

About	This	E-Book
EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for

EPUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To

optimize	the	presentation	of	these	elements,	view	the	e-book	in	single-column,
landscape	mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to
presenting	code	and	configurations	in	the	reflowable	text	format,	we	have
included	images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;
therefore,	where	the	reflowable	format	may	compromise	the	presentation	of	the
code	listing,	you	will	see	a	“Click	here	to	view	code	image“	link.	Click	the	link
to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,
click	the	Back	button	on	your	device	or	app.

Linus	for	Developers
Jumpstart	Your	Linux	Programming	Skills

William	“Bo”	Rothwell

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam
Cape	Town	Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal
Toronto	•	Delhi	•	Mexico	City	Sao	Paulo	•	Sidney	•	Hong	Kong	•	Seoul

Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearsoned.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2017932512

Copyright	©	2017	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	For	information	regarding	permissions,
request	forms	and	the	appropriate	contacts	within	the	Pearson	Education	Global
Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-465728-8

ISBN-10:	0-13-465728-4

1	17

Editor-in-Chief

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearsoned.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

Mark	Taub

Executive	Editor
Debra	Williams	Cauley

Development	Editor
Chris	Zahn

Managing	Editor
Sandra	Schroeder

Senior	Project	Editor
Lori	Lyons

Project	Manager
Dhayanidhi

Copy	Editor
Paula	Lowell

Indexer
Cheryl	Lenser

Proofreader
SathishKumar

Technical	Reviewers
Matthew	Helmke
Keith	Wright

Editorial	Assistant
Kim	Boedigheimer

Cover	Designer
Chuti	Prasertsith

Compositor
codeMantra

	

“A	best	friend	is	the	only	one	that	walks	into	your	life	when	the	world	has
walked	out.”

—	Shannon	L.	Alder

Thank	you,	Sarah,	my	love	and	my	wife,	for	walking	into	my	life.

“Strong	people	don't	put	others	down...	They	lift	them	up.”
—	Michael	P.	Watson

Thank	you,	Mom	and	Dad,	for	being	supportive.

“Fall	seven	times,	stand	up	eight.”
—	Japanese	Proverb

Thank	you,	Julia,	for	being	understanding.

Contents	at	a	Glance
Preface

I:	Open	Source	Software

1	Introduction	to	Open	Source	Software

II:	Linux	Essentials

2	Introduction	to	Linux

3	The	Filesystem

4	Essential	Commands

5	Text	Editors

6	System	Administration

III:	Linux	Programming	Languages

7	Overview	of	Linux	Programming	Languages

8	BASH	Shell	Scripting

9	Perl	Scripting
10	Python	Scripting
11	C,	C++,	and	Java

IV:	Using	Git
12	Git	Essentials
13	Manage	Files	with	Git
14	Manage	Differences	in	Files
15	Advanced	Git	Features

Index

Contents
Preface

I:	Open	Source	Software

1	Introduction	to	Open	Source	Software
Defining	Source	Code
Closed	Source
Open	Source
“Free”	Software

Choosing	Open	Source	Licensing
Options
Key	Terms
Examples
Useful	Links

Summary

II:	Linux	Essentials

2	Introduction	to	Linux
Accessing	a	Linux	System
Choosing	the	Right	Distribution
Logging	In

Using	the	GUI
Basic	Command-Line	Execution
Command-Line	Structure
Getting	Help

Summary

3	The	Filesystem
Understanding	the	Filesystem
Learning	the	Most	Used	Directories
Naming	Considerations

Navigating	the	Filesystem

Managing	the	Filesystem
Managing	Directories
Managing	Files

Summary

4	Essential	Commands
Command-Line	Tools
Viewing	Files
Finding	Files
Comparing	Files
Shell	Features
Permissions

Developer	Tools
File	Compression	Commands
The	grep	Command

Summary

5	Text	Editors
The	vi	Editor
Why	Learn	vi?
What	Is	vim?
Essential	vi	Commands

Additional	Editors
Emacs
gedit	and	kwrite
nano	and	joe
lime	and	bluefish

Summary

6	System	Administration
Essential	Tasks
Gaining	Access	to	the	Root	Account
Displaying	Disk	Usage

Managing	Software

Listing	and	Finding	Software
Installing	Software

User	Accounts
Adding	User	Accounts
Modifying	User	Accounts
Deleting	User	Accounts
Understanding	Groups
Managing	Groups

Summary

III:	Linux	Programming	Languages

7	Overview	of	Linux	Programming	Languages
Scripting	Languages
BASH	Shell	Scripting
Perl	Scripting
Python	Scripting
Additional	Scripting	Languages

Compiled	Languages
C	Programming	Basics
C++	Programming	Basics
Java	Programming	Basics

IDEs
Summary

8	BASH	Shell	Scripting
Basics	of	BASH	Scripting
Conditional	Expressions
Integer	Comparisons
File	Test	Comparisons

Flow	Control	Statements
The	while	loop
The	for	Loop
The	case	Statement

User	Interaction
Additional	Information
Summary

9	Perl	Scripting
Basics	of	Perl	Scripting
Executing	Perl	Code
Additional	Perl	Documentation
Variables	and	Values

Flow	Control
Conditions
Additional	Features
Summary

10	Python	Scripting
Basics	of	Python	Scripting
Executing	Python	Code
Additional	Documentation
Variables	and	Values

Flow	Control
Conditions
Additional	Features
Summary

11	C,	C++,	and	Java
Understanding	System	Libraries
Managing	Shared	Library	Files
Viewing	Shared	Library	Files

Building	Packages
Building	RPM	Packages
Building	Debian	Packages

Exploring	Java	Installation	and	Basics
Summary

IV:	Using	Git

12	Git	Essentials
Version	Control	Concepts
The	First	Generation
The	Second	Generation
The	Third	Generation

Installing	Git
Git	Concepts	and	Features
Git	Stages
Choosing	Your	Git	Repository	Host
Configuring	Git

Summary

13	Manage	Files	with	Git
Basic	Configuration
git	status

Handling	a	Multiple	Location	Situation
Telling	Git	to	Ignore	a	File

Removing	Files
Handling	Branches
Pushing	Branches
Summary

14	Manage	Differences	in	Files
Executing	Diffs
Dealing	with	White	Space
Comparing	Branches

Merging	Files
Summary

15	Advanced	Git	Features
Managing	Repositories
Getting	Content	from	the	Remote	Server
Connecting	via	SSH

Patching
Summary

Index

Preface
When	I	envisioned	this	book,	I	thought	of	it	as	the	beginning	of	a	journey.	Your
exact	starting	point	on	this	journey	may	differ	from	that	of	others,	but	the
purpose	of	this	book	is	to	provide	you	with	what	you	need	to	know	to	start
developing	software	on	a	Linux	Operating	System.
Some	readers	will	already	have	software	developing	experience	on	Windows-
based	platforms.	For	those	folks,	this	book	should	serve	as	a	guide	to	how
software	development	differs	on	Linux	from	the	platform	you	are	used	to
developing	on.
Perhaps	you	already	work	in	Linux,	but	want	to	start	writing	code.	Again,	this
book	will	provide	you	with	an	excellent	starting	point	for	that	journey.
The	book	is	organized	into	four	parts.

