiles the kernel, bootloader, root filesystem, and user-space tools for embedded
devices.

= Key Features:
= Lightweight and simple to configure.
= Supports many CPU architectures (ARM, x86, MIPS, PowerPC, RISC-V, etc.).
= Generates minimal, customized Linux systems.
= |ntegrates easily with cross-compilers and toolchains.

v

hapter 1 Chapter 2 Chapter 3 Chapter 4 PAGE 81
L -

Why Use Buildroot?

Fast development — From source code to bootable image in a single step.

Customizability — Include only what’s needed (reducing footprint).

Reproducibility — Same configuration builds the same system every time.

Integration — Works with various build systems like Makefiles, CMake, etc.

v

1 Chapter 2 Chapter 3 Chapter 4 PAGE 82
L -

N

Filesystem Generation Workflow in Buildroot

The filesystem in Linux is the directory structure that the kernel uses to store programs, libraries, and
configuration files.

Buildroot automates root filesystem creation:
= Select Target Configuration

» Choose target architecture (e.g., ARM Cortex-A7).

= Select toolchain.

= Configure packages, kernel, bootloader, and rootfs type.
= Download Sources

= Buildroot downloads required packages, kernel, and bootloader sources from mirrors or Git repositories.
= Compile Components
= Uses cross-toolchain to compile:
= Bootloader (U-Boot)
= Kernel

= User-space applications
= Libraries

v

hapter 1 Chapter 2 Chapter 3 Chapter 4 PAGE 83
L -

N

Filesystem Generation Workflow in Buildroot

= Assemble Root Filesystem
= Buildroot arranges all compiled files into a root filesystem.
= Supports formats: ext4, SquashFS, CramFS, initramfs, etc.
= Create Final Image
= Generates bootable images like:
= sdcard.img (SD card image)
= rootfs.ext4 (filesystem image)

= ulmage or zlmage (kernel)
= u-boot.bin (bootloader)

v

.1 Chapter 2 Chapter 3 Chapter 4 PAGE 84
L -

Directory Structure in Buildroot

Directory / File Description
arch/ Architecture-specific configurations and code. Contains subfolders for ARM, x86, MIPS, etc.
board/ Board-specific configurations, boot scripts, and kernel patches. Each vendor may have a subfolder.
configs/ Predefined configuration files (defconfig) for popular boards (e.g., raspberrypi3_defconfig).
docs/ Official Buildroot documentation in text and HTML formats.
fs/ Filesystem generator scripts for different formats (ext2, initramfs, squashfs, etc.).
linux/ Kernel build support files and patches.
package/ All supported software packages (BusyBox, dropbear, etc.) with .mk build scripts.
system/ Scripts for init, startup, and device management.
toolchain/ Scripts and configurations for building or using external toolchains.
output/ (generated after build) Contains the results of the build process:
build/ Temporary build directories for each package.
images/ Final bootloader, kernel, and filesystem images.
staging/ Temporary root filesystem used during build.
host/ Tools compiled for the host (PC) environment.
target/ Final root filesystem contents before packaging.
WELGHI Main Buildroot build script. You always start builds from here.
Config.in Menu configuration definition file for make menuconfig.
v
Chapter 3 PAGE 85
erl Chapter 2 P Chapter 4

Example Filesystem Layout Generated by Buildroot @

= (inside target/ or final image)

/

-— bin/ — Essential binaries (ls, cp, cat...)
-— dev/ — Device files

-— etc/ — System configuration files

-— lib/ — Shared libraries

-—root/ - Home directory for root user
-—sbin/ = System binaries

-— tmp/ — Temporary files

-— usr/ — User programs and data
L— var/ — Variable data (logs, spool)

v

-apter il Chapter 2 Chapter 3 Chapter 4 PAGE 86
-

N

practical list of important Buildroot packages

Development & Debugging Tools

These are essential for testing, debugging, and managing the system:
= busybox (already included, core utilities)
= bash — better shell than sh
" nano or vim — text editor
= htop — process monitor
= strace — trace system calls
= [trace —trace library calls
= gdb / gdbserver — debugging
= procps — process and system information commands (ps, top, free)
= file — detect file type
= which — locate executables
= psmisc — tools like killall, fuser

