
Embedded
Linux

Embedded Linux with Buildroot

PAGE 1

Linux Fundamentals

Cross-Compilation and Toolchains

Buildroot Fundamentals and Filesystem Generation

Bootloaders and Kernel

Device Tree and Drivers

Application Development and Debugging

PAGE 2

Course
Outline

Linux
Fundamentals

 Learning Objectives:

▪ Understand the basic structure and philosophy of Linux

▪ Use essential Linux commands and shell features

▪ Navigate the Linux filesystem

▪ Write and execute simple shell scripts

▪ Manage file permissions and processes

 Topics:

▪ Linux history and open-source principles

▪ Filesystem hierarchy (/bin, /etc, /usr, etc.)

▪ Basic commands: ls, cd, cat, grep, find, chmod, etc.

▪ Shell scripting basics (bash)

▪ File permissions and users

▪ Process management (ps, top, kill)

▪ Text editors (nano, vim)

PAGE 3

Cross-
Compilation

and Toolchains

 Learning Objectives:

▪ Understand the concept of cross-compilation

▪ Configure and use toolchains for ARM-based targets

▪ Compile user applications for embedded systems

▪ Set up the environment for cross-development

 Topics:

▪ Native vs. cross-compilation

▪ What is a toolchain? (gcc, binutils, libc)

▪ Types of toolchains (glibc, musl, uClibc)

▪ Setting up cross toolchains (Buildroot or external)

▪ Writing and compiling a sample C application for target

▪ Deploying applications to target hardware or emulator

PAGE 4

Buildroot and
Filesystem
Generation

 Learning Objectives:

▪ Use Buildroot to generate a root filesystem, kernel, and
bootloader

▪ Customize the root filesystem

▪ Add applications and libraries to the image

▪ Understand BusyBox and its role in embedded systems

 Topics:

▪ What is Buildroot? Architecture and workflow

▪ Buildroot menuconfig (make menuconfig)

▪ Filesystem types: ext4, initramfs, squashfs

▪ BusyBox: lightweight tools for embedded

▪ Rootfs customization

▪ Adding custom packages or applications

▪ Booting with QEMU or real hardware

PAGE 5

Bootloaders
and Kernel

 Learning Objectives:

▪ Understand the boot process in embedded Linux

▪ Configure and build U-Boot bootloader

▪ Configure and build the Linux kernel

▪ Load kernel and rootfs on target hardware

 Topics:

▪ Boot stages: ROM → SPL → U-Boot → Kernel → Rootfs

▪ U-Boot configuration and scripting

▪ Kernel source tree structure

▪ Device driver modules and kernel configuration (make
menuconfig)

▪ DTS (Device Tree Source) basics

▪ Booting kernel via SD, TFTP, NFS

PAGE 6

Device Tree
and Drivers

 Learning Objectives:

▪ Understand the role of the Device Tree in embedded
Linux

▪ Modify Device Tree sources for custom hardware

▪ Load and use drivers in Linux

▪ Identify and enable device drivers using kernel config

 Topics:

▪ Device Tree structure and syntax (.dts, .dtsi)

▪ Memory mapping and peripheral definitions

▪ Writing or modifying a basic Device Tree overlay

▪ Kernel modules vs built-in drivers

▪ Loading modules: modprobe, insmod, lsmod

▪ Debugging device drivers

PAGE 7

Application
Development
and Debugging

 Learning Objectives:

▪ Write and deploy embedded applications on Linux

▪ Use debugging and profiling tools

▪ Connect host-target for remote debugging

▪ Monitor system performance and behavior

 Topics:

▪ Writing C applications with POSIX APIs

▪ Using gdb, strace, ltrace, perf

▪ Remote debugging with gdbserver

▪ Logging and system diagnostics (dmesg, syslog)

▪ Accessing GPIO, UART, SPI, I2C from user space

▪ System startup scripts and services

PAGE 8

Chapter 1
Linux

Fundamentals

• Understand the basic structure and philosophy of Linux

• Learn to work efficiently with the Linux command line

• Explore the Linux filesystem hierarchy and device model

• Write simple Bash scripts for task automation

• Manage processes and access system resources in a
Linux environment

• Build foundational knowledge required for embedded
Linux development

We will cover these skills

PAGE 9

Course Introduction

▪ Overview of the training objectives

▪ Tools and platforms used (Buildroot, STM32MP1, Raspberry Pi)

▪ Target audience: developers preparing for embedded Linux careers

PAGE 10Chapter 1
Chapter 2 Chapter 3 Chapter 4

Development Environment Requirements for
Embedded Linux Training

▪ Host System Requirements

PAGE 11

Requirement Description

Host OS Linux-based (recommended: Ubuntu 22.04 LTS or Debian-based distro)

Alternative OS macOS or Windows (with WSL2 or VirtualBox + Ubuntu VM)

CPU x86_64, 2 cores or more (for faster Buildroot builds)

RAM Minimum 4 GB (8 GB recommended)

Disk Space At least 20 GB free (Buildroot outputs and sources are large)

Internet Required for downloading Buildroot, toolchains, kernel sources, etc.

Chapter 1
Chapter 2 Chapter 3 Chapter 4

Development Environment Requirements for
Embedded Linux Training

▪ Required Software Packages (on Host Linux)

PAGE 12Chapter 1
Chapter 2 Chapter 3 Chapter 4

Development Environment Requirements for
Embedded Linux Training

▪ Setting Up a Host Linux System (If the Student Is on Windows/macOS)

Option 1: Install Ubuntu via VirtualBox
▪ Download VirtualBox

▪ Download Ubuntu ISO (22.04 LTS): https://ubuntu.com/download/desktop

▪ Create a VM with:

▪ 2+ cores

▪ 4 GB+ RAM

▪ 30 GB+ disk space

▪ Install Ubuntu normally inside VirtualBox

Option 2: Use WSL2 (Windows 10/11 Only)

Option 3: Use a Native Linux Partition

PAGE 13Chapter 1
Chapter 2 Chapter 3 Chapter 4

https://ubuntu.com/download/desktop

Development Environment Requirements for
Embedded Linux Training

▪ Optional Tools for Better Development Workflow

PAGE 14

Tool Purpose

VSCode Text editor with terminal integration

minicom / screen Serial console over UART or QEMU

gdb Debugging applications

Wireshark Network debugging (for later modules)

Python3 + PySerial For creating PC tools or testing serial

Chapter 1
Chapter 2 Chapter 3 Chapter 4

What is Linux?

▪ Open-source Unix-like operating system

▪ Three major components:
▪ Kernel

▪ System libraries

▪ User space

▪ Philosophy: "Everything is a file”

Linux is not just an operating system — it's a philosophy.
Its open-source nature allows complete control and customization, making it perfect for embedded
development. The kernel interacts with hardware, while libraries and user-space tools provide
functionality and interface.

PAGE 15Chapter 1
Chapter 2 Chapter 3 Chapter 4

What is a Linux Distribution?

▪ Definition: A Linux distribution (or distro) is a complete operating system built around the Linux
kernel, bundled with essential system software, utilities, libraries, and applications needed to
operate a computer or embedded system.

▪ Key Components of a Linux Distribution
▪ Linux Kernel – The core of the OS, managing hardware and system calls.

▪ GNU Utilities – Basic tools like bash, ls, cp, gcc, make, etc.

▪ Package Manager – Used to install, update, or remove software packages (e.g., apt, yum, pacman).

▪ System Libraries – Libraries such as glibc or musl that provide low-level functions.

▪ User Applications – Text editors, networking tools, graphical environments, etc.

PAGE 16Chapter 1
Chapter 2 Chapter 3 Chapter 4

How Are Distributions Different?

▪ Different distributions have different goals, structures, and software packaging systems. Some are
designed for desktop users, others for servers, and some are tailored for embedded systems.

PAGE 17Chapter 1
Chapter 2 Chapter 3 Chapter 4

Distribution Use Case Package Manager Description

Ubuntu Desktop / Server apt (Debian-based) User-friendly, large community, LTS versions

Debian Server / Base OS apt Very stable, used as a base for many other distros

Fedora Developer Focused dnf Cutting-edge software, upstream-first philosophy

Arch Linux Custom / Advanced pacman Minimalist, rolling release, DIY configuration

Buildroot Embedded Systems No package manager (uses make) Simple, fast, build-from-source for embedded systems

Yocto Industrial Embedded BitBake Flexible, modular, for complex embedded products

Why Use Special Distros for Embedded Linux?