	Part	I,	“Open	Source	Software,”	contains	a	single	chapter—Chapter	1,
“Introduction	to	Open	Source	Software.”	You	learn	about	open	source
software,	including	its	advantages	over	closed	source	software,	as	well	as
some	essentials	regarding	software	licenses.
	In	Part	II,	“Linux	Essentials,”	you	are	introduced	to	the	Linux	operating
system.	The	goal	of	this	part	is	to	provide	you	with	the	key	knowledge	that
software	developers	need	to	know	while	working	in	Linux.	This	includes
both	end	user	and	administration	topics.	The	chapters	in	this	part	include	the
following:
	Chapter	2,	“Introduction	to	Linux.”	In	this	chapter	you	learn	the	basics	of
Linux,	including	how	to	access	a	Linux	system,	how	to	use	a	Linux-based
GUI,	and	basic	command-line	execution.
	Chapter	3,	“The	Filesystem.”	This	chapter	focuses	on	how	the	files	are
organized	in	Linux.	You	are	introduced	to	filesystem	concepts,	learn	how
to	navigate	the	filesystem,	and	learn	how	to	manage	the	filesystem.
	Chapter	4,	“Essential	Commands.”	In	this	chapter	you	learn	a	variety	of
Linux	commands	that	are	critical	for	any	developer	to	know.
	Chapter	5,	“Text	Editors.”	As	a	developer,	you	need	to	know	how	to	edit
files.	This	chapter	focuses	on	the	vi	editor,	a	common	text	editor	in	both
Linux	and	Unix.	You	are	also	introduced	to	additional	Linux	editors.
	Chapter	6,	“System	Administration.”	It	is	helpful	to	know	how	to	perform
system	administration	tasks,	even	as	a	developer.	You	learn	how	to	add
software	and	administer	users	in	this	chapter.

	Part	III,	“Linux	Programming	Languages,”	provides	an	overview	of
different	programming	languages	available	in	Linux.	You	have	a	lot	of
choices	here!	The	goal	here	isn't	to	teach	you	everything	about	each
language	but	to	introduce	you	to	many	of	them	so	you	can	decide	which
language	will	work	best	for	you.
	Chapter	7,	“Overview	of	Programming	Languages.”	This	chapter	provides
an	overview	of	programming	languages	with	the	focus	on	distinguishing
between	scripting	languages	and	structured	(or	compiled)	languages.
	Chapter	8,	“BASH	Shell	Scripting.”	In	this	chapter	you	are	introduced	to
the	BASH	shell	language.	You	learn	how	to	create	code	that	interacts	with
users	as	well	as	other	features	of	the	BASH	shell	programming	language.
	Chapter	9,	“Perl	Scripting.”	The	focus	of	this	chapter	is	how	to	program	in
the	Perl	scripting	language.	Topics	include	flow	control	and	variable	usage.
	Chapter	10,	“Python	Scripting.”	You	learn	the	basics	of	Python	scripting	in
this	chapter,	including	the	large	variety	of	Python	variable	types,	and	how
to	reuse	code	and	flow	control.
	Chapter	11,	“C,	C++,	and	Java.”	In	this	chapter	you	learn	the	essentials	to
create	C,	C++,	and	Java	code	on	Linux-based	systems.

	Lastly,	Part	IV,	“Using	GIT,”	covers	a	very	popular	software	revision
control	product	called	Git.	Using	a	revision	control	product,	especially	when
working	with	teams	of	developers,	can	save	a	lot	of	time,	money,	and	effort.
	Chapter	12,	“GIT	Essentials.”	In	this	chapter	you	learn	the	concepts	of
GIT.	Topics	include	revision	control	concepts,	GIT	installation,	and	GIT
features.
	Chapter	13,	“Manage	Files	with	GIT.”	In	this	chapter	you	learn	how	to	use
GIT	features	such	as	staging,	committing,	and	branches.
	Chapter	14,	“Manage	Differences	in	Files.”	The	focus	of	this	chapter	is	on
how	to	deal	with	different	versions	of	files.	You	learn	how	to	execute	diffs
(differences	in	files)	and	merge	files.
	Chapter	15,	“Advanced	GIT	Features.”	You	learn	how	to	manage	GIT
repositories	and	perform	patching	in	this	chapter.

Good	luck	in	your	journey!

—William	“Bo”	Rothwell
December	22,	2016

Register	your	copy	of	Linux	for	Developers	at	informit.com	for	convenient
access	to	downloads,	updates,	and	corrections	as	they	become	available.	To	start
the	registration	process,	go	to	informit.com/register	and	log	in	or	create	an
account.	Enter	the	product	ISBN	9780134657288	and	click	Submit.	Once	the
process	is	complete,	you	will	find	any	available	bonus	content	under	“Registered
Products”.

http://informit.com
http://informit.com/register

Acknowledgments
Thanks	to	all	who	helped	me	put	this	book	together.	As	any	decent	author	will
tell	you,	there	are	many,	many	hours	put	into	a	publication	like	this,	which	were
the	results	of	other	people’s	efforts	and	dedication.
Keith	Wright	and	Matthew	Helmke,	thank	your	technical	reviews.	There	is	no
doubt	this	is	a	much	better	book	than	my	original	effort	because	of	your
feedback.
Chris	Zahn:	I	couldn't	have	asked	for	a	better	editor.	You	make	me	look	like	I
can	put	together	a	coherent	sentence—no	small	feat!
Debra	Williams	Cauley,	thanks	for	seeing	the	value	and	providing	a	guiding
hand	throughout	this	process.

About	the	Author
At	the	impressionable	age	of	14,	William	“Bo”	Rothwell	crossed	paths	with	a
TRS-80	Micro	Computer	System	(affectionately	known	as	a	“Trash	80”).	Soon
after,	the	adults	responsible	for	Bo	made	the	mistake	of	leaving	him	alone	with
the	TSR-80.	He	immediately	dismantled	it	and	held	his	first	computer	class,
showing	his	friends	what	made	this	“computer	thing”	work.
Since	this	experience,	Bo’s	passion	for	understanding	how	computers	work	and
sharing	this	knowledge	with	others	has	resulted	in	a	rewarding	career	in	IT
training.	His	experience	includes	Linux,	Unix,	and	programming	languages	such
as	Perl,	Python,	Tcl,	and	BASH.	He	is	the	founder	and	lead	instructor	of	One
Course	Source,	an	IT	training	organization.

I.	Open	Source	Software
One	of	the	most	important	questions	you	need	to	answer	when	creating	software
is,	“Under	what	type	of	license	will	this	software	be	released?”	Arriving	at	that
answer	can	be	a	difficult	journey.
You	must	determine	what	sort	of	protection	you	want	to	place	on	your	code	as
well	as	what	you	will	allow	others	to	do	with	the	software	that	you	create.	This
part	includes	just	one	chapter,	focusing	on	helping	you	decide	how	to	license
your	software.	In	this	chapter,	you	learn	the	following:

	The	difference	between	closed	and	open	source	software
	Open	source	protection	concepts
	The	difference	between	primary	open	source	licenses

1.	Introduction	to	Open	Source	Software
You	have	created	an	awesome	program,	and	now	you	want	to	make	it	available
to	the	public.	Now	comes	an	important	decision	to	make:	what	license	to	apply
to	your	software.
This	decision	will	have	several	important	impacts,	including	the	following:

	How	users	can	use	your	software
	Whether	the	code	is	visible	to	others	or	“hidden”	from	plain	sight
	Whether	other	developers	can	use	the	code	to	create	their	own	programs
	Whether	others	can	sell	(or	resell)	the	program

Disclaimer
License	issues	can	be	complex	and	have	a	significant	impact	on
how	your	software	is	used.	The	discussion	in	this	book	is	designed
to	provide	you	with	a	basic	understanding	of	different	licenses	but	is
not	intended	to	provide	any	legal	advice.	The	author	of	this	book
does	not	intend	to	provide	any	legal	advice.	Always	consider
consulting	proper	legal	advice	before	making	a	decision	regarding
software	licenses.