v

Chapter 1 Chapter 2 Chapter 3 Chapter 4 ey
L -

practical list of important Buildroot packages

Networking Tools
f your board has Ethernet/Wi-Fi:

dropbear or openssh — SSH server/client

curl — transfer data over HTTP, HTTPS, FTP, etc.
wget — download files from the internet

iproute2 — modern networking commands (ip, ss)
net-tools — legacy tools (ifconfig, netstat)

iperf3 — network performance test

ethtool — Ethernet interface settings

tcpdump — packet capture

bridge-utils — network bridging

-hapter il Chapter 2

v

Chapter 3

Chapter 4

N

PAGE 88
-

N

practical list of important Buildroot packages

File System & Storage

For handling USB drives, SD cards, etc.:
= e2fsprogs — tools for ext2/3/4 filesystems

dosfstools — FAT filesystem tools

mtd-utils — flash memory tools

parted — partitioning tool
ntfs-3g — NTFS support

v

-apter il Chapter 2 Chapter 3 Chapter 4 PAGE 89
-

N

practical list of important Buildroot packages

Compression & Archive Tools

For installing/unpacking software:
= tar — archive utility
= gzip, bzip2, Xz, zip, unzip — compression utilities

Time & Date

For RTC and time sync:
= ntp or chrony — time synchronization
= hwclock — manage hardware clock (comes with busybox, but util-linux version is better)

System Management
= util-linux — essential utilities (mount, umount, fdisk, hwclock)

= inotify-tools — filesystem event monitoring
v

-Chapter il Chapter 2 SlepiEr e Chapter 4

PAGE 90
-

N

practical list of important Buildroot packages

Programming Languages (Optional)

If your system runs scripts or interpreters:
= python3 — Python runtime
" |ua — lightweight scripting
= perl—Perl interpreter

Extra for Embedded Development
= j2c-tools — interact with 12C devices
= can-utils — CAN bus tools
= usbutils — USB device listing (Isusb)
= pciutils — PCl device listing (Ispci)
= devmem2 — access physical memory from userspace

v

hapter 1 Chapter 2 Chapter 3 Chapter 4 PAGE 91
L -

Structure of a systemd Service Unit File

= [Unit] Section
= [Service] Section

= [Install] Section

v

1 Chapter 2 Chapter 3 Chapter 4 PAGE 92
h -

Structure of a systemd Service Unit File

[Unit] Section

Directive Description

Description= Short description of the service.

Bo@tmelita s cn= Reference to manuals or docs (e.g., man:nginx (8)).

Requires= Units that must be active for this unit to start. If they fail, this unit also stops.
Wants= Units that should be active if possible, but won’t cause failure if not.
Before=/After= Controls startup/shutdown ordering.

Conflicts= Units that should not run at the same time.

v

-pter il Chapter 2 Chapter 3 Chapter 4 PAGE 93
-

Structure of a systemd Service Unit File

[Unit] Section
= [Unit]
Description=My Custom Web Application

Documentation=https://myapp.example.com/docs

Requires=network.target

After=network.target

v

Chapter 3 PAGE 94

ri Chapter 2 Chapter 4
-

Structure of a systemd Service Unit File

[Service] Section

Directive

i es:

Exec S tatst—
ExecReload=
ExecStop=
ReStEame—
RestarEosces
User=/Group=

AT O Rl F

Description

Defines how systemd expects the service to behave
(simple, forking, oneshot, notify, dbus).

Command to start the service. Required.

Command to reload the service without stopping.

Command to stop the service.

Restart policy (no, on-success, on-failure, always).
Delay before restarting.

Run the service as a specific user/group.

Set environment variables.

v

-apter il Chapter 2 Hiappiers Chapter 4

PAGE 95
-

Structure of a systemd Service Unit File

[Service] Section

[Service]

Type=simple

ExecStart=/usr/bin/python3 /opt/myapp/server.py
Restart=on-failure

RestartSec=5

User=myappuser
Environment=APP_MODE=production

v

Chapter 3 PAGE 96

ril Chapter 2 Chapter 4
-

Structure of a systemd Service Unit File

[Install] Section

Directive Description
Target(s) the service should start with when enabled (most common is multi-

WantedBy=
user.target).
RequiredBy= Strong dependency for another unit (less common in normal services).