▪ In embedded Linux development (like for STM32MP1 or Raspberry Pi):

▪ Buildroot is a great choice because:
▪ Lightweight and easy to configure

▪ Generates a minimal root filesystem

▪ Ideal for quick prototyping or low-resource systems

▪ Yocto Project is better suited for:
▪ Industrial and commercial products

▪ Advanced customization and scalability

▪ But has a steeper learning curve

PAGE 18Chapter 1
Chapter 2 Chapter 3 Chapter 4

Linux Filesystem Hierarchy

▪ Single-rooted tree: starts at /

▪ Key directories:
▪ /bin, /sbin – essential binaries

▪ /etc – configuration files

▪ /dev – device files

▪ /proc, /sys – virtual filesystems

▪ /home, /var, /tmp, /usr

In Linux, everything — from hardware to processes — is treated as a file.
Understanding directories like /proc and /sys is essential, especially in embedded systems where
hardware monitoring is done through these virtual files.

PAGE 19Chapter 1
Chapter 2 Chapter 3 Chapter 4

Linux Command Line Basics

▪ Common commands: ls, cd, mkdir, cp, rm, man

▪ Pipes |, Redirection >, >>, <

▪ Command chaining and history

The command line is your best friend in Linux.
Mastering a few basic commands allows you to navigate the system, manipulate files, and monitor
devices.
Piping and redirection are powerful tools for chaining and logging outputs.

PAGE 20Chapter 1
Chapter 2 Chapter 3 Chapter 4

Introduction to Bash Scripting

▪ What is a shell script?

▪ Key elements:
▪ #!/bin/bash

▪ Variables, conditions (if), loops (for, while)

▪ Executing a script: chmod +x, ./script.sh

Shell scripting allows you to automate tasks such as setting up devices, managing services, or
collecting logs.
It’s especially useful in embedded Linux, where automation often replaces GUI interaction.

PAGE 21Chapter 1
Chapter 2 Chapter 3 Chapter 4

Introduction to Bash Scripting

#!/bin/bash

echo "========== System Information =========="

echo "Date & Time: $(date)"

echo "--"

echo "CPU Info:"

grep "model name" /proc/cpuinfo | uniq

echo "--"

echo "Free Memory:"

free -h | grep Mem

echo "--"

echo "Disk Usage:"

df -h / | grep /

echo "--"

echo "IP Address:"

hostname -I

echo "=="

PAGE 22Chapter 1
Chapter 2 Chapter 3 Chapter 4

Device and Process Management

▪ Device access via /dev, /sys

▪ Managing processes:
▪ ps, top, kill

▪ Mounting file systems: mount, umount, /etc/fstab

Embedded devices often have limited UI, so managing hardware and software through the terminal
is critical.
Files like /dev/ttyS0 or /dev/i2c-1 represent real hardware.
Understanding how to mount USB or SD cards is vital in most projects.

PAGE 23Chapter 1
Chapter 2 Chapter 3 Chapter 4

Practice Tasks

▪ In-Class Practice:

▪ Use cat /proc/cpuinfo to read CPU details

▪ Write a Bash script that:
▪ Shows free memory (free -m)

▪ Prints CPU model

▪ Logs output to a file

▪ Mini Project:

▪ Create a simple CLI menu script:
▪ Option 1: Show IP address

▪ Option 2: Display disk usage

▪ Option 3: Exit

PAGE 24Chapter 1
Chapter 2 Chapter 3 Chapter 4

Skills Acquired in This Section

▪ Navigate and use Linux command line tools

▪ Understand Linux directory structure and virtual file systems

▪ Write basic Bash scripts for automation

▪ Monitor and manage processes

▪ Access and manipulate device files

PAGE 25Chapter 1
Chapter 2 Chapter 3 Chapter 4

Linux Filesystem Hierarchy

PAGE 26Chapter 1
Chapter 2 Chapter 3 Chapter 4

Directory Purpose

/bin Essential user binaries (e.g., ls, cp, rm)

/sbin Essential system binaries (e.g., fsck, init)

/etc System configuration files

/dev Device files (e.g., /dev/sda, /dev/tty0)

/proc Virtual filesystem for process and kernel info

/sys Exposes kernel and hardware info

/usr User utilities and applications

/var Variable data (logs, mail, spool)

/tmp Temporary files

/home Home directories for users

/root Home directory of the root user

/boot Files needed to boot (e.g., kernel, grub config)

/lib Essential shared libraries

/mnt and /media Mount points for temporary devices (e.g., USB drives)

/opt Optional software packages

Linux Filesystem Hierarchy

PAGE 27Chapter 1
Chapter 2 Chapter 3 Chapter 4

/ — Root Directory
▪ This is the starting point of the entire filesystem tree. All files and directories in Linux are located under /,

regardless of the device or partition.

/bin — Essential User Binaries
▪ Contains essential user commands that are required for booting and single-user mode. These binaries are

needed by both the system and regular users.

▪ Examples:

▪ ls – list directory contents

▪ cp – copy files

▪ mv – move/rename

▪ cat – print file content

▪ rm – remove files

Linux Filesystem Hierarchy

PAGE 28Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ /sbin — System Binaries
▪ Contains system administration binaries, typically used by the root user. These tools manage disks, filesystems,

network, etc.
▪ Examples:

▪ fsck – filesystem check

▪ ifconfig, ip – network configuration

▪ mount, umount – mount/unmount filesystems

▪ reboot, shutdown – system control

/etc — System Configuration
▪ Stores system-wide configuration files. Most files here are plain text.
▪ Examples:

▪ /etc/passwd – user account information

▪ /etc/fstab – filesystem mount table

▪ /etc/hostname – system hostname

▪ /etc/network/interfaces – network settings

Linux Filesystem Hierarchy

PAGE 29Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ /home — User Home Directories
▪ Contains personal directories for all regular users.
▪ Examples:

▪ /home/john

▪ /home/alice

/root — Root User's Home
▪ The home directory of the root (admin) user.
▪ Not to be confused with /. This is like /home/root, but specifically named /root for the superuser.

/lib and /lib64 — Essential Shared Libraries
▪ Holds shared libraries needed by programs in /bin and /sbin. They are like .dll files in Windows.
▪ Examples:

▪ libc.so.6 – standard C library

▪ ld-linux.so – dynamic linker/loader

Linux Filesystem Hierarchy

PAGE 30Chapter 1
Chapter 2 Chapter 3 Chapter 4

/usr — User System Resources
▪ Contains non-essential programs and libraries used by users. It is often the largest directory.

▪ Key subdirectories:

▪ /usr/bin – user commands (e.g. gcc, python, vim)

▪ /usr/sbin – non-critical system binaries

▪ /usr/lib – libraries for /usr/bin

▪ /usr/share – architecture-independent data (icons, docs)

/var — Variable Data
▪ Stores variable or frequently changing files like logs, caches, mail spools, and temporary files created by

programs.

▪ Examples:

▪ /var/log/syslog – system logs

▪ /var/spool/cron – scheduled tasks

▪ /var/cache – package manager caches

Linux Filesystem Hierarchy

PAGE 31Chapter 1
Chapter 2 Chapter 3 Chapter 4

/tmp — Temporary Files
▪ Holds temporary files used by applications or users.
▪ Cleared on reboot.

/dev — Device Files
▪ Linux represents all hardware devices as files in this directory.
▪ Examples:

▪ /dev/sda1 – hard disk partition

▪ /dev/ttyUSB0 – USB serial port

/proc — Kernel and Process Information
▪ A virtual filesystem that exposes runtime system information provided by the Linux kernel.
▪ Examples:

▪ /proc/cpuinfo – CPU details

▪ /proc/meminfo – memory usage

▪ /proc/[PID]/ – process-specific info

Linux Filesystem Hierarchy

PAGE 32Chapter 1
Chapter 2 Chapter 3 Chapter 4

/sys — System and Device Tree
▪ Another virtual filesystem. Unlike /proc, this is structured hierarchically and is more hardware-oriented.
▪ Examples:

▪ /sys/class/net/ – network interfaces
▪ /sys/block/ – block devices like disks

/media and /mnt — Mount Points
▪ /media – for automounted devices (like USB, CD-ROM)
▪ /mnt – for temporary/manual mounts by sysadmins
▪ example

▪ mount /dev/sdb1 /mnt/usb

/opt — Optional Software
▪ Used for installing third-party applications or proprietary software not managed by the distribution’s package

manager.
▪ Examples:

▪ /opt/google/chrome/
▪ /opt/teamviewer/

Linux Filesystem Hierarchy

PAGE 33Chapter 1
Chapter 2 Chapter 3 Chapter 4

/boot — Boot Files
▪ Contains all files required to boot the Linux system, such as the kernel and bootloader configuration.

▪ Common files:

▪ vmlinuz – compressed Linux kernel

▪ initrd – initial RAM disk

▪ grub/ – bootloader config files

▪ Often mounted as a separate partition.