Defining	Source	Code
Most	likely	the	first	question	you	need	to	answer	is,	“Will	this	be	closed	source
software	or	open	source	software?”	To	answer	this	question,	you	first	need	to
understand	what	source	code	is.
Software	consists	of	a	collection	of	instructions	that	are	written	in	a
programming	language.	Dozens	of	different	languages	exist,	including	C,	C++,
Java,	Perl,	Python,	and	many	others.	This	collection	of	instructions	is	referred	to
as	source	code.	See	Figure	1.1	for	a	demonstration	of	source	code	written	in	C.

Figure	1.1	Source	code	written	in	C

Typically,	you	can’t	use	this	source	code	directly	to	run	your	program.	Most
languages	require	a	compile	process	in	which	the	source	code	is	converted	into
instructions	that	the	operating	system	can	understand.	The	result	is	data	that
looks	like	garbage	to	a	human	but	makes	sense	to	the	operating	system.	See
Figure	1.2	for	a	demonstration	of	source	code	that	is	converted	into	compiled
code.

Figure	1.2	Example	of	source	code	converted	to	compiled	code

If	you	choose	to	license	your	software	as	closed	source,	then	you	only	provide
the	compiled	code	to	customers.	Software	open	source	licenses	include	access	to
the	original	source	code.

Closed	Source
Also	called	proprietary	software,	the	purpose	of	closed	source	software	is	to
keep	the	source	code	a	closely	guarded	secret.	The	idea	is	that	if	others	can	see
the	source	code,	then	the	source	code	may	be	copied	and	illegally	used.	As	a
result,	competitors	of	the	organization	that	created	the	software	might	end	up
having	a	negative	impact	on	the	financials	of	the	organization	that	created	the

software.	As	you	can	imagine,	copying	someone	else’s	software	is	much	cheaper
than	creating	your	own	software.
Often	the	term	closed	source	is	used	in	place	of	the	term	commercial	software,
but	this	isn’t	accurate.	Commercial	software	must	be	purchased	in	order	to	use	it.
Both	closed	and	open	source	software	can	be	commercialized;	the	specific
license	determines	whether	the	software	is	commercial	or	“free.”1

Examples	of	closed	source	software	include:
	Microsoft	Windows
	Adobe	Photoshop
	Apple	macOS

Open	Source
Software	is	considered	open	source	when	both	the	compiled	and	source	versions
of	the	code	are	made	available.2	The	software	license	from	the	copyright	holder
grants	certain	rights	to	view,	modify,	and	distribute	the	software.	A	variety	of
open	source	licenses	are	available	that	enable	you	to	pick	which	rights	are
granted.
Although	some	open	source	software	is	free,	in	the	economic	sense,	that	isn’t	a
requirement	for	open	source	software	to	be	considered	open	source.	Open	source
refers	to	the	capability	to	access	the	source	code,	not	how	the	software	can	be
used	or	any	costs	associated	with	the	software.
Common	examples	of	open	source	software	include:

	Linux3

	Apache	HTTP	Server
	Firefox
	Git
	Openoffice.org

“Free”	Software
The	concept	of	free	in	regards	to	software	is	not	necessarily	agreed	upon	by	all.
Some	people	might	consider	free	software	to	be	software	without	cost.	In	other
words,	it	doesn’t	cost	you	anything	to	obtain	and	use	the	software.
However,	what	does	it	mean	to	use	software?	Does	this	mean	that	the	software
can	be	used	in	any	way	that	the	user	wants,	or	are	there	some	restrictions?	Can
this	software	be	used	anywhere	in	the	world,	or	are	there	geographic	limitations?

Are	you	free	to	modify	the	software	and	distribute	free	copies	of	the	modified
format,	or	are	these	actions	prohibited?	As	you	can	see,	free	in	terms	of	software
isn’t	so	clear	cut.
One	way	of	defining	the	term	free	is	to	use	the	definition	created	by	Richard
Stallman	and	published	by	Free	Software	Foundation	(FSF):
“The	word	‘free’	in	our	name	does	not	refer	to	price;	it	refers	to	freedom.	First,
the	freedom	to	copy	a	program	and	redistribute	it	to	your	neighbors,	so	that	they
can	use	it	as	well	as	you.	Second,	the	freedom	to	change	a	program,	so	that	you
can	control	it	instead	of	it	controlling	you;	for	this,	the	source	code	must	be
made	available	to	you.”
Note	that	the	preceding	definition	mandates	that	free	software	also	be	open
source	software.	Not	everyone	agrees	with	this,	and	you	will	find	some	closed
source	freeware	on	the	market.
Another	way	to	define	the	term	free	is	by	the	Four	Freedoms,	as	defined	by	the
Free	Software	Foundation:

	Freedom	0:	“The	freedom	to	run	the	program	as	you	wish,	for	any
purpose.”
	Freedom	1:	“The	freedom	to	study	how	the	program	works	and	change	it	so
it	does	your	computing	as	you	wish.	Access	to	the	source	code	is	a
precondition	for	this.”
	Freedom	2:	“The	freedom	to	redistribute	copies	so	you	can	help	your
neighbor.”
	Freedom	3:	“The	freedom	to	distribute	copies	of	your	modified	versions	to
others.	By	doing	this	you	can	give	the	whole	community	a	chance	to	benefit
from	your	changes.	Access	to	the	source	code	is	a	precondition	for	this.”

These	Four	Freedoms	are	at	the	heart	of	what	is	referred	to	as	FOSS	(Free	and
Open	Source	Software).4	FOSS	attempts	to	address	the	challenge	of	defining
what	constitutes	“free	software.”	Note	that	the	definition	highlights	the	fact	that
not	all	free	software	is	open	source.	Conversely,	not	all	open	source	software	is
licensed	with	the	Four	Freedoms.
Understanding	the	complex	world	of	open	source	software	and	what	part
“freedom”	plays	takes	some	time.	See	Figure	1.3	for	a	graphic	that	includes	the
various	components	of	open	source	software.

Figure	1.3	Visualize	the	Open	Source	community

The	graphic	in	Figure	1.3	highlights	the	complex	combination	of	elements	that
make	up	open	source	software.	You	can	see	that	the	developers	write	the	source
code,	create	documentation,	and	provide	support.	However,	the	users	of	the
software	are	often	major	components	in	this	process	as	well.	In	fact,	some	open
source	software	includes	little	or	no	support	or	documentation	from	the
developer,	but	rather	relies	on	a	strong	user	base	(the	community)	to	provide
these	critical	elements.
Note	that	the	freedoms	to	modify,	distribute,	and	utilize	are	also	depicted	in	the
diagram	in	Figure	1.3.	Additionally,	the	software	license	is	what	provides	these
freedoms.