EEs o= Additional units to enable/disable along with this one.

[Install]
WantedBy=multi-user.target

v

-ter il Chapter 2 Clnipizes 2 Chapter 4

PAGE 97
-

Structure of a systemd Service Unit File

[Unit]
Description=My Custom Web Application
After=network.target

Requires=network.target

[Service]

Type=simple

ExecStart=/usr/bin/python3 /opt/myapp/server.py
Restart=on-failure

RestartSec=5

User=myappuser

Environment=APP_MODE=production

[Install]
WantedBy=multi-user.target

v

Chapter 3 PAGE 98

ri Chapter 2 Chapter 4
-

We will cover these skills

Understand what cross-compilation is and why it’s used.

Chapter 4

Locate and use the Buildroot cross-toolchain. CrOSS—
Cross-compile a simple C program for the LicheePi Zero

Transfer and run programs on the target board. . CO m p I ‘at I O n

Add a custom package to Buildroot.

PAGE 99

Introduction to Cross-Compilation

= What is cross-compilation?
= Compiling code on one machine (host) to run on another (target) with a different architecture.

= Example: Build on x86_64 laptop = run on ARM Cortex-A7 (LicheePi Zero).
= Why cross-compile?

= Target board may have limited CPU, RAM, or storage.

= Easier to use powerful PC for building software.

= Key components
= Host system: Your development PC (Ubuntu, Debian, etc.)
= Target system: LicheePi Zero (ARMvV7).
= Toolchain: Set of tools (compiler, linker, etc.) built for the target architecture.

W%

PAGE 100

hapter 1 Chapter 2 Chapter 3 Chapter 4
L -

Toolchains in Buildroot

Buildroot automatically generates a cross-compilation toolchain when you build.

Location after build:

output/host/bin/arm-linux-*

Main tools:
= arm-linux-gcc - C compiler
= arm-linux-ld = Linker
= arm-linux-strip - Binary size reducer

W%

ril Chapter 2 Chapter 3 Chapter 4 PAGE 101

Cross-Compile Workflow

Write source code on host (e.g., hello.c).

Compile with cross-compiler:
= output/host/bin/arm-linux-gcc hello.c -o hello

Copy to target board (via scp, SD card, etc.):
= Scp hello root@192.168.1.50:/root/

Run on target:
= _/hello

erl Chapter 2

Chapter 3

W%

Chapter 4

PAGE 102
-

Example — Hello World

= Source code (hello.c):
#include <stdio.h>

int main() {
printf("Hello from LicheePi Zero!\n");

return O;

}

= Cross-compile:
= output/host/bin/arm-linux-gcc hello.c -o hello
= file hello

= Qutput should show:
= ELF 32-bit LSB executable, ARM, EABI5 version 1 ...

ri Chapter 2

Chapter 3

W%

Chapter 4

PAGE 103
-

Network Protocol @

= Transmission Control Protocol (TCP)------- > Connection-oriented protocol

= User Datagram Protocol (UDP)-------------- > part of the Internet Protocol

W%

_1 Chapter 2 Chapter 3 Chapter 4 PAGE 104
-

Network Protocol @

TCP (Transmission Control Protocol)

Connection-oriented: TCP establishes a connection between client and server before transmitting data
(like a phone call).

Reliable: Ensures data arrives in order, retransmits lost packets, and checks errors.
Stream-based: Data is read as a continuous stream, not divided into distinct packets.
Use cases: Web browsing (HTTP/HTTPS), file transfer (FTP), SSH, email.

A, TCP requires:

Socket creation (socket())

Binding to a port (bind())

Listening for incoming connections (listen())
Accepting a client connection (accept())
Sending/Receiving data (send() / recv())
Closing connection (close())

W%

-hapter il Chapter 2 Chapter 3 Chapter 4 PAGE 105
-

Network Protocol @

UDP (User Datagram Protocol)

= Connectionless: No setup required; packets (datagrams) are just sent (like sending letters without
acknowledgment).

= Unreliable: No guarantee of delivery, order, or duplication check.

= Message-based: Each sendto() call corresponds to one datagram.

= Fast and lightweight compared to TCP.

= Use cases: Real-time apps like video streaming, VolP, DNS, loT sensors.