Essential Linux Commands (with Examples)

PAGE 34Chapter 1
Chapter 2 Chapter 3 Chapter 4

 File and Directory Management
▪ pwd # Print current working directory

▪ ls -l # List files in long format

▪ cd /path # Change directory

▪ mkdir name # Create directory

▪ rm -rf name # Remove files/directories

▪ cp src dest # Copy

▪ mv src dest # Move or rename

 Viewing File Content
▪ cat file.txt # Print file

▪ less file.txt # Scroll file content

▪ head file.txt # First 10 lines

▪ tail -f file.txt # View logs in real-time

 Finding Files and Text
▪ find /path -name "*.c"

▪ grep "main" file.c

Essential Linux Commands (with Examples)

PAGE 35Chapter 1
Chapter 2 Chapter 3 Chapter 4

 File Permissions and Ownership

▪ ls -l # Show permissions

▪ chmod 755 # Change permission

▪ chown user:group file

▪ r = read, w = write, x = execute

▪ Owner / Group / Others (e.g., -rwxr-xr--)

 Useful Tools

▪ df -h # Disk space

▪ du -sh * # Directory size

▪ top / htop # System processes

▪ ps aux # Process list

▪ kill -9 PID # Kill process

Working with Package Managers

PAGE 36Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ For Ubuntu/Debian:

▪ sudo apt update

▪ sudo apt install package-name

▪ sudo apt remove package-name

▪ dpkg -l | grep package

 For Fedora:

▪ sudo dnf install package-name

Networking Basics

PAGE 37Chapter 1
Chapter 2 Chapter 3 Chapter 4

ip a # Show network interfaces

ping 8.8.8.8 # Test connectivity

wget http://... # Download files

scp file user@host:/path # Secure file copy

ssh user@ip # Remote login

Archiving and Compression

PAGE 38Chapter 1
Chapter 2 Chapter 3 Chapter 4

tar -cvf archive.tar folder/

tar -xvf archive.tar

gzip file.txt

gunzip file.txt.gz

Disk and Filesystem Management

PAGE 39Chapter 1
Chapter 2 Chapter 3 Chapter 4

mount /dev/sdb1 /mnt

umount /mnt

lsblk

fdisk -l

df -h

Systemd and Services

PAGE 40Chapter 1
Chapter 2 Chapter 3 Chapter 4

systemctl status ssh

systemctl start nginx

systemctl enable apache2

What is Bash?

PAGE 41Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ Bash stands for Bourne Again Shell.

▪ It is a command-line interpreter used in most Linux distributions.

▪ Developed as a free and improved replacement for the original Unix shell sh.

▪ Bash is used for:
▪ Running system commands

▪ Writing shell scripts

▪ Automating tasks

What is a Shell?

PAGE 42Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ A shell is a program that takes commands from the keyboard and gives them to the operating system.

▪ Acts as a command-line interface (CLI).

▪ Types of shells:
▪ sh (Bourne Shell)

▪ bash (Bourne Again Shell)

▪ zsh, ksh, csh, etc.

Key Features of Bash

PAGE 43Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ Interactive command execution

▪ Script writing and execution

▪ Variables and arrays

▪ Conditional logic (if, case)

▪ Looping (for, while, until)

▪ Functions

▪ Input/output redirection

▪ Command history and completion

Why Use Bash?

PAGE 44Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ Pre-installed on most Linux systems

▪ Great for automating repetitive tasks

▪ Used widely in:
▪ Embedded Linux development

▪ DevOps and system administration

▪ Server configuration and deployment

▪ Lightweight and scriptable

The Shebang (#!/bin/bash)

PAGE 45Chapter 1
Chapter 2 Chapter 3 Chapter 4

▪ The first line in a bash script is called the shebang:
▪ #!/bin/bash

▪ Tells the system to use the Bash interpreter to run the script.

▪ Must be the first line in the script file.

How to Check Your Shell:

▪ echo $SHELL

▪ Displays the path to the current shell (e.g., /bin/bash)

Chapter 2
Linux for

Embedded
Development

• Understand how Embedded Linux differs from Desktop
Linux

• Learn the architecture of Embedded Linux systems

• Get familiar with bootloader, kernel, root filesystem, and
device tree

• Explore toolchains and cross-compilation

• Learn how to prepare and boot Embedded Linux on real
hardware (e.g., STM32MP1 / Raspberry Pi)

• Gain hands-on experience with Buildroot for building a
custom Linux OS

We will cover these skills

PAGE 46

What is Embedded Linux

▪ Embedded Linux is a lightweight, customized Linux OS for embedded systems.

▪ Used in:
▪ Routers, TVs, industrial control systems, automotive ECUs

▪ IoT devices, edge computing devices, etc.

▪ Typically runs on ARM architecture

▪ Focuses on performance, size, and reliability

 Notice:
▪ Embedded Linux is not a different Linux kernel—it’s the same Linux, just customized and optimized for

small devices with limited resources.

PAGE 47Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

▪ An embedded Linux system is made up of several interdependent components, each serving a
distinct purpose. These components work together to create a functional, customizable, and
efficient system suitable for resource-constrained devices.

▪ Understanding these components is essential before diving into kernel development, driver
integration, or system customization.

▪ Key Components:
▪ Bootloader (e.g., U-Boot)

▪ Linux Kernel

▪ Device Tree

▪ Root Filesystem (rootfs)

▪ User Applications

 Notice:
▪ This modular structure allows customization and optimization for different embedded projects.

PAGE 48Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

 Bootloader: bootloader is the first software that runs when the embedded system is powered
on. It is responsible for:

▪ Initializing low-level hardware (RAM, clocks, pins)
▪ Loading the Linux kernel and Device Tree into memory
▪ Passing control to the kernel

 Examples:
▪ U-Boot (most popular in embedded Linux)
▪ Barebox
▪ Das U-Boot SPL (for minimal hardware init)

 Why it matters:
▪ You can customize the bootloader to:

▪ Choose from multiple kernels

▪ Boot into recovery

▪ Update firmware over the network (TFTP, USB, etc.)

PAGE 49Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

Linux Kernel

▪ What it is:
▪ The Linux kernel is the core of the operating system. It interacts directly with hardware and provides an

interface for user-space applications to use the system's resources.

 Responsibilities:
▪ Hardware abstraction and driver management
▪ Process scheduling and memory management
▪ File system support
▪ Networking stack
▪ Power and resource control

 Common Formats:
▪ zImage or uImage (compressed kernel images)
▪ vmlinuz (used in desktop/server Linux)

 Configuration:
▪ You can enable/disable kernel features using make menuconfig when compiling the kernel.

PAGE 50Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

Device Tree Blob (DTB)

▪ What it is:
▪ The Device Tree is a data structure that describes the hardware layout to the Linux kernel, especially on

platforms that do not support self-discovery (like ARM).

 Format:
▪ Source file: .dts (Device Tree Source)
▪ Compiled file: .dtb (Device Tree Blob)

 Contains:
▪ CPU, RAM, peripherals
▪ GPIO, UART, I2C, SPI definitions
▪ Interrupt mappings

 Why it's needed:
▪ Instead of hardcoding hardware details, the kernel reads the .dtb to know:
▪ What hardware exists
▪ How to configure it
▪ What drivers to load

PAGE 51Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

Root Filesystem (RootFS)

 What it is:
▪ The Root File System contains all the user-space binaries, libraries, configuration files, and init scripts required

to run the system.

 Typical directories:
▪ /bin, /sbin: essential command binaries
▪ /etc: system configuration
▪ /lib: shared libraries
▪ /dev: device nodes
▪ /proc, /sys: virtual system info
▪ /usr: user utilities and applications

 Formats:
▪ ext4, squashfs, jffs2, UBIFS

 Created by:
▪ Buildroot, Yocto, OpenEmbedded, or manually

PAGE 52Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

Init System

 What it is:
▪ The init system is the first user-space program launched by the kernel. It manages:

▪ Starting services

▪ Mounting filesystems

▪ Running startup scripts

 Examples:
▪ init from BusyBox (lightweight and embedded-friendly)

▪ systemd (more advanced, less common in embedded)

 Config File:
▪ /etc/inittab (BusyBox)

▪ /etc/init.d/ scripts

PAGE 53Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

User Applications

 What it is:
▪ These are the actual programs, utilities, and services you write or integrate for your embedded product.

 Examples:
▪ Sensor monitoring scripts

▪ Network daemons

▪ UI interfaces

▪ Data loggers

▪ Remote update clients

▪ These are usually written in C/C++, Shell, or even Python (if resources allow).