Choosing	Open	Source	Licensing
Ultimately	you	need	to	decide	whether	to	license	your	software	as	closed	source
or	open	source.	Part	of	that	decision	will	be	based	on	specifics	regarding
licenses,	a	topic	that	this	chapter	covers	further.	However,	you	should	consider
some	general	benefits	to	creating	open	source	software:

	Open	source	tends	to	invoke	trust.	The	reason	is	that	others	can	see
exactly	what	the	software	does	by	looking	at	the	source	code.
	Open	source	can	result	in	better	code	and	less	development	time.	With
other	developers	reviewing	your	code	and	providing	feedback,	bug	fixes,
and	improvements	are	created	more	rapidly,	often	at	no	cost	to	you.
	Open	source	that	is	“free”	can	increase	the	scope	of	the	user	base.	More
users	are	willing	to	try	software	that	is	free	rather	than	paying	money	to	test
out	new	software.
	You	can	still	make	money	from	“free”	open	source	software.	Other

available	sources	of	revenue	include	training,	support	contracts,	and
additional	services.

Options
Dozens	of	standard	open	source	licenses	and	a	large	number	of	custom	licenses
are	available.	Typically,	they	fall	into	one	of	the	following	four	categories:

	Standard—Regular	licenses	that	are	often	reused	for	other	software
products.	Typically,	these	are	specific	to	a	country	and	many	of	them	center
around	United	States	or	European	laws.
	International—Regular	licenses	that	are	often	reused	for	other	software
products.	Unlike	the	standard	licenses,	these	licenses	are	designed	to	be	used
throughout	the	world.
	Special	purpose—Licenses	that	are	written	for	specific	cases.
	Nonreusable—Licenses	that	are	not	permitted	to	be	used	for	any	software
product	besides	the	product	the	license	was	written	for.

Key	Terms
Regarding	open	source	software	licenses,	you	should	understand	a	couple	of	key
terms.	One	term	is	copyleft,	which	ensures	intellectual	property	(IP)	can	be
copied	or	distributed	as	open	source	software.	The	two	forms	of	copyleft	are

	Strong—All	derived	works	must	maintain	original	copyleft.
	Weak—Derived	works	don’t	need	to	follow	the	original	restrictions.

Another	important	open	source	license	term	is	permissiveness.	This	term	is
related	to	derived	works	and	whether	mixed	licenses	are	allowed.	The	two	forms
of	permissiveness	are

	Strict—Limited	mixed	licenses	(no	closed	source	or	more	permissive
licenses)
	Permissive—Allows	mixed	licenses

Examples
The	following	list	describes	some	of	the	more	popular	open	source	licenses:

	Apache	License	2.0:
	Very	permissive
	Non-copyleft

	Use	for	any	purpose
	Distribute	and	modify
	Allows	derived	works

	MIT	License:
	Also	known	as	X11	license
	Similar	to	Apache	license	2.0
	Very	permissive
	Non-copyleft
	Use	for	any	purpose
	Must	keep	copyright	message
	User	must	agree	that	no	warranty	is	provided

	GNU	General	Public	License	(GPL):
	Strong	copyleft
	Strict	permissiveness
	All	derived	works	must	be	GPL
	Two	versions:	v2	and	v3

	BSD	License:
	Very	permissive
	Non-copyleft
	Three	types:
	Two-clause—Same	as	MIT
	Three-clause—Derived	work	not	endorsed	by	original	holder
	Four-clause—Advertising	must	acknowledge	original	holder

Useful	Links
Hopefully,	you	now	have	a	basic	understanding	of	open	source	software	and
licenses.	Clearly,	the	topic	is	not	a	simple	one,	and	spending	additional	time
researching	which	license	is	the	best	for	your	project	and	organization	is
important.	In	addition	to	consulting	a	legal	expert,	you	should	find	the	following
URL	resources	helpful:

	http://choosealicense.com—This	tool	uses	a	series	of	questions	to	help	you
determine	which	license	works	best	for	your	situation.	It	provides	a	good
start,	but	you	should	also	consult	a	legal	expert	before	making	a	final

http://choosealicense.com

decision.
	http://fsf.org—The	website	for	the	Free	Software	Foundation	offers	a	great
deal	of	useful	information	regarding	open	source	software	and	licenses.
	http://opensource.org—This	is	another	great	resource	to	learn	more	about
open	source	licenses.

Open	Source	Humor
Open	source:	free	as	in	“free	speech,”	not	as	in	“free	beer.”	—
Anonymous

Summary
In	this	chapter	you	learned	the	differences	between	closed	and	open	source
software.	The	concept	of	free	software	was	also	explored.	Lastly,	you	learned
about	some	of	the	basics	of	open	source	licenses.	At	this	point	you	should	be
able	to	start	the	process	of	determining	what	type	of	license	under	which	to
release	your	software.	However,	remember	that	you	want	to	put	a	lot	of	time,
effort,	and	thought	into	this	decision	before	releasing	your	software	because
these	licenses	can	have	a	powerful	effect	on	how	your	software	will	be	used	by
the	community.

1	There	is	a	reason	why	I	put	free	in	quotes.	As	you	will	soon	read,	the	term
free	must	be	legally	defined	in	regards	to	software	use.

2	Actually,	some	open	source	projects	only	provide	the	source	code	and	leave	it
to	the	people	who	use	the	software	to	compile	it.	Additionally,	some
languages	don’t	have	a	compile	process,	so	a	program	written	in	such	a
language	would	only	include	the	source	code.

3	Technically,	Linux	refers	to	the	Linux	kernel,	which	is	the	heart	of	the	Linux
operating	system.	Most	of	the	software	found	on	Linux	operating	systems	is
also	open	source,	but	this	isn’t	a	requirement	for	inclusion	in	the	OS.

4	Often	used	interchangeably	with	the	term	FLOSS	(Free/Libre	and	Open
Source	Software).

http://fsf.org
http://opensource.org

II.	Linux	Essentials
If	you	are	going	to	develop	software	on	a	Linux-based	operating	system	(OS),
then	it	will	be	important	for	you	to	know	how	to	interact	with	and	manage	the
OS.	The	next	five	chapters	are	devoted	to	providing	you	with	a	solid	foundation
in	the	tools	and	features	of	Linux.
These	chapters	focus	specifically	on	what	you	should	know	about	Linux	as	a
developer.	Linux	itself	is	a	huge	topic	with	large	volumes	devoted	to	exploring
the	OS.	The	goal	here	is	to	provide	you	with	what	you	need	to	know	as	a
developer,	not	as	a	regular	end	user	or	administrator.1

The	next	five	chapters	cover	the	following:
	The	core	concepts	of	the	Linux	operating	system
	What	Linux	distributions	are
	How	to	manage	the	Linux	filesystem
	Critical	Linux	commands	that	all	software	developers	should	know
	Essential	system	administration	tasks	that	will	be	useful	for	you	to	know	as
a	developer

1	Certainly,	the	topics	presented	will	also	be	useful	to	these	sets	of	Linux	users.

2.	Introduction	to	Linux
What	exactly	is	Linux?	The	answer	can	be	a	complex	one.	Technically,	Linux	is
a	piece	of	software	called	the	kernel.	The	kernel	handles	tasks	such	as	booting
the	system	and	interacting	with	hardware	devices.	By	itself,	the	kernel	doesn’t
really	provide	users	with	any	functionality.	The	rest	of	the	operating	system
(OS),	consisting	of	the	filesystem	and	a	large	number	of	commands,	is	what
provides	users	with	useful	features.
Although	Linux	is	technically	just	the	kernel,	many	people	refer	to	the	entire	OS
as	Linux.	In	reality,	the	collection	of	software	that	makes	up	the	OS	is	known	as
a	Linux	distribution	(also	called	a	distro).	Many	distros	are	available	to	choose
from,	which	often	results	in	some	confusion	for	novice	Linux	users.