., UDP requires:

= Socket creation (socket())
Binding to a port (bind())
Receiving datagrams (recvfrom())

Sending datagrams (sendto())
Closing socket (close())

W%

-hapter il Chapter 2 Chapter 3 Chapter 4 PAGE 106
-

Network Protocol

Sender Reciever

T E W’

Sender Reciever
Reguest

Response

Response

Response

Chapter1 Chapter 2 Chapter 3 Chapter 4 PAGE 107

o

We will cover these skills

Chapter 5
* Understand the role of Device Tree in Embedded Linux. DEV'Ce Tree | n

» Differentiate between DTS, DTB, DTC and their purposes.

* Explain how Device Tree integrates into the Linux boot E m bed d ed
process (U-Boot - Kernel). I_I n ux

* Read and interpret the structure of a DTS file (nodes,

properties, compatibility strings).

PAGE 108

What is Device Tree?

A data structure describing hardware to the Linux
kernel.

Replaces old hardcoded board files in kernel.

Kernel = generic, Device Tree = hardware-specific.

Benefits:
= Kernel portability.
= Easy hardware changes without recompiling kernel.
= Supports multiple boards with same kernel.

N/

-er 5 Chapter 6 PAGE 109
-

Device Tree Files

DTS (Device Tree Source) - human-readable text file.
DTB (Device Tree Blob) - compiled binary used by kernel.
DTC (Device Tree Compiler) = tool to compile DTS - DTB.

I Typical path in Linux source:
= arch/arm/boot/dts/

PAGE 110

r5 Chapter 6
-

N

Device Tree Structure

dts

= Hierarchical structure (like a filesystem). /g
= Nodes = hardware blocks (CPU, memory, model = "lLicheePl Zero®; _ _
UART, GPlO) compatible = "licheepi,zero", "allwinner,sun81i-v3s";
= Properties = key-value pairs. memory {
device_type = "memory";
= & Example: —P Y
reg = <0x40000000 0x8000000>; // 128 MB RAM
I
soc {
uart@: serial(®01c28000 {
compatible = "snps,dw—-apb-uart";
reg = <0x01c28000 0x400>;
status = "okay";
b
I

PAGE 111

r5 Chapter 6
-

Device Tree in Boot Flow

= Bootloader (U-Boot) loads:
= Kernel image (zlmage/ulmage).
= DTB (device tree blob).

= Kernel parses DTB = configures hardware.

= Drivers bind to hardware nodes via compatible.

r5 Chapter 6

PAGE 112
-

LicheePi DTS Location @

= For Allwinner V3s SoC (used in LicheePi Zero):
B linux/arch/arm/boot/dts/sun8i-v3s-licheepi-zero.dts

= |Includes generic SoC file:
I sun8i-v3s.dtsi

N/

5 Chapter 6 PG
h -

Building DTB @

= Compile manually with dtc:

dtc -I dts -0 dtb —-o sun8i-v3s—-licheepi-zero.dtb sun8i-v3s-licheepi-zero.dts

= |n Buildroot:
= DTB built automatically with kernel.
= DTB is placed in output/images/.

N/

Chapter 6 PAGE 114
h -

Deploying DTB

= Copy DTB to SD card /boot.
Example:

cp output/images/sun8i-v3s—-licheepi-zero.dtb /media/boot/

= Update U-Boot config if needed (boot.cmd).
= Reboot - Kernel loads new DTB.

PAGE 115
Chapter 6
llIlIIIIIIIIIIIIIIIIIII;IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -

Modifying Device Tree (Steps)

Locate DTS file (sun8i-v3s-licheepi-zero.dts).

Edit node = enable/disable hardware.
Rebuild DTB (make dtbs in Buildroot).
Deploy DTB to board.

Verify with dmesg and /proc/device-tree/.