PAGE 54Chapter 1 Chapter 2
Chapter 3 Chapter 4

Embedded Linux System Architecture

 Summary Table

PAGE 55Chapter 1 Chapter 2
Chapter 3 Chapter 4

Component Description Common Tools

Bootloader Initializes hardware, loads kernel U-Boot, Barebox

Kernel Core OS: manages hardware and system calls Linux mainline, custom

Device Tree Hardware description for non-discoverable platforms .dts / .dtb files

Root File System User-space libraries, tools, configurations Buildroot, Yocto

Init System Manages boot process and service startup BusyBox, systemd

User Applications Your product logic and software C, Shell, Python

Boot Process in Embedded Linux

▪ ROM Code (from SoC): Executes first, loads bootloader

▪ Bootloader (e.g., U-Boot): Initializes RAM, loads kernel

▪ Kernel: Sets up device drivers, mounts root filesystem

▪ Init Process: Launches user space

PAGE 56Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

The boot process in Embedded Linux typically follows these main steps:
▪ [1] Power On
▪ ↓
▪ [2] Boot ROM Code
▪ ↓
▪ [3] First-Stage Bootloader (SPL)
▪ ↓
▪ [4] Second-Stage Bootloader (U-Boot)
▪ ↓
▪ [5] Linux Kernel + Device Tree + Initramfs
▪ ↓
▪ [6] Root Filesystem Mount
▪ ↓
▪ [7] Init System & User Applications

PAGE 57Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

Boot ROM Code (SoC-specific)

 What It Does:
▪ Burned into the chip by the manufacturer

▪ Initializes minimal hardware (clocks, SRAM)

▪ Detects boot source: SD, NAND, eMMC, USB, UART

▪ Loads the First-Stage Bootloader from boot media

PAGE 58Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

First-Stage Bootloader (e.g., SPL - Secondary Program Loader)

 What It Does:
▪ Initializes DRAM (RAM controller, timing)

▪ Sets up basic I/O (if needed)

▪ Loads the Second-Stage Bootloader into RAM

 Common Example:
▪ SPL in U-Boot for STM32MP1, Raspberry Pi, etc.

 File:
▪ Often called MLO, SPL, or part of u-boot-spl.bin

PAGE 59Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

 Second-Stage Bootloader (e.g., U-Boot)

 What It Does:
▪ Fully initializes hardware (MMC, Ethernet, UART, USB, etc.)
▪ Provides command-line interface over UART/Serial
▪ Loads:

▪ Linux Kernel (zImage/uImage)

▪ Device Tree (.dtb)

▪ Initramfs (optional)

▪ Transfers control to the kernel

 Features:
▪ Environment variables (bootargs, bootcmd)
▪ Network boot (TFTP, NFS)
▪ Firmware update via DFU, USB, MMC, etc.
▪ Secure boot support

PAGE 60Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

Linux Kernel Initialization

 What It Does:
▪ Decompresses the kernel image

▪ Parses the Device Tree (hardware info)

▪ Mounts an initial RAM disk (initramfs), if present

▪ Starts the init process (PID 1)

 Notes:
▪ This is where most kernel messages (dmesg) are printed

▪ Initializes drivers and memory management

PAGE 61Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

Root Filesystem Mounting

 What It Does:
▪ Mounts the final root filesystem (usually on ext4, squashfs, etc.)

▪ Executes /sbin/init or equivalent based on init system (e.g., BusyBox)

 Mount Sources:
▪ On-board flash (NAND, eMMC)

▪ SD card

PAGE 62Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

Init System Execution

 What It Does:
▪ Initializes system services

▪ Mounts system partitions (/proc, /sys, /dev)

▪ Starts background daemons and user apps

▪ Prepares system for normal operation

 Common Init Systems:
▪ BusyBox init (lightweight, common in Buildroot)

▪ systemd (advanced, less common in embedded)

▪ OpenRC, SysVinit (optional)

PAGE 63Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

Stage Component File/Tool Location

ROM Boot ROM – Fixed in SoC

1st SPL bootcode.bin boot partition

2nd U-Boot u-boot.bin boot partition

3rd Kernel zImage boot partition

4th DTB bcm2835-rpi.dtb boot partition

5th RootFS rootfs.ext4 root partition

6th Init /sbin/init inside rootfs

PAGE 64Chapter 1 Chapter 2
Chapter 3 Chapter 4

Boot Process in Embedded Linux

PAGE 65Chapter 1 Chapter 2
Chapter 3 Chapter 4

Toolchains & Cross-Compilation

▪ Cross-compilation: Compiling on a host system (x86) for a target (ARM)

▪ Tools: gcc, ld, as, objcopy, etc.

▪ Toolchains include:
▪ Compiler (e.g., arm-linux-gnueabihf-gcc)

▪ C Library (e.g., glibc, musl, uclibc)

▪ Debugger (e.g., gdb)

▪ Popular toolchains: Buildroot-generated, Yocto-generated

PAGE 66Chapter 1 Chapter 2
Chapter 3 Chapter 4

Toolchains & Cross-Compilation

What is a Toolchain?
▪ A toolchain is a collection of tools used to compile, assemble, and link software for a specific target

system.

PAGE 67Chapter 1 Chapter 2
Chapter 3 Chapter 4

Tool Purpose

gcc Compiler (C/C++ source to object code)

as Assembler (assembly to object)

ld Linker (combine objects to executable)

ar Archiver (library creation tool)

strip Binary size reducer (removes symbols)

objdump / readelf Inspect binary formats

gdb Debugger

make / cmake Build automation

C Library glibc, musl, or uClibc

Toolchains & Cross-Compilation

Native vs. Cross Compilation

PAGE 68Chapter 1 Chapter 2
Chapter 3 Chapter 4

Term Description

Native Compilation Building software on the same machine where it will run

Cross Compilation Building software on one machine (host) for a different system (target)

Toolchains & Cross-Compilation

Why Cross-Compile in Embedded Linux?
▪ Target (STM32MP1, Raspberry Pi, etc.) may not have enough CPU, memory, or disk to build software

▪ Speeds up compilation

▪ Enables development on powerful hosts (x86_64) for limited devices (ARM Cortex-A)

Host vs. Target vs. Build Systems

PAGE 69Chapter 1 Chapter 2
Chapter 3 Chapter 4

Term Definition

Build System Where tools are built (e.g. when building a toolchain)

Host System Where the compiled tools run (e.g. your dev PC)

Target System Where the compiled program will run (e.g. STM32MP1 board)

Toolchains & Cross-Compilation

Prebuilt Toolchains (Ready to Use)
▪ Many distributions and projects provide prebuilt toolchains:

PAGE 70Chapter 1 Chapter 2
Chapter 3 Chapter 4

Provider Link Notes

Buildroot Generates its own toolchain

Yocto SDK Comes with environment-setup script

Linaro https://www.linaro.org Optimized for ARM

ARM GNU Toolchain https://developer.arm.com Official ARM tools

https://www.linaro.org/
https://developer.arm.com/

Toolchains & Cross-Compilation

Example (Linaro Toolchain for ARM)

Now, use:
▪ arm-linux-gnueabihf-gcc main.c -o main

PAGE 71Chapter 1 Chapter 2
Chapter 3 Chapter 4

Toolchains & Cross-Compilation

Toolchain Components (File View)

toolchain/

├── bin/

│ ├── arm-linux-gnueabihf-gcc

│ ├── arm-linux-gnueabihf-ld

├── lib/

├── include/

├── libexec/

How to Build Your Own Toolchain (Optional)
▪ Buildroot → make menuconfig → Toolchain

▪ Yocto → bitbake meta-toolchain

PAGE 72Chapter 1 Chapter 2
Chapter 3 Chapter 4

Toolchains & Cross-Compilation

How Toolchain Integrates with Buildroot
▪ In Buildroot:

▪ Buildroot can:

▪ Download and configure an external toolchain

▪ Or build one from scratch

PAGE 73Chapter 1 Chapter 2
Chapter 3 Chapter 4

Toolchains & Cross-Compilation

Common Issues & Tips

PAGE 74Chapter 1 Chapter 2
Chapter 3 Chapter 4

Problem Cause / Solution

Wrong architecture Check file output of compiled binary

"Command not found" Toolchain bin not in PATH

Linking errors Mismatch between libc and headers

"Illegal instruction" Using wrong CPU flags for your target

Introduction to Build Systems

▪ Purpose: Automatically build toolchain, kernel, rootfs

▪ Common systems:

▪ Buildroot (used in this course)

▪ Yocto

▪ Why Use Buildroot?
▪ Simple configuration via make menuconfig

▪ Fast build process

▪ Ideal for small to medium projects

▪ Easily integrates custom applications

PAGE 75Chapter 1 Chapter 2
Chapter 3 Chapter 4

Introduction to Build Systems

Buildroot and Yocto: Full Embedded Build Systems

PAGE 76Chapter 1 Chapter 2
Chapter 3 Chapter 4

Feature Buildroot Yocto

Simplicity Simple, fast to learn Complex, highly customizable

Toolchain Can build or use external Uses Poky or custom

RootFS Generates minimal Linux rootfs Generates full-featured images

Package support Manual, defconfig style BitBake recipes (.bb files)

Use case Quick development Production-grade customization

Preparing Your Host Linux System

▪ Host System Requirements
▪ Ubuntu/Debian-based Linux recommended

▪ Required packages:

▪ sudo apt install build-essential git gcc make python3 unzip bc \

▪ libncurses5-dev libssl-dev cpio rsync flex bison \

▪ device-tree-compiler u-boot-tools

PAGE 77Chapter 1 Chapter 2
Chapter 3 Chapter 4

Folder Structure and Best Practices

▪ Use separate folders:
▪ ~/embedded-linux/

▪ ├── buildroot/

▪ ├── toolchain/

▪ ├── kernel/

▪ ├── output/

PAGE 78Chapter 1 Chapter 2
Chapter 3 Chapter 4

Hands-On with Buildroot

▪ Buildroot – First Build
▪ Clone repository:

▪ git clone https://github.com/buildroot/buildroot.git

▪ cd buildroot

▪ make raspberrypi4_defconfig # or your target defconfig

▪ make

▪ Output:

▪ Kernel image

▪ Root filesystem (initramfs/rootfs)

▪ Bootloader (optional)

▪ Deploying on Hardware:
▪ Copy images to SD card or flash storage

▪ Configure bootloader (U-Boot) if needed

▪ Boot and debug using serial console

PAGE 79Chapter 1 Chapter 2
Chapter 3 Chapter 4

Chapter 3
Buildroot

Fundamentals
and Filesystem

Generation

• Download, extract, and configure Buildroot.

• Understand Buildroot’s directory structure (, , ,).

• Select and configure:

• Target architecture

• Toolchain options

• Kernel optionse

• Root filesystem type (ext4, squashfs, cpio, etc.)

• Build minimal and full-featured root filesystems.

• ntegrate custom packages into Buildroot.

• Generate bootable images for SD cards or flash
memory.

We will cover these skills

PAGE 80

Buildroot Fundamentals

What is Buildroot?

▪ Definition:
Buildroot is an open-source tool that automates the process of creating a complete embedded
Linux system for your target hardware.

▪ Purpose:
It cross-compiles the kernel, bootloader, root filesystem, and user-space tools for embedded
devices.

▪ Key Features:
▪ Lightweight and simple to configure.

▪ Supports many CPU architectures (ARM, x86, MIPS, PowerPC, RISC-V, etc.).

▪ Generates minimal, customized Linux systems.

▪ Integrates easily with cross-compilers and toolchains.

PAGE 81Chapter 1 Chapter 2 Chapter 3
Chapter 4

Why Use Buildroot?

▪ Fast development — From source code to bootable image in a single step.

▪ Customizability — Include only what’s needed (reducing footprint).

▪ Reproducibility — Same configuration builds the same system every time.

▪ Integration — Works with various build systems like Makefiles, CMake, etc.

PAGE 82Chapter 1 Chapter 2 Chapter 3
Chapter 4

Filesystem Generation Workflow in Buildroot

The filesystem in Linux is the directory structure that the kernel uses to store programs, libraries, and
configuration files.
Buildroot automates root filesystem creation:

▪ Select Target Configuration

▪ Choose target architecture (e.g., ARM Cortex-A7).

▪ Select toolchain.

▪ Configure packages, kernel, bootloader, and rootfs type.

▪ Download Sources

▪ Buildroot downloads required packages, kernel, and bootloader sources from mirrors or Git repositories.

▪ Compile Components

▪ Uses cross-toolchain to compile:

▪ Bootloader (U-Boot)

▪ Kernel

▪ User-space applications

▪ Libraries

PAGE 83Chapter 1 Chapter 2 Chapter 3
Chapter 4

Filesystem Generation Workflow in Buildroot

▪ Assemble Root Filesystem

▪ Buildroot arranges all compiled files into a root filesystem.

▪ Supports formats: ext4, SquashFS, CramFS, initramfs, etc.

▪ Create Final Image

▪ Generates bootable images like:

▪ sdcard.img (SD card image)

▪ rootfs.ext4 (filesystem image)

▪ uImage or zImage (kernel)

▪ u-boot.bin (bootloader)

PAGE 84Chapter 1 Chapter 2 Chapter 3
Chapter 4

Directory Structure in Buildroot
Directory / File Description

arch/ Architecture-specific configurations and code. Contains subfolders for ARM, x86, MIPS, etc.

board/ Board-specific configurations, boot scripts, and kernel patches. Each vendor may have a subfolder.

configs/ Predefined configuration files (defconfig) for popular boards (e.g., raspberrypi3_defconfig).

docs/ Official Buildroot documentation in text and HTML formats.

fs/ Filesystem generator scripts for different formats (ext2, initramfs, squashfs, etc.).

linux/ Kernel build support files and patches.

package/ All supported software packages (BusyBox, dropbear, etc.) with .mk build scripts.

system/ Scripts for init, startup, and device management.

toolchain/ Scripts and configurations for building or using external toolchains.

output/ (generated after build) Contains the results of the build process:

build/ Temporary build directories for each package.

images/ Final bootloader, kernel, and filesystem images.

staging/ Temporary root filesystem used during build.

host/ Tools compiled for the host (PC) environment.

target/ Final root filesystem contents before packaging.

Makefile Main Buildroot build script. You always start builds from here.

Config.in Menu configuration definition file for make menuconfig.

PAGE 85Chapter 1 Chapter 2 Chapter 3
Chapter 4

Example Filesystem Layout Generated by Buildroot

PAGE 86Chapter 1 Chapter 2 Chapter 3
Chapter 4

▪ (inside target/ or final image)

/

├── bin/ → Essential binaries (ls, cp, cat…)

├── dev/ → Device files

├── etc/ → System configuration files

├── lib/ → Shared libraries

├── root/ → Home directory for root user

├── sbin/ → System binaries

├── tmp/ → Temporary files

├── usr/ → User programs and data

└── var/ → Variable data (logs, spool)

practical list of important Buildroot packages

Development & Debugging Tools

These are essential for testing, debugging, and managing the system:
▪ busybox (already included, core utilities)

▪ bash – better shell than sh

▪ nano or vim – text editor

▪ htop – process monitor

▪ strace – trace system calls

▪ ltrace – trace library calls

▪ gdb / gdbserver – debugging

▪ procps – process and system information commands (ps, top, free)

▪ file – detect file type

▪ which – locate executables

▪ psmisc – tools like killall, fuser

PAGE 87Chapter 1 Chapter 2 Chapter 3
Chapter 4

practical list of important Buildroot packages

Networking Tools

f your board has Ethernet/Wi-Fi:
▪ dropbear or openssh – SSH server/client

▪ curl – transfer data over HTTP, HTTPS, FTP, etc.

▪ wget – download files from the internet

▪ iproute2 – modern networking commands (ip, ss)

▪ net-tools – legacy tools (ifconfig, netstat)

▪ iperf3 – network performance test

▪ ethtool – Ethernet interface settings

▪ tcpdump – packet capture

▪ bridge-utils – network bridging

PAGE 88Chapter 1 Chapter 2 Chapter 3
Chapter 4

practical list of important Buildroot packages

File System & Storage

For handling USB drives, SD cards, etc.:
▪ e2fsprogs – tools for ext2/3/4 filesystems

▪ dosfstools – FAT filesystem tools

▪ mtd-utils – flash memory tools

▪ parted – partitioning tool

▪ ntfs-3g – NTFS support

PAGE 89Chapter 1 Chapter 2 Chapter 3
Chapter 4

practical list of important Buildroot packages

Compression & Archive Tools

For installing/unpacking software:
▪ tar – archive utility

▪ gzip, bzip2, xz, zip, unzip – compression utilities

Time & Date

For RTC and time sync:
▪ ntp or chrony – time synchronization

▪ hwclock – manage hardware clock (comes with busybox, but util-linux version is better)

System Management
▪ util-linux – essential utilities (mount, umount, fdisk, hwclock)

▪ inotify-tools – filesystem event monitoring

PAGE 90Chapter 1 Chapter 2 Chapter 3
Chapter 4

practical list of important Buildroot packages

Programming Languages (Optional)

If your system runs scripts or interpreters:
▪ python3 – Python runtime

▪ lua – lightweight scripting

▪ perl – Perl interpreter

 Extra for Embedded Development
▪ i2c-tools – interact with I²C devices

▪ can-utils – CAN bus tools

▪ usbutils – USB device listing (lsusb)

▪ pciutils – PCI device listing (lspci)

▪ devmem2 – access physical memory from userspace

PAGE 91Chapter 1 Chapter 2 Chapter 3
Chapter 4

Structure of a systemd Service Unit File

▪ [Unit] Section

▪ [Service] Section

▪ [Install] Section

PAGE 92Chapter 1 Chapter 2 Chapter 3
Chapter 4

Structure of a systemd Service Unit File

[Unit] Section

PAGE 93Chapter 1 Chapter 2 Chapter 3
Chapter 4

Directive Description

Description= Short description of the service.