What	Is	a	Distribution?
A	distribution	is	a	collection	of	Linux	software	that	is	maintained	by
an	organization.	Each	distribution	has	features	that	make	it	unique.
Some	distributions	are	designed	for	general	use	whereas	others	are
designed	for	a	very	specific	use	case,	like	a	firewall	or	a	web	server.
Picking	the	distro	that	works	best	for	you	might	take	some	time.
The	website	distrowatch.com	can	aid	you	in	this	endeavor.
Additional	information	is	also	provided	later	in	this	chapter.

Accessing	a	Linux	System
Before	you	can	access	a	Linux	system,	you	need	to	have	one	installed.	Because
each	distro	has	a	different	installation	program,	the	steps	to	installing	a	distro	are
not	included	in	this	book.	However,	the	following	should	provide	you	with
enough	information	to	successfully	install	a	distro:

	First	consider	which	distro	you	want	to	use.	This	topic	is	explored	in	more
detail	later	in	this	chapter.
	Consider	installing	the	distro	on	a	Virtual	Machine	(VM).	By	using	a	VM,
you	can	install	multiple	distros	and	still	use	your	host	operating	system.
Several	VM	software	choices	are	available,	including	VirtualBox,	VMware,
and	Parallels	Desktop	(for	Mac	users).	Some	of	these	products	have	free
versions,	whereas	others	might	charge	a	license	fee.
	During	the	installation,	consider	accepting	the	defaults.	Typically,	the

http://distrowatch.com

defaults	provide	you	with	the	software	that	you	need	as	a	developer.	You	can
always	reinstall	the	distro	in	the	future	or	add	additional	software	using	the
tools	described	in	Chapter	6,	“System	Administration.”

Choosing	the	Right	Distribution
Often	an	organization	spends	a	great	deal	of	time	to	ensure	that	it	chooses	the
Linux	distribution	that	best	fits	the	company’s	needs.	Each	distro	is	different,
and	there	isn’t	a	“one	distro	fits	all	scenarios”	solution.	There	are	many	features
to	take	into	consideration,	including:

	Cost—Some	distros	are	entirely	free,	whereas	some	charge	for	support	and
access	to	updates.
	Features—Some	distros	provide	limited	access	to	software	based	on	the
objective	of	the	distro.	For	example,	a	security-hardened	distro	only
provides	software	that	has	met	rigorous	security	benchmarks.
	Function—Some	distros	are	specifically	tailored	to	meet	a	specific
function.	For	example,	a	distro	might	be	designed	to	host	database
applications.
	Support—The	organization	that	creates	the	distro	might	provide	support,	or
the	support	might	be	completely	community	sponsored.	For	most	distros
used	in	a	corporate	environment,	the	organization	that	creates	and	maintains
the	distro	provides	support.

Although	these	might	not	be	all	the	features	you	or	your	organization	consider
when	choosing	a	distro,	the	preceding	list	provides	you	with	an	idea	of	what
features	are	normally	considered.	Because	literally	hundreds	of	distros	exist,	I
recommend	exploring	http://distrowatch.com,	a	website	devoted	to	monitoring
these	distros,	their	features,	and	their	popularity.
Linux	distributions	are	generally	split	into	three	primary	families:2

	Debian—Known	to	be	a	favorite	of	the	hard-core	Linux	geeks,	Debian	was
one	of	the	first	Linux	distributions.	Popular	variations	of	Debian	include
Ubuntu	and	Mint.
	Red	Hat:—Designed	to	be	a	commercial	distro,	Red	Hat	Linux	was
introduced	shortly	after	Debian.	It	is	now	called	Red	Hat	Enterprise	Linux
(RHEL).	Because	it	is	a	commercial	distro,	payment	of	a	license	fee	(for
support	and	updates)	is	required	to	use	RHEL.	However,	several	free	Red
Hat–based	distros	exist,	including	Fedora	and	CENTOS.
	Slackware/SUSE—Slackware	was	the	original	“founding	father”	of	this

http://distrowatch.com

family	of	distros,	but	SUSE	is	the	most	popular	now.	SUSE	is	like	RHEL	in
that	it	is	designed	to	be	a	commercial	distro.	OpenSUSE	is	a	free	variation.

Regarding	the	information	provided	in	this	book,	in	most	cases	which	distro	you
use	does	not	matter.	However,	for	some	topics	the	distro	does	matter.	When	these
situations	arise,	I	provide	detailed	information	regarding	the	differences	between
the	distros.	Otherwise,	the	examples	make	use	of	different	distros	to	highlight
that	core	functionality	is	largely	the	same	across	Linux	distributions.3

Logging	In
Typically,	there	are	three	ways	to	log	in	to	a	Linux	system:

	Via	the	GUI—On	laptops,	desktops,	and	some	servers,	a	GUI-based	login
appears	by	default.
	Via	the	command	line—Administrators	commonly	do	not	install	the	GUI
software	on	servers	because	that	software	is	a	huge	hardware	hog	(CPU,
RAM,	and	so	on).	On	these	servers,	you	typically	see	a	command-line	login.
	Via	the	network—A	network-based	login	could	either	be	via	command	line
(very	common)	or	GUI	(not	as	common).	The	machine	that	you	log	into
must	have	special	software	installed	and	enabled	to	allow	this	sort	of	access.

Logging	In	via	the	GUI
The	software	that	allows	you	to	log	in	to	a	Linux	system	is	called	a	display
manager.	Several	different	display	manager	software	programs	are	available,
resulting	in	a	different	look	and	feel	for	the	login	screen.	In	some	ways,	this	is
dependent	on	the	distro,	because	the	organization	that	supports	the	distro	tends	to
favor	one	display	manager	or	another.	However,	an	administrator	can	choose	to
install	a	different	display	manager	or	configure	the	appearance	of	the	existing
display	manager.	See	Figure	2.1	for	an	illustration	of	display	managers.

Figure	2.1	The	default	display	manager	on	CentOS	(left)	and	MintOS	(right)

The	good	news	is	that	regardless	of	which	display	manager	you	use,	the	basic
operation	shouldn’t	change.	You	either	select	your	user	name	from	a	list	or	type
your	user	name	in	the	dialog	box	provided.	Then	you	are	prompted	for	your
password.	As	you	become	more	experienced,	try	exploring	other	options
provided	by	your	display	manager,	such	as	shutting	down	your	system.

Logging	In	via	the	Command	Line
In	most	cases,	you	only	log	in	via	the	command	line	when	the	server	you	are
working	on	has	no	GUI.	However,	if	your	system	has	a	GUI,	logging	in	via	a
command	line	is	still	possible	(even	if	you	are	working	on	a	virtual	machine).
Holding	down	the	Ctrl+Alt	buttons	on	your	keyboard	and	pressing	the	F2	key4
should	provide	a	command-line	login.	See	Figure	2.2	for	an	example	of	a
command-line	login	screen.

Figure	2.2	A	command-line	login	screen	for	CentOS

To	log	out	of	a	command-line	environment,	type	exit	and	then	press	the	Enter
key.	To	return	to	the	GUI	screen,	press	either	Ctrl+Alt+F1	or	Ctrl+Alt+F2.