PAGE 116

r5 Chapter 6
-

Example: Enable I°C on LicheeP;

Add I°C node in DTS:
&i2c0o {

pinctrl-names = "default";
pinctrl-0 = <&i2c@_pins>;
status = "okay";

¥;
A After rebuild = check:

dmesg | grep i2c
ls /dev/i2c—*

N/

5 Chapter 6 AL L
IlIllIlIIIIIIIIIIIIIIIIlIllIlIlIllIlIIIIIIIIIIIIIIIIIIIIIIIIII -

Example: Add GPIO LED

leds {
compatible = "gpio-leds";

user_led: led-0 {
label = "green:user";
gpios = <&pio @ 10 GPIO_ACTIVE_HIGH>; // Port A10

default-state = "on";

PAGE 118

W
Chapter 6
llllllllllIIIIIIIIIIIIIIllllllllllllllllIlIIIIIIIIIIIIIIIIIIIIIIII -

Debugging Device Tree

= |s /proc/device-tree/
= dtc -l dtb -O dts sun8i-v3s-licheepi-zero.dtb > dump.dts

N/

Chapter 6 PAGE 119
h -

We will cover these skills

* Explain the role and importance of GDB in embedded system development.
* Configure and use gdbserver on the target and cross-GDB on the host.
* Cross-compile applications with debugging symbols and execute them under GDB.

* Apply fundamental debugging techniques: breakpoints, stepping, variable inspection, and call
stack analysis.

* Utilize advanced debugging features including conditional breakpoints, watchpoints, core dump
analysis, and runtime variable modification.

* Integrate GDB with development environments (e.g., VSCode, Eclipse) to streamline debugging.
* Adopt best practices for efficient debugging in resource-constrained embedded environments.

Chapter 6
GNU Debugger
GDB) In

Embedded
LiInux

PAGE 120

Introduction

Debugging = process of finding and fixing errors in software.

In Embedded Linux: very important since no direct access to display/logs.
GDB = GNU Project Debugger.

Allows you to:
= Run programs step by step
= Set breakpoints
* |nspect variables/memory
= Debug remotely on embedded targets

v
r5 Chapter 6 HAGIE L0
-

Why Use GDB?

= Traditional debugging (e.g., printf) is limited.
= Kernel/driver debugging needs more powerful tools.

= GDB advantages:
= Source-level debugging
= Non-intrusive
= \Works over serial or TCP/IP
= Supports multi-threaded debugging

v
r5 Chapter 6

PAGE 122
-

GDB Architecture

Host machine (PC): runs GDB (cross-debugger).

Target (LicheePi): runs gdbserver.
Connection: Serial / Ethernet / USB.

Workflow diagram:
= [Host PC: arm-linux-gdb] < [Target: gdbserver + Program]

v

5 Chapter 6 PG Lz
L -

Installing GDB

= On Host (PC):

= Buildroot provides arm-linux-gdb in output/host/bin/.
= On Target (LicheePi):

= Enable gdb and gdbserver in Buildroot - menuconfig.

= Verify installation:
= gdbserver --version
= arm-linux-gdb --version

v

5 Chapter 6 e dze
h -

Compiling for Debug

= Use -g flag in GCC:
= arm-linux-gcc -g -o test test.c

= Keeps debug symbols (needed for GDB).

= Without -g you only see assembly.

v

Chapter 6 PAGE 125
h -

Basic GDB Commands

run — start program

= break <line/function> — set breakpoint
= continue — resume execution

" next —step over

= step — step into function

= print <var>—show variable value

= backtrace — show call stack

= info registers — inspect CPU registers

v
r5 Chapter 6

PAGE 126
-

Remote Debugging Workflow

= Copy program to target.

= Run on target:
= gdbserver :1234 ./test

= On host:

= arm-linux-gdb ./test
= (gdb) target remote <IP>:1234

v PAGE 127

5 Chapter 6
h -

Example Debugging Session

= Source code: factorial function.

= Run gdbserver :1234 ./factorial on target.

= On host:

= (gdb) break main
(gdb) run
(gdb) step
(gdb) print n
(gdb) continue

v

r5 Chapter 6 e dze

Advanced Features

= Conditional breakpoints:
" break fooifx>5

= Watchpoints (track variable change):
= watch var

= Modify variable
= setvarx=10

v

Chapter 6 PAGE 129
h -

GDB + IDEs

= GDB can be integrated into:
= Eclipse CDT
= VSCode + cpptools
= CLion with Remote Debug plugin

= Useful for GUI debugging.