Documentation= Reference to manuals or docs (e.g., man:nginx(8)).

Requires= Units that must be active for this unit to start. If they fail, this unit also stops.

Wants= Units that should be active if possible, but won’t cause failure if not.

Before= / After= Controls startup/shutdown ordering.

Conflicts= Units that should not run at the same time.

Structure of a systemd Service Unit File

[Unit] Section
▪ [Unit]

▪ Description=My Custom Web Application

▪ Documentation=https://myapp.example.com/docs

▪ Requires=network.target

▪ After=network.target

PAGE 94Chapter 1 Chapter 2 Chapter 3
Chapter 4

Structure of a systemd Service Unit File

[Service] Section

PAGE 95Chapter 1 Chapter 2 Chapter 3
Chapter 4

Directive Description

Type=
Defines how systemd expects the service to behave
(simple, forking, oneshot, notify, dbus).

ExecStart= Command to start the service. Required.

ExecReload= Command to reload the service without stopping.

ExecStop= Command to stop the service.

Restart= Restart policy (no, on-success, on-failure, always).

RestartSec= Delay before restarting.

User= / Group= Run the service as a specific user/group.

Environment= Set environment variables.

Structure of a systemd Service Unit File

[Service] Section

PAGE 96Chapter 1 Chapter 2 Chapter 3
Chapter 4

[Service]
Type=simple
ExecStart=/usr/bin/python3 /opt/myapp/server.py
Restart=on-failure
RestartSec=5
User=myappuser
Environment=APP_MODE=production

Structure of a systemd Service Unit File

[Install] Section

PAGE 97Chapter 1 Chapter 2 Chapter 3
Chapter 4

Directive Description

WantedBy=
Target(s) the service should start with when enabled (most common is multi-
user.target).

RequiredBy= Strong dependency for another unit (less common in normal services).

Also= Additional units to enable/disable along with this one.

[Install]
WantedBy=multi-user.target

Structure of a systemd Service Unit File

[Unit]

Description=My Custom Web Application

After=network.target

Requires=network.target

[Service]

Type=simple

ExecStart=/usr/bin/python3 /opt/myapp/server.py

Restart=on-failure

RestartSec=5

User=myappuser

Environment=APP_MODE=production

[Install]

WantedBy=multi-user.target

PAGE 98Chapter 1 Chapter 2 Chapter 3
Chapter 4

Chapter 4
Cross-

Compilation

• Understand what cross-compilation is and why it’s used.

• Locate and use the Buildroot cross-toolchain.

• Cross-compile a simple C program for the LicheePi Zero.

• Transfer and run programs on the target board.

• Add a custom package to Buildroot.

We will cover these skills

PAGE 99

Introduction to Cross-Compilation

▪ What is cross-compilation?
▪ Compiling code on one machine (host) to run on another (target) with a different architecture.

▪ Example: Build on x86_64 laptop → run on ARM Cortex-A7 (LicheePi Zero).

▪ Why cross-compile?
▪ Target board may have limited CPU, RAM, or storage.

▪ Easier to use powerful PC for building software.

▪ Key components
▪ Host system: Your development PC (Ubuntu, Debian, etc.)

▪ Target system: LicheePi Zero (ARMv7).

▪ Toolchain: Set of tools (compiler, linker, etc.) built for the target architecture.

PAGE 100Chapter 1 Chapter 2 Chapter 3 Chapter 4

Toolchains in Buildroot

▪ Buildroot automatically generates a cross-compilation toolchain when you build.

▪ Location after build:

▪ output/host/bin/arm-linux-*

▪ Main tools:
▪ arm-linux-gcc → C compiler

▪ arm-linux-ld → Linker

▪ arm-linux-strip → Binary size reducer

PAGE 101Chapter 1 Chapter 2 Chapter 3 Chapter 4

Cross-Compile Workflow

▪ Write source code on host (e.g., hello.c).

▪ Compile with cross-compiler:
▪ output/host/bin/arm-linux-gcc hello.c -o hello

▪ Copy to target board (via scp, SD card, etc.):
▪ Scp hello root@192.168.1.50:/root/

▪ Run on target:
▪ ./hello

PAGE 102Chapter 1 Chapter 2 Chapter 3 Chapter 4

Example – Hello World

▪ Source code (hello.c):

#include <stdio.h>

int main() {

 printf("Hello from LicheePi Zero!\n");

 return 0;

}

▪ Cross-compile:
▪ output/host/bin/arm-linux-gcc hello.c -o hello
▪ file hello

▪ Output should show:
▪ ELF 32-bit LSB executable, ARM, EABI5 version 1 ...

PAGE 103Chapter 1 Chapter 2 Chapter 3 Chapter 4

Network Protocol

▪ Transmission Control Protocol (TCP)-------> Connection-oriented protocol

▪ User Datagram Protocol (UDP)--------------> part of the Internet Protocol

PAGE 104Chapter 1 Chapter 2 Chapter 3 Chapter 4

Network Protocol

TCP (Transmission Control Protocol)
▪ Connection-oriented: TCP establishes a connection between client and server before transmitting data

(like a phone call).

▪ Reliable: Ensures data arrives in order, retransmits lost packets, and checks errors.

▪ Stream-based: Data is read as a continuous stream, not divided into distinct packets.

▪ Use cases: Web browsing (HTTP/HTTPS), file transfer (FTP), SSH, email.

 TCP requires:
▪ Socket creation (socket())

▪ Binding to a port (bind())

▪ Listening for incoming connections (listen())

▪ Accepting a client connection (accept())

▪ Sending/Receiving data (send() / recv())

▪ Closing connection (close())

PAGE 105Chapter 1 Chapter 2 Chapter 3 Chapter 4

Network Protocol

UDP (User Datagram Protocol)
▪ Connectionless: No setup required; packets (datagrams) are just sent (like sending letters without

acknowledgment).

▪ Unreliable: No guarantee of delivery, order, or duplication check.

▪ Message-based: Each sendto() call corresponds to one datagram.

▪ Fast and lightweight compared to TCP.

▪ Use cases: Real-time apps like video streaming, VoIP, DNS, IoT sensors.

 UDP requires:
▪ Socket creation (socket())

▪ Binding to a port (bind())

▪ Receiving datagrams (recvfrom())

▪ Sending datagrams (sendto())

▪ Closing socket (close())

PAGE 106Chapter 1 Chapter 2 Chapter 3 Chapter 4

Network Protocol

PAGE 107Chapter 1 Chapter 2 Chapter 3 Chapter 4

Chapter 5
Device Tree in

Embedded
Linux

• Understand the role of Device Tree in Embedded Linux.

• Differentiate between DTS, DTB, DTC and their purposes.

• Explain how Device Tree integrates into the Linux boot
process (U-Boot → Kernel).

• Read and interpret the structure of a DTS file (nodes,
properties, compatibility strings).

We will cover these skills

PAGE 108

What is Device Tree?

PAGE 109Chapter 5 Chapter 6

▪ A data structure describing hardware to the Linux
kernel.

▪ Replaces old hardcoded board files in kernel.

▪ Kernel = generic, Device Tree = hardware-specific.

▪ Benefits:
▪ Kernel portability.

▪ Easy hardware changes without recompiling kernel.

▪ Supports multiple boards with same kernel.

Device Tree Files

PAGE 110Chapter 5 Chapter 6

▪ DTS (Device Tree Source) → human-readable text file.

▪ DTB (Device Tree Blob) → compiled binary used by kernel.

▪ DTC (Device Tree Compiler) → tool to compile DTS → DTB.

▪ Typical path in Linux source:
▪ arch/arm/boot/dts/

Device Tree Structure

PAGE 111Chapter 5 Chapter 6

▪ Hierarchical structure (like a filesystem).

▪ Nodes = hardware blocks (CPU, memory,
UART, GPIO).

▪ Properties = key-value pairs.

▪ Example:

Device Tree in Boot Flow

PAGE 112Chapter 5 Chapter 6

▪ Bootloader (U-Boot) loads:
▪ Kernel image (zImage/uImage).

▪ DTB (device tree blob).

▪ Kernel parses DTB → configures hardware.

▪ Drivers bind to hardware nodes via compatible.

LicheePi DTS Location

PAGE 113Chapter 5 Chapter 6

▪ For Allwinner V3s SoC (used in LicheePi Zero):
linux/arch/arm/boot/dts/sun8i-v3s-licheepi-zero.dts

▪ Includes generic SoC file:
sun8i-v3s.dtsi

Building DTB

PAGE 114Chapter 5 Chapter 6

▪ Compile manually with dtc:

▪ In Buildroot:
▪ DTB built automatically with kernel.

▪ DTB is placed in output/images/.

Deploying DTB

PAGE 115Chapter 5 Chapter 6

▪ Copy DTB to SD card /boot.
Example:

▪ Update U-Boot config if needed (boot.cmd).