Logging	In	via	the	Network
You	can	use	a	few	techniques	to	log	in	to	a	remote	system	via	the	network.	The
techniques	that	are	available	depend	on	two	factors:	what	sort	of	system	you	are
logging	in	from	and	whether	you	want	to	log	in	to	a	command-line	interface
(CLI)	or	GUI:

	Logging	in	to	a	Linux	system	from	a	Microsoft	Windows	system:	You
will	likely	need	some	additional	software	because	Microsoft	Windows
doesn’t	normally	provide	the	software	needed	to	log	in	to	a	Linux	system.	If
you	want	to	log	in	through	a	CLI,	install	a	Secure	Shell	(SSH)	client
program.	If	you	want	to	log	in	to	a	GUI,	install	a	virtual	network	computing
(VNC)	client	program.5

	Logging	in	to	a	Linux	system	from	a	Macintosh	system:	At	its	heart,	the
Macintosh	OS	is	Unix-based,	so	some	client	tools	should	already	be
available.	For	example,	you	should	be	able	to	open	a	terminal	window	and
use	the	ssh	command	to	log	in	to	a	Linux	system	via	the	CLI.	You	could	also
install	VNC	client	software	to	log	in	to	a	Linux	system	via	the	GUI.
	Logging	in	to	a	Linux	system	from	a	Linux	system:	You	should	be	able	to
use	the	ssh	command	to	log	in.	A	VNC	client	might	also	be	installed,	but	if
it	isn’t	then	contact	the	administrator.6

In	the	following	example,	the	“bob”	user	on	the	local	machine	logged	in	to	the
machine	named	“remote”	using	the	“student”	account	(Note:	Instead	of	a
machine	name,	an	IP	address	can	be	used):
bob@ubuntu:~$	ssh	student@remote
The	authenticity	of	host	'remote'	can't	be	established.
ECDSA	key	fingerprint	is
8a:d9:88:b0:e8:05:d6:2b:85:df:53:10:54:66:5f:0f.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	'remote'	(ECDSA)	to	the	list	of	known	hosts.
student@remote's	password:
Welcome	to	Ubuntu	14.04.2	LTS	(GNU/Linux	3.16.0-30-generic	x86_64)
student@remote:~$

Note	the	message	about	the	key	fingerprint.	This	is	used	in	the	future	to	verify
that	you	are	logging	in	to	the	correct	system	and	not	some	fake	machine	that	has
assumed	the	identity	of	the	remote	system.	This	question	only	appears	the	first
time	you	log	in	to	this	system.
To	return	to	the	local	system,	execute	the	exit	command.

Using	the	GUI
The	heading	“Using	the	GUI”	is	a	bit	misleading	because	there	isn’t	just	one
GUI.	With	Linux,	you	have	your	choice	of	several	different	desktops,	each	of
which	provides	the	same	essential	functions	in	different	ways	in	addition	to
having	unique	features.	A	small	sample	of	available	desktops	includes	the
following:

	GNOME
	KDE
	Unity+
	Cinnamon
	Xfce
	MATE

With	so	many	desktops	available,	you	might	ask	yourself	“Which	one	should	I
use?”	To	some	extent,	that	question	might	be	answered	for	you	when	you	choose
your	Linux	distribution.	Most	distros	have	a	“favored	default”	desktop	which
will	be	installed	and	used	automatically.	Although	other	desktops	might	be
available	for	the	distro,	you	typically	need	to	install	them	separately.
In	some	cases,	the	developers	of	the	distro	might	provide	you	the	option	of

choosing	your	desktop	before	you	install	the	distro.	For	example,	consider
Figure	2.3,	which	displays	the	download	links	for	the	Mint	distribution.

Figure	2.3	Mint	download	links

Figure	2.3	shows	the	different	install	options	provided,	primarily	divided	by	the
type	of	desktop.	Additionally,	a	user	with	administrative	access	can	install
multiple	desktops	on	a	single	system.	If	there	are	multiple	desktops,	you	could
choose	which	desktop	you	want	to	use	before	you	log	in,	as	demonstrated	in
Figure	2.4.

Figure	2.4	Desktop	choices	at	login

After	you	successfully	log	in,	a	desktop	appears.	The	overall	look	and	feel	of	the
desktop	varies.	However,	figuring	out	where	things	are	on	a	particular	desktop
shouldn’t	take	too	long.	For	example,	look	at	Figure	2.5,	which	displays	the
default	desktops	for	MintOS.

Figure	2.5	Cinnamon	versus	MATE	desktops

As	you	can	see,	the	Cinnamon	and	MATE	desktops	look	very	similar.	Both
provide	a	menu	(bottom	left)	that	enables	you	to	access	additional	programs	and
features.	Both	have	quick	launch	icons	and	both	provide	system	information
(bottom	right)	such	as	date/time.	The	choice	comes	down	to	exploring	the
desktop	that	you	are	using	rather	than	memorizing	where	features	reside	for	a
specific	desktop.

Basic	Command-Line	Execution
Although	the	GUI	interface	makes	using	Linux	easy,	most	users	and
administrators	use	the	command-line	environment	for	system	tasks.	If	you	log	in
to	a	system	via	the	GUI,	you	can	access	the	command-line	environment	by
opening	a	terminal	window.	The	terminal	window	is	a	GUI-based	program	that
launches	a	shell,	a	program	that	enables	you	to	enter	commands.	See	Figure	2.6
for	an	example	of	a	terminal	window.

Figure	2.6	Typical	terminal	window

The	most	common	shell	program	in	Linux	is	the	BASH7	shell.	This	book	shows
BASH	shell–based	examples.

Command-Line	Structure
A	command	has	three	components:

	Command	name—This	is	just	the	name	of	the	command.
	Option(s)—An	option	(also	referred	to	as	a	flag)	is	a	predefined	value	that
changes	the	behavior	of	the	command.	The	format	of	options	can	vary.	In
some	cases,	the	option	begins	with	a	single	hyphen	followed	by	a	single
character;	for	example:	ls	-a.	In	other	cases,	the	option	begins	with	two
hyphens	followed	by	a	word;	for	example:	ls	--all.	In	some	rare	cases,	the
option	is	just	a	single	character	with	no	hyphen.	The	format	depends	on	the
command	because	some	commands	support	the	single-hyphen	method
whereas	others	support	the	double-hyphen	method	(and	some	support	both
methods).
	Arguments—Arguments	are	used	to	provide	additional	information	to	the
command.	This	information	could	be	things	like	a	filename,	user	name,	or
host	name.

See	Figure	2.7	for	a	visual	example	of	the	command-line	components.

Figure	2.7	Components	of	a	command	line

Getting	Help
You	might	be	wondering	how	to	tell	what	options	and	arguments	a	command
will	accept.	Several	ways	exist	to	display	documentation	that	can	help	you	use	a
command.	One	method	you	could	use	is	the	help	command:
bo@mintos:~	>	help	alias
alias:	alias	[-p]	[name[=value]	...]
				Define	or	display	aliases.

				Without	arguments,	'alias'	prints	the	list	of	aliases	in	the
reusable
				form	'alias	NAME=VALUE'	on	standard	output.

				Otherwise,	an	alias	is	defined	for	each	NAME	whose	VALUE	is	given.
				A	trailing	space	in	VALUE	causes	the	next	word	to	be	checked	for
				alias	substitution	when	the	alias	is	expanded.