v

Chapter 6 PAGE 130
h -

Compilation Flags for GDB

= When debugging programs with GDB in an Embedded Linux environment :
= compile your code is critical.
» The compiler (GCC or cross-GCC from Buildroot)
= can include or strip debugging information.
= optimize code in ways that hide variables.
= inline functions that make stepping confusing.

v

er5 Chapter 6 PAGE 131

Compilation Flags for GDB

= Debugging Information Flags

Flag Description
=@j Generate debugging information in the executable (symbol table, source line mapping, variable names). This is the minimum required for GDB.
-gl Generate minimal debug info (enough for backtraces, but not variable details). Produces smaller binaries.
i3 Default level of —g. Includes most debug info, balance between detail and size.
G Maximum debug info. Also includes macro definitions, preprocessor info. Useful when debugging complex programs.
-ggdb Like —g, but generates debugging info tailored specifically for GDB (may include more details than -g).
v
r5 Chapter 6 PG i

Compilation Flags for GDB

= Optimization and Debugging Interaction

Flag Effect

00 No optimization. Code matches source exactly.

=0, Basic optimization. Small reordering.

=0 Higher optimization (default in many toolchains).

-03 Aggressive optimization (loop unrolling, vectorization).
SUs Optimize for size.

Optimize for debugging. Keeps most debug info usable while still

—0
g optimizing.

v

-apter) Chapter 6

Debugging Impact
¥ Best for debugging.

A Some variables may look
strange in GDB.

A Harder to debug: inlined
functions, optimized-out variables.

Debugging very hard.
A May affect debugging.

¥ Good balance between speed
and debuggability.

PAGE 133
-

Compilation Flags for GDB

= Warnings
Flag Purpose
-Wall Enable most useful warnings.
-Wextra Enable even more warnings.
-Werror Treat warnings as errors (forces cleaner code).

= Linker Flags

Flag Purpose
Esbakite Statically link binary (no shared libs). Easier deployment, but bigger binary.
—-rdynamic Export symbols for use in GDB (for dynamically loaded code).

-W1l, -Map=output .map Generate linker map file. Helps understand addresses and symbols.

v
-ter 5 Chapter 6 PAGE 134
-

This tool allows us to :
* select kernel options
* enable/disable features

* Build the kernel for our embedded device Cha pte r 7
LINuX

Kernel menuconfig
in Buildroot

PAGE 135

What is linux-menuconfig?

linux-menuconfig is a tool :

provided by Buildroot

customize the Linux kernel

configure kernel options

device drivers

filesystems, and more

Text-based kernel configuration interface

Based on Linux kernel kconfig system

Runs via Buildroot: make linux-menuconfig

Stores configuration in BR2_LINUX_KERNEL_CONFIG

A4

-ter 5 Chapter 6 Chapter 7

PAGE 136
-

Why Use linux-menuconfig?

Select needed kernel features only

Reduce kernel size for embedded systems

Enable hardware-specific drivers

Configure filesystems and networking support

Apply patches and custom options

r5 Chapter 6

V4
Chapter 7

PAGE 137
-

Launching linux-menuconfig in Buildroot @

Command: make linux-menuconfig

Must configure Buildroot kernel first

Requires ncurses installed on host

Opens interactive menu

v
rs Chapter 6 Chapter 7 PAGE 138

Main Categories in Linux menuconfig @

= General setup

= Processor type and features

= Power management options

= Bus and device support (12C, SPI, PCI, USB)
= Networking support

= File systems (ext4, squashfs, NFS, etc.)

= Device drivers (GPIO, UART, CAN, etc.)

= Kernel hacking / debugging

A4

-ter 5 Chapter 6 Chapter 7 PAGE 139
-

General Setup @

Kernel release name and version

Init process selection

Default system call options

Support for initramfs or initrd

A4

Chapter 6 Chapter 7 PAGE 140
-

Processor Type and Features

Select CPU architecture (ARM, x86, MIPS)
Specify CPU variant (Cortex-A7, A53, etc.)