▪ Reboot → Kernel loads new DTB.

Modifying Device Tree (Steps)

PAGE 116Chapter 5 Chapter 6

▪ Locate DTS file (sun8i-v3s-licheepi-zero.dts).

▪ Edit node → enable/disable hardware.

▪ Rebuild DTB (make dtbs in Buildroot).

▪ Deploy DTB to board.

▪ Verify with dmesg and /proc/device-tree/.

Example: Enable I²C on LicheePi

PAGE 117Chapter 5 Chapter 6

 Add I²C node in DTS:

 After rebuild → check:

Example: Add GPIO LED

PAGE 118Chapter 5 Chapter 6

Debugging Device Tree

PAGE 119Chapter 5 Chapter 6

▪ ls /proc/device-tree/

▪ dtc -I dtb -O dts sun8i-v3s-licheepi-zero.dtb > dump.dts

Chapter 6
GNU Debugger

(GDB) in
Embedded

Linux

• Explain the role and importance of GDB in embedded system development.

• Configure and use gdbserver on the target and cross-GDB on the host.

• Cross-compile applications with debugging symbols and execute them under GDB.

• Apply fundamental debugging techniques: breakpoints, stepping, variable inspection, and call
stack analysis.

• Utilize advanced debugging features including conditional breakpoints, watchpoints, core dump
analysis, and runtime variable modification.

• Integrate GDB with development environments (e.g., VSCode, Eclipse) to streamline debugging.

• Adopt best practices for efficient debugging in resource-constrained embedded environments.

We will cover these skills

PAGE 120

Introduction

PAGE 121Chapter 5 Chapter 6

▪ Debugging = process of finding and fixing errors in software.

▪ In Embedded Linux: very important since no direct access to display/logs.

▪ GDB = GNU Project Debugger.

▪ Allows you to:
▪ Run programs step by step

▪ Set breakpoints

▪ Inspect variables/memory

▪ Debug remotely on embedded targets

Why Use GDB?

PAGE 122Chapter 5 Chapter 6

▪ Traditional debugging (e.g., printf) is limited.

▪ Kernel/driver debugging needs more powerful tools.

▪ GDB advantages:
▪ Source-level debugging

▪ Non-intrusive

▪ Works over serial or TCP/IP

▪ Supports multi-threaded debugging

GDB Architecture

PAGE 123Chapter 5 Chapter 6

▪ Host machine (PC): runs GDB (cross-debugger).

▪ Target (LicheePi): runs gdbserver.

▪ Connection: Serial / Ethernet / USB.

▪ Workflow diagram:
▪ [Host PC: arm-linux-gdb] ←→ [Target: gdbserver + Program]

Installing GDB

▪ On Host (PC):
▪ Buildroot provides arm-linux-gdb in output/host/bin/.

▪ On Target (LicheePi):
▪ Enable gdb and gdbserver in Buildroot → menuconfig.

▪ Verify installation:

▪ gdbserver --version

▪ arm-linux-gdb --version

PAGE 124Chapter 5 Chapter 6

Compiling for Debug

▪ Use -g flag in GCC:
▪ arm-linux-gcc -g -o test test.c

▪ Keeps debug symbols (needed for GDB).

▪ Without -g you only see assembly.

PAGE 125Chapter 5 Chapter 6

Basic GDB Commands

▪ run – start program

▪ break <line/function> – set breakpoint

▪ continue – resume execution

▪ next – step over

▪ step – step into function

▪ print <var> – show variable value

▪ backtrace – show call stack

▪ info registers – inspect CPU registers

PAGE 126Chapter 5 Chapter 6

Remote Debugging Workflow

▪ Copy program to target.

▪ Run on target:
▪ gdbserver :1234 ./test

▪ On host:
▪ arm-linux-gdb ./test

▪ (gdb) target remote <IP>:1234

PAGE 127Chapter 5 Chapter 6

Example Debugging Session

▪ Source code: factorial function.

▪ Run gdbserver :1234 ./factorial on target.

▪ On host:
▪ (gdb) break main

▪ (gdb) run

▪ (gdb) step

▪ (gdb) print n

▪ (gdb) continue

PAGE 128Chapter 5 Chapter 6

Advanced Features

▪ Conditional breakpoints:
▪ break foo if x > 5

▪ Watchpoints (track variable change):
▪ watch var

▪ Modify variable
▪ set var x = 10

PAGE 129Chapter 5 Chapter 6

GDB + IDEs

▪ GDB can be integrated into:
▪ Eclipse CDT

▪ VSCode + cpptools

▪ CLion with Remote Debug plugin

▪ Useful for GUI debugging.

PAGE 130Chapter 5 Chapter 6

Compilation Flags for GDB

▪ When debugging programs with GDB in an Embedded Linux environment :
▪ compile your code is critical.

▪ The compiler (GCC or cross-GCC from Buildroot)

▪ can include or strip debugging information.

▪ optimize code in ways that hide variables.

▪ inline functions that make stepping confusing.

PAGE 131Chapter 5 Chapter 6

Compilation Flags for GDB

▪ Debugging Information Flags

PAGE 132Chapter 5 Chapter 6

Flag Description

-g Generate debugging information in the executable (symbol table, source line mapping, variable names). This is the minimum required for GDB.

-g1 Generate minimal debug info (enough for backtraces, but not variable details). Produces smaller binaries.

-g2 Default level of -g. Includes most debug info, balance between detail and size.

-g3 Maximum debug info. Also includes macro definitions, preprocessor info. Useful when debugging complex programs.

-ggdb Like -g, but generates debugging info tailored specifically for GDB (may include more details than -g).

Compilation Flags for GDB

▪ Optimization and Debugging Interaction

PAGE 133Chapter 5 Chapter 6

Flag Effect Debugging Impact

-O0 No optimization. Code matches source exactly. Best for debugging.

-O1 Basic optimization. Small reordering.
 Some variables may look

strange in GDB.

-O2 Higher optimization (default in many toolchains).
 Harder to debug: inlined

functions, optimized-out variables.

-O3 Aggressive optimization (loop unrolling, vectorization). Debugging very hard.

-Os Optimize for size. May affect debugging.

-Og
Optimize for debugging. Keeps most debug info usable while still
optimizing.

 Good balance between speed
and debuggability.

Compilation Flags for GDB

▪ Warnings

▪ Linker Flags

PAGE 134Chapter 5 Chapter 6

Flag Purpose

-Wall Enable most useful warnings.

-Wextra Enable even more warnings.

-Werror Treat warnings as errors (forces cleaner code).

Flag Purpose

-static Statically link binary (no shared libs). Easier deployment, but bigger binary.

-rdynamic Export symbols for use in GDB (for dynamically loaded code).

-Wl,-Map=output.map Generate linker map file. Helps understand addresses and symbols.

Chapter 7
Linux

Kernel menuconfig
in Buildroot

PAGE 135

This tool allows us to :
• select kernel options
• enable/disable features
• Build the kernel for our embedded device

What is linux-menuconfig?

linux-menuconfig is a tool :

▪ provided by Buildroot

▪ customize the Linux kernel

▪ configure kernel options

▪ device drivers

▪ filesystems, and more

▪ Text-based kernel configuration interface

▪ Based on Linux kernel kconfig system

▪ Runs via Buildroot: make linux-menuconfig

▪ Stores configuration in BR2_LINUX_KERNEL_CONFIG

PAGE 136Chapter 5 Chapter 6 Chapter 7

Why Use linux-menuconfig?

▪ Select needed kernel features only

▪ Reduce kernel size for embedded systems

▪ Enable hardware-specific drivers

▪ Configure filesystems and networking support

▪ Apply patches and custom options

PAGE 137Chapter 5 Chapter 6 Chapter 7

Launching linux-menuconfig in Buildroot

▪ Command: make linux-menuconfig

▪ Must configure Buildroot kernel first

▪ Requires ncurses installed on host

▪ Opens interactive menu

PAGE 138Chapter 5 Chapter 6 Chapter 7

Main Categories in Linux menuconfig

▪ General setup

▪ Processor type and features

▪ Power management options

▪ Bus and device support (I2C, SPI, PCI, USB)

▪ Networking support

▪ File systems (ext4, squashfs, NFS, etc.)

▪ Device drivers (GPIO, UART, CAN, etc.)

▪ Kernel hacking / debugging

PAGE 139Chapter 5 Chapter 6 Chapter 7

General Setup

▪ Kernel release name and version

▪ Init process selection

▪ Default system call options

▪ Support for initramfs or initrd

PAGE 140Chapter 5 Chapter 6 Chapter 7

Processor Type and Features

▪ Select CPU architecture (ARM, x86, MIPS)

▪ Specify CPU variant (Cortex-A7, A53, etc.)