				Options:
						-p				Print	all	defined	aliases	in	a	reusable	format

				Exit	Status:
				alias	returns	true	unless	a	NAME	is	supplied	for	which	no	alias	has
				been	defined.

As	you	can	see	from	the	output	of	the	help	alias	command,	the	command
accepts	the	-p	option.	Because	the	option	is	enclosed	within	square	brackets,	the
option	is	not	required	for	the	command	to	run.	Additionally,	you	can	include	a
name	or	name=value	argument	with	the	command.	Again,	the	square	brackets
indicate	that	these	arguments	are	not	required	and	that	name	does	not	require	an
=value	argument.
One	drawback	of	the	help	command	is	that	is	only	works	on	built-in	shell
commands.	These	commands	are	part	of	the	BASH	shell,	not	a	separate
executable.8	The	majority	of	commands	that	you	will	execute	are	not	built-in

shell	commands,	so	the	help	command	won’t	be	that	helpful.
However,	almost	all	commands	have	documentation	available	via	a	command
called	the	man	command	(man	is	short	for	manual).	To	view	a	man	page	for	a
command,	execute	man	cmd,	replacing	cmd	with	the	command	name.	For	example,
to	view	the	man	page	for	the	cal	command,	execute	man	cal.

Note
You	will	eventually	discover	that	not	only	commands	have	man
pages.	Configuration	files	and	other	things	have	man	pages,	too.

The	man	page	for	a	given	command9	can	be	quite	large.	To	facilitate	the	process
of	reading	the	man	page,	you	can	use	several	keys	to	move	through	the
document:

	<spacebar>—Move	down	one	screen.
	<ENTER>—Move	down	one	line.
	b—Move	back	one	screen.
	/term—Search	for	term.
	h—Display	help	screen.
	q—Quit	displaying	man	page.

Note	that	these	are	just	a	few	of	the	commands	that	you	can	use	to	display	a	man
page.	The	h	key	provides	a	full	list	of	commands.

Helpful	Suggestion
When	you	are	first	learning	Linux,	you	might	find	using	man	pages
to	be	difficult.	The	format	and	syntax	of	the	output	can	be	a
challenge	to	follow.	I	highly	suggest	you	get	as	much	practice	as
you	can	reading	man	pages.	You	can	do	this	by	looking	at	the	man
page	for	each	new	command	that	you	learn.	Try	to	find	a	new
feature	or	option	for	the	new	command.	Test	your	ability	to	run	the
command	with	different	options	based	on	what	you	learn	from	the
man	page.	Learning	how	to	read	man	pages	just	comes	down	to
practice.

A	typical	man	page	has	several	different	sections.	The	output	begins	with	a	line
like	the	following:

CAL(1)															BSD	General	Commands
Manual																			CAL(1)

This	indicates	the	command	and	the	category.	This	chapter	covers	man	page
categories	a	bit	later.
The	next	section	provides	a	brief	description	of	the	command	like	the	following:
NAME
					cal,	ncal	—	displays	a	calendar	and	the	date	of	Easter

After	this	description,	you	see	a	summary	of	how	you	can	execute	the	command:
SYNOPSIS
					cal	[-3hjy]	[-A	number]	[-B	number]	[[month]	year]
					cal	[-3hj]	[-A	number]	[-B	number]	-m	month	[year]
					ncal	[-3bhjJpwySM]	[-A	number]	[-B	number]	[-s	country_code]
[[month]
									year]
					ncal	[-3bhJeoSM]	[-A	number]	[-B	number]	[year]
					ncal	[-CN]	[-H	yyyy-mm-dd]	[-d	yyyy-mm]

Recall	that	square	brackets	indicate	something	that	isn’t	required	but	which	is	a
valid	option.	For	example,	you	could	just	run	the	cal	command	with	no	options
or	arguments:
bo@mintos:~	>	cal
					July	2016
Su	Mo	Tu	We	Th	Fr	Sa
																1		2
3		4		5		6		7		8			9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31

You	could	also	use	an	option,	such	as	-3:
bo@mintos:~	>	cal	-3
					June	2016													July	2016												August	2016
Su	Mo	Tu	We	Th	Fr	Sa		Su	Mo	Tu	We	Th	Fr	Sa		Su	Mo	Tu	We	Th	Fr	Sa
										1		2		3		4																		1		2						1		2		3		4		5		6
	5		6		7		8		9	10	11			3		4		5		6		7		8		9			7		8		9	10	11	12	13
12	13	14	15	16	17	18		10	11	12	13	14	15	16		14	15	16	17	18	19	20
19	20	21	22	23	24	25		17	18	19	20	21	22	23		21	22	23	24	25	26	27
26	27	28	29	30								24	25	26	27	28	29	30		28	29	30	31
																						31

However,	only	options	specified	in	the	Synopsis	are	allowed:
bo@mintos:~	>	cal	-2
cal:	invalid	option	--	'2'

Usage:	cal	[general	options]	[-hjy]	[[month]	year]
							cal	[general	options]	[-hj]	[-m	month]	[year]
							ncal	[general	options]	[-bhJjpwySM]	[-s	country_code]	[[month]
year]
							ncal	[general	options]	[-bhJeoSM]	[year]
General	options:	[-NC31]	[-A	months]	[-B	months]
For	debug	the	highlighting:	[-H	yyyy-mm-dd]	[-d	yyyy-mm]

Additionally,	you	can	specify	a	month	and	year:
bo@mintos:~	>	cal	3	1968
					March	1968
Su	Mo	Tu	We	Th	Fr	Sa
																1		2
	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31

The	next	section	provides	a	greater	level	of	detail	regarding	how	the	command
and	its	options	work:
DESCRIPTION
					The	cal	utility	displays	a	simple	calendar	in	traditional	format
and
					ncal	offers	an	alternative	layout,	more	options	and	the	date	of
Easter.
					The	new	format	is	a	little	cramped	but	it	makes	a	year	fit	on	a
25x80	terminal.
					If	arguments	are	not	specified,	the	current	month	is	displayed.
					The	options	are	as	follows:
					-h						Turns	off	highlighting	of	today.

Some	commands	also	provide	a	See	Also	section	that	includes	a	list	of	related
commands:
SEE	ALSO
					calendar(3),	strftime(3)

Depending	on	the	man	page	that	you	are	viewing,	you	might	see	additional
sections.	However,	the	critical	ones	have	been	described	here.