Enable floating-point support

SMP and multi-core options

V4
Chapter 7 PAGE 141

r5 Chapter 6
-

Power Management Options

CPU frequency scaling

Sleep modes and suspend/resume

Device runtime power management

Low-power optimizations

A4

_ 5 Chapter 6 Chapter 7 PAGE 142
-

Bus and Device Support

Enable/disable 12C, SPI, CAN, UART
PCl and USB subsystem support

GPIO access and drivers

Peripheral-specific options

A4

5 Chapter 6 Chapter 7 PAGE 143
-

Networking Support

TCP/IP stack options

Wireless and Ethernet drivers

Networking protocols (IPv4, IPv6, PPP)

Firewalling and security features

A4

5 Chapter 6 Chapter 7 FAEIE A%
h -

Filesystems

Select root filesystem types: ext4, squashfs, tmpfs, etc.

Network filesystems: NFS, CIFS

Flash and block device support

Journaling and compression options

A4

Chapter 6 Chapter 7 PAGE 145
-

Kernel Hacking / Debugging

Enable debug messages

Kernel profiling and tracing

Magic SysRq key

Logging and printk options

A4

5 Chapter 6 Chapter 7 PAGE 146
-

Saving the Kernel Configuration

Save changes in .config

Use make savedefconfig to create minimal defconfig

Reuse configuration across projects
Buildroot uses BR2_LINUX_KERNEL CONFIG

\ 4
rs5 Chapter 6 Chapter 7

PAGE 147
-

	Default Section
	Slide 1: Embedded Linux
	Slide 2: Course Outline
	Slide 3: Linux Fundamentals
	Slide 4: Cross-Compilation and Toolchains
	Slide 5: Buildroot and Filesystem Generation
	Slide 6: Bootloaders and Kernel
	Slide 7: Device Tree and Drivers
	Slide 8: Application Development and Debugging
	Slide 9: Chapter 1 Linux Fundamentals
	Slide 10: Course Introduction
	Slide 11: Development Environment Requirements for Embedded Linux Training
	Slide 12: Development Environment Requirements for Embedded Linux Training
	Slide 13: Development Environment Requirements for Embedded Linux Training
	Slide 14: Development Environment Requirements for Embedded Linux Training
	Slide 15: What is Linux?
	Slide 16: What is a Linux Distribution?
	Slide 17: How Are Distributions Different?
	Slide 18: Why Use Special Distros for Embedded Linux?
	Slide 19: Linux Filesystem Hierarchy
	Slide 20: Linux Command Line Basics
	Slide 21: Introduction to Bash Scripting
	Slide 22: Introduction to Bash Scripting
	Slide 23: Device and Process Management
	Slide 24: Practice Tasks
	Slide 25: Skills Acquired in This Section
	Slide 26: Linux Filesystem Hierarchy
	Slide 27: Linux Filesystem Hierarchy
	Slide 28: Linux Filesystem Hierarchy
	Slide 29: Linux Filesystem Hierarchy
	Slide 30: Linux Filesystem Hierarchy
	Slide 31: Linux Filesystem Hierarchy
	Slide 32: Linux Filesystem Hierarchy
	Slide 33: Linux Filesystem Hierarchy
	Slide 34: Essential Linux Commands (with Examples)
	Slide 35: Essential Linux Commands (with Examples)
	Slide 36: Working with Package Managers
	Slide 37: Networking Basics
	Slide 38: Archiving and Compression
	Slide 39: Disk and Filesystem Management
	Slide 40: Systemd and Services
	Slide 41: What is Bash?
	Slide 42: What is a Shell?
	Slide 43: Key Features of Bash
	Slide 44: Why Use Bash?
	Slide 45: The Shebang (#!/bin/bash)
	Slide 46: Chapter 2 Linux for Embedded Development
	Slide 47: What is Embedded Linux
	Slide 48: Embedded Linux System Architecture
	Slide 49: Embedded Linux System Architecture
	Slide 50: Embedded Linux System Architecture
	Slide 51: Embedded Linux System Architecture
	Slide 52: Embedded Linux System Architecture
	Slide 53: Embedded Linux System Architecture
	Slide 54: Embedded Linux System Architecture
	Slide 55: Embedded Linux System Architecture
	Slide 56: Boot Process in Embedded Linux
	Slide 57: Boot Process in Embedded Linux
	Slide 58: Boot Process in Embedded Linux