▪ Enable floating-point support

▪ SMP and multi-core options

PAGE 141Chapter 5 Chapter 6 Chapter 7

Power Management Options

▪ CPU frequency scaling

▪ Sleep modes and suspend/resume

▪ Device runtime power management

▪ Low-power optimizations

PAGE 142Chapter 5 Chapter 6 Chapter 7

Bus and Device Support

▪ Enable/disable I2C, SPI, CAN, UART

▪ PCI and USB subsystem support

▪ GPIO access and drivers

▪ Peripheral-specific options

PAGE 143Chapter 5 Chapter 6 Chapter 7

Networking Support

▪ TCP/IP stack options

▪ Wireless and Ethernet drivers

▪ Networking protocols (IPv4, IPv6, PPP)

▪ Firewalling and security features

PAGE 144Chapter 5 Chapter 6 Chapter 7

Filesystems

▪ Select root filesystem types: ext4, squashfs, tmpfs, etc.

▪ Network filesystems: NFS, CIFS

▪ Flash and block device support

▪ Journaling and compression options

PAGE 145Chapter 5 Chapter 6 Chapter 7

Kernel Hacking / Debugging

▪ Enable debug messages

▪ Kernel profiling and tracing

▪ Magic SysRq key

▪ Logging and printk options

PAGE 146Chapter 5 Chapter 6 Chapter 7

Saving the Kernel Configuration

▪ Save changes in .config

▪ Use make savedefconfig to create minimal defconfig

▪ Reuse configuration across projects

▪ Buildroot uses BR2_LINUX_KERNEL_CONFIG

PAGE 147Chapter 5 Chapter 6 Chapter 7

	Default Section
	Slide 1: Embedded Linux
	Slide 2: Course Outline
	Slide 3: Linux Fundamentals
	Slide 4: Cross-Compilation and Toolchains
	Slide 5: Buildroot and Filesystem Generation
	Slide 6: Bootloaders and Kernel
	Slide 7: Device Tree and Drivers
	Slide 8: Application Development and Debugging
	Slide 9: Chapter 1 Linux Fundamentals
	Slide 10: Course Introduction
	Slide 11: Development Environment Requirements for Embedded Linux Training
	Slide 12: Development Environment Requirements for Embedded Linux Training
	Slide 13: Development Environment Requirements for Embedded Linux Training
	Slide 14: Development Environment Requirements for Embedded Linux Training
	Slide 15: What is Linux?
	Slide 16: What is a Linux Distribution?
	Slide 17: How Are Distributions Different?
	Slide 18: Why Use Special Distros for Embedded Linux?
	Slide 19: Linux Filesystem Hierarchy
	Slide 20: Linux Command Line Basics
	Slide 21: Introduction to Bash Scripting
	Slide 22: Introduction to Bash Scripting
	Slide 23: Device and Process Management
	Slide 24: Practice Tasks
	Slide 25: Skills Acquired in This Section
	Slide 26: Linux Filesystem Hierarchy
	Slide 27: Linux Filesystem Hierarchy
	Slide 28: Linux Filesystem Hierarchy
	Slide 29: Linux Filesystem Hierarchy
	Slide 30: Linux Filesystem Hierarchy
	Slide 31: Linux Filesystem Hierarchy
	Slide 32: Linux Filesystem Hierarchy
	Slide 33: Linux Filesystem Hierarchy
	Slide 34: Essential Linux Commands (with Examples)
	Slide 35: Essential Linux Commands (with Examples)
	Slide 36: Working with Package Managers
	Slide 37: Networking Basics
	Slide 38: Archiving and Compression
	Slide 39: Disk and Filesystem Management
	Slide 40: Systemd and Services
	Slide 41: What is Bash?
	Slide 42: What is a Shell?
	Slide 43: Key Features of Bash
	Slide 44: Why Use Bash?
	Slide 45: The Shebang (#!/bin/bash)
	Slide 46: Chapter 2 Linux for Embedded Development
	Slide 47: What is Embedded Linux
	Slide 48: Embedded Linux System Architecture
	Slide 49: Embedded Linux System Architecture
	Slide 50: Embedded Linux System Architecture
	Slide 51: Embedded Linux System Architecture
	Slide 52: Embedded Linux System Architecture
	Slide 53: Embedded Linux System Architecture
	Slide 54: Embedded Linux System Architecture
	Slide 55: Embedded Linux System Architecture
	Slide 56: Boot Process in Embedded Linux
	Slide 57: Boot Process in Embedded Linux
	Slide 58: Boot Process in Embedded Linux
	Slide 59: Boot Process in Embedded Linux
	Slide 60: Boot Process in Embedded Linux
	Slide 61: Boot Process in Embedded Linux
	Slide 62: Boot Process in Embedded Linux
	Slide 63: Boot Process in Embedded Linux
	Slide 64: Boot Process in Embedded Linux
	Slide 65: Boot Process in Embedded Linux
	Slide 66: Toolchains & Cross-Compilation
	Slide 67: Toolchains & Cross-Compilation
	Slide 68: Toolchains & Cross-Compilation
	Slide 69: Toolchains & Cross-Compilation
	Slide 70: Toolchains & Cross-Compilation
	Slide 71: Toolchains & Cross-Compilation
	Slide 72: Toolchains & Cross-Compilation
	Slide 73: Toolchains & Cross-Compilation
	Slide 74: Toolchains & Cross-Compilation
	Slide 75: Introduction to Build Systems
	Slide 76: Introduction to Build Systems
	Slide 77: Preparing Your Host Linux System
	Slide 78: Folder Structure and Best Practices
	Slide 79: Hands-On with Buildroot
	Slide 80: Chapter 3 Buildroot Fundamentals and Filesystem Generation
	Slide 81: Buildroot Fundamentals
	Slide 82: Why Use Buildroot?
	Slide 83: Filesystem Generation Workflow in Buildroot
	Slide 84: Filesystem Generation Workflow in Buildroot
	Slide 85: Directory Structure in Buildroot
	Slide 86: Example Filesystem Layout Generated by Buildroot
	Slide 87: practical list of important Buildroot packages
	Slide 88: practical list of important Buildroot packages
	Slide 89: practical list of important Buildroot packages
	Slide 90: practical list of important Buildroot packages
	Slide 91: practical list of important Buildroot packages
	Slide 92: Structure of a systemd Service Unit File
	Slide 93: Structure of a systemd Service Unit File
	Slide 94: Structure of a systemd Service Unit File
	Slide 95: Structure of a systemd Service Unit File
	Slide 96: Structure of a systemd Service Unit File
	Slide 97: Structure of a systemd Service Unit File
	Slide 98: Structure of a systemd Service Unit File
	Slide 99: Chapter 4 Cross-Compilation
	Slide 100: Introduction to Cross-Compilation
	Slide 101: Toolchains in Buildroot
	Slide 102: Cross-Compile Workflow
	Slide 103: Example – Hello World
	Slide 104: Network Protocol
	Slide 105: Network Protocol
	Slide 106: Network Protocol
	Slide 107: Network Protocol
	Slide 108: Chapter 5 Device Tree in Embedded Linux
	Slide 109: What is Device Tree?
	Slide 110: Device Tree Files
	Slide 111: Device Tree Structure
	Slide 112: Device Tree in Boot Flow
	Slide 113: LicheePi DTS Location
	Slide 114: Building DTB
	Slide 115: Deploying DTB
	Slide 116: Modifying Device Tree (Steps)
	Slide 117: Example: Enable I²C on LicheePi
	Slide 118: Example: Add GPIO LED
	Slide 119: Debugging Device Tree
	Slide 120: Chapter 6 GNU Debugger (GDB) in Embedded Linux
	Slide 121: Introduction
	Slide 122: Why Use GDB?
	Slide 123: GDB Architecture
	Slide 124: Installing GDB
	Slide 125: Compiling for Debug
	Slide 126: Basic GDB Commands
	Slide 127: Remote Debugging Workflow
	Slide 128: Example Debugging Session
	Slide 129: Advanced Features
	Slide 130: GDB + IDEs
	Slide 131: Compilation Flags for GDB
	Slide 132: Compilation Flags for GDB
	Slide 133: Compilation Flags for GDB
	Slide 134: Compilation Flags for GDB
	Slide 135: Chapter 7 Linux Kernel menuconfig in Buildroot
	Slide 136: What is linux-menuconfig?
	Slide 137: Why Use linux-menuconfig?
	Slide 138: Launching linux-menuconfig in Buildroot
	Slide 139: Main Categories in Linux menuconfig
	Slide 140: General Setup
	Slide 141: Processor Type and Features
	Slide 142: Power Management Options
	Slide 143: Bus and Device Support
	Slide 144: Networking Support
	Slide 145: Filesystems
	Slide 146: Kernel Hacking / Debugging
	Slide 147: Saving the Kernel Configuration