	Slide 59: Boot Process in Embedded Linux
	Slide 60: Boot Process in Embedded Linux
	Slide 61: Boot Process in Embedded Linux
	Slide 62: Boot Process in Embedded Linux
	Slide 63: Boot Process in Embedded Linux
	Slide 64: Boot Process in Embedded Linux
	Slide 65: Boot Process in Embedded Linux
	Slide 66: Toolchains & Cross-Compilation
	Slide 67: Toolchains & Cross-Compilation
	Slide 68: Toolchains & Cross-Compilation
	Slide 69: Toolchains & Cross-Compilation
	Slide 70: Toolchains & Cross-Compilation
	Slide 71: Toolchains & Cross-Compilation
	Slide 72: Toolchains & Cross-Compilation
	Slide 73: Toolchains & Cross-Compilation
	Slide 74: Toolchains & Cross-Compilation
	Slide 75: Introduction to Build Systems
	Slide 76: Introduction to Build Systems
	Slide 77: Preparing Your Host Linux System
	Slide 78: Folder Structure and Best Practices
	Slide 79: Hands-On with Buildroot
	Slide 80: Chapter 3 Buildroot Fundamentals and Filesystem Generation
	Slide 81: Buildroot Fundamentals
	Slide 82: Why Use Buildroot?
	Slide 83: Filesystem Generation Workflow in Buildroot
	Slide 84: Filesystem Generation Workflow in Buildroot
	Slide 85: Directory Structure in Buildroot
	Slide 86: Example Filesystem Layout Generated by Buildroot
	Slide 87: practical list of important Buildroot packages
	Slide 88: practical list of important Buildroot packages
	Slide 89: practical list of important Buildroot packages
	Slide 90: practical list of important Buildroot packages
	Slide 91: practical list of important Buildroot packages
	Slide 92: Structure of a systemd Service Unit File
	Slide 93: Structure of a systemd Service Unit File
	Slide 94: Structure of a systemd Service Unit File
	Slide 95: Structure of a systemd Service Unit File
	Slide 96: Structure of a systemd Service Unit File
	Slide 97: Structure of a systemd Service Unit File
	Slide 98: Structure of a systemd Service Unit File
	Slide 99: Chapter 4 Cross-Compilation
	Slide 100: Introduction to Cross-Compilation
	Slide 101: Toolchains in Buildroot
	Slide 102: Cross-Compile Workflow
	Slide 103: Example – Hello World
	Slide 104: Network Protocol
	Slide 105: Network Protocol
	Slide 106: Network Protocol
	Slide 107: Network Protocol
	Slide 108: Chapter 5 Device Tree in Embedded Linux
	Slide 109: What is Device Tree?
	Slide 110: Device Tree Files
	Slide 111: Device Tree Structure
	Slide 112: Device Tree in Boot Flow
	Slide 113: LicheePi DTS Location
	Slide 114: Building DTB
	Slide 115: Deploying DTB
	Slide 116: Modifying Device Tree (Steps)
	Slide 117: Example: Enable I²C on LicheePi
	Slide 118: Example: Add GPIO LED
	Slide 119: Debugging Device Tree
	Slide 120: Chapter 6 GNU Debugger (GDB) in Embedded Linux
	Slide 121: Introduction
	Slide 122: Why Use GDB?
	Slide 123: GDB Architecture
	Slide 124: Installing GDB
	Slide 125: Compiling for Debug
	Slide 126: Basic GDB Commands
	Slide 127: Remote Debugging Workflow
	Slide 128: Example Debugging Session
	Slide 129: Advanced Features
	Slide 130: GDB + IDEs
	Slide 131: Compilation Flags for GDB
	Slide 132: Compilation Flags for GDB
	Slide 133: Compilation Flags for GDB
	Slide 134: Compilation Flags for GDB
	Slide 135: Chapter 7 Linux Kernel menuconfig in Buildroot
	Slide 136: What is linux-menuconfig?
	Slide 137: Why Use linux-menuconfig?
	Slide 138: Launching linux-menuconfig in Buildroot
	Slide 139: Main Categories in Linux menuconfig
	Slide 140: General Setup
	Slide 141: Processor Type and Features
	Slide 142: Power Management Options
	Slide 143: Bus and Device Support
	Slide 144: Networking Support
	Slide 145: Filesystems
	Slide 146: Kernel Hacking / Debugging
	Slide 147: Saving the Kernel Configuration