Man	Page	Categories
Many	different	types	of	man	pages	exist.	For	example,	there	are	man	pages	for
commands	that	regular	users	execute	and	man	pages	for	commands	that
administrators	execute.	There	are	also	man	pages	for	libraries	(programs	used	by
other	programs)	and	system	configuration	files.	These	different	types	of	man
pages	are	broken	into	categories,10	as	shown	in	the	man	page	for	the	man

command:
bo@mintos:~	>	man	man
{output	omitted}
							The	table	below	shows	the	section	numbers	of	the	manual	followed
by
							the	types	of	pages	they	contain.
							1			Executable	programs	or	shell	commands
							2			System	calls	(functions	provided	by	the	kernel)
							3			Library	calls	(functions	within	program	libraries)
							4			Special	files	(usually	found	in	/dev)
							5			File	formats	and	conventions	eg	/etc/passwd
							6			Games
							7			Miscellaneous		(including		macro		packages		and		conventions),
											e.g.	man(7),	groff(7)
							8			System	administration	commands	(usually	only	for	root)
							9			Kernel	routines	[Non	standard]

In	most	cases,	you	don’t	have	to	worry	much	about	these	categories.	When	you
execute	the	man	command,	it	first	searches	category	1	for	the	man	page.	If	it
doesn’t	find	it,	it	then	searches	the	next	category.11	Eventually	it	finds	and
displays	the	man	page	or	displays	an	error	if	it	can’t	find	the	man	page	in	any
category:
bo@mintos:~	>	man	nope
No	manual	entry	for	nope

In	some	cases	you	must	specify	the	category.	For	example,	there	is	a	user
command	named	passwd	(category	1)	and	a	file	format	named	passwd	(category
5).	If	you	execute	the	man	passwd	command,	the	passwd	command	man	page
displays.	To	view	the	man	page	for	the	passwd	file,	you	must	execute	the	man	5
passwd	command.

Tip
Most	distributions	have	a	GUI-based	man	page	viewer	that	you
might	find	easier	to	use.	Just	type	xman	to	launch	it.

Info	Documentation
In	addition	to	man	pages,	you	might	find	info	documentation	helpful.	Not	all
commands	and	files	have	info	documentation,	but	for	those	that	do,	using	it	can
be	easier	than	using	man	pages.	To	use	an	info	document,	execute	the	info
command	followed	by	the	command	to	display;	for	example,	info	ls.
The	documentation	found	in	info	pages	tends	to	be	more	verbose	than	in	man

pages.	The	sections	of	info	pages	are	also	organized	differently	than	man	pages.
Instead	of	one	long	document	of	text,	info	pages	appear	in	hyperlinked	sections.
For	example,	if	you	scroll	down	the	document	for	the	ls	command	(use	the
down-arrow	key	on	your	keyboard),	you	see	this:
*	Menu:
*	Which	files	are	listed::
*	What	information	is	listed::
*	Sorting	the	output::
*	Details	about	version	sort::
*	General	output	formatting::
*	Formatting	file	timestamps::
*	Formatting	the	file	names::

This	is	a	menu	of	subcategories	you	can	jump	to	by	placing	your	cursor	on	a
menu	item	and	pressing	the	Enter	key.	After	you’re	in	a	subcategory,	type	the
letter	u	to	go	back	up	one	level.	To	see	additional	commands,	press	the	H	or	?
key.

Note
In	the	help	section,	press	l	to	exit	help	and	return	to	the	info	page.
Use	q	to	quit	the	info	document	and	return	to	the	command	line.

Tip
You	can	learn	a	lot	from	info	documentation.	Try	executing	the	info
command	with	no	arguments.	Then	scroll	down	to	the	menu	section,
pick	a	category,	press	the	Enter	key,	and	start	exploring.

Additional	Documentation
In	addition	to	man	pages	and	info	documentation,	you	might	find	the	files	in	the
/usr/share/doc	directory	to	be	useful.	Chapter	3,	“The	Filesystem,”	covers	how	to
navigate	the	filesystem,	which	will	allow	you	to	access	the	documentation	in	the
/usr/share/doc	directory.	For	now,	just	realize	that	additional	documentation
exists	in	this	directory	(typically	it	is	geared	more	toward	administrators,	but
some	end	user	documentation	exists	in	this	directory,	too).

Linux	Humor
Ever	wonder	whether	the	computer	is	actually	watching	you	as	you
are	working?	Type	the	xeyes	command	in	a	terminal	window	(this

only	works	in	a	GUI	environment)	to	get	the	answer	to	this
question.

Summary
In	this	chapter	you	learned	how	to	log	in	to	an	existing	Linux	distribution	via	the
command	line,	a	graphical	user	interface,	or	across	the	network.	You	also
learned	about	different	desktops,	which	provide	the	look	and	feel	of	a	GUI.
Lastly,	you	learned	how	to	get	additional	help	using	man	pages	and	info
documentation.

2	Other	families	of	distros	exist,	but	these	three	are	by	far	the	most	often	used.
If	you	want	to	see	a	“family	tree”	(somewhat	overwhelming),	I	suggest
viewing	the	following	graphic:
https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

3	As	a	developer,	you	shouldn’t	get	too	hung	up	on	which	distro	to	use.	This	is
often	the	choice	of	the	company	system	administrator.	Knowing	the
differences	and	which	ones	can	affect	a	developer	is	what	you	should	focus	on
(and	that	is	the	approach	for	this	book).

4	If	you	are	working	in	a	virtual	machine,	this	keystroke	combination	might
vary.

5	Note	that	normally	VNC	requires	installing	a	VNC	server	on	the	Linux	box
and	configuring	it.

6	Unless	you	have	access	to	root	privileges.	See	Chapter	6	for	details	regarding
software.

7	BASH	stands	for	Bourne	Again	SHell.	It	is	based	on	an	older	Unix	shell
named	the	Bourne	Shell.

8	Executable	is	a	term	that	essentially	means	program.	If	a	file	can	be	run	like	a
program,	it	should	have	the	execute	permission	set.

9	Not	only	commands	have	man	pages.	Configuration	files	and	other	items
have	man	pages,	too.

10	I	call	them	categories,	but	the	man	page	calls	them	sections.	I	think	this	term
is	confusing	because	sections	is	also	used	to	refer	to	different	pages	within	a
single	man	page.	So,	I	call	these	collections	of	man	pages	categories	to	avoid
confusion.

11	The	following	line	in	the	man	configuration	file	determines	the	order	in
which	man	page	sections	are	searched:

https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

SECTION	1	1p	8	2	3	3p	4	5	6	7	9	0p	n	l	p	o	1x	2x	3x	4x	5x	6x	7x	8x

3.	The	Filesystem
Regardless	of	what	you	plan	to	use	the	Linux	distribution	for,	you	need	to	know
how	to	navigate	the	filesystem.	The	filesystem	is	how	the	files	are	structurally
organized	into	directories.	Understanding	this	structure	and	how	to	manage	the
files	is	critical	to	using	Linux.

Understanding	the	Filesystem
Typically,	new	Linux	users	have	some	experience	in	another	operating	system,
such	as	Microsoft	Windows.	One	of	the	challenges	of	using	the	Linux	filesystem
is	understanding	that	the	layout	is	likely	to	be	different	than	what	you	are	used
to.
For	example,	in	Microsoft	Windows,	physical	drives	are	assigned	letters,	such	as
C:	or	F:.	They	may	be	visible	under	the	My	Computer	icon.	Linux	doesn’t	use
drive	letters	or	a	My	Computer	icon.	Instead,	all	drives,	including	network	drives
and	removable	media,	are	located	under	the	root	directory.
The	root	directory	is	symbolized	by	the	/	character.	This	character	is	also	used	to
separate	directory	and	filenames	in	a	path.	Think	of	the	path	as	directions	to	get
to	a	file	or	directory.	For	example,	the	path	/home/bob/sample.txt	refers	to	a	file
named	sample.txt	that	is	in	the	bob	directory.	The	bob	directory	is	under	the
home	directory,	which	in	turn	is	under	the	root	directory.	See	Figure	3.1	for	a
small	example	of	a	Linux	filesystem.

Figure	3.1	Part	of	a	Linux	filesystem

Learning	the	Most	Used	Directories
Thousands	of	directories	are	in	a	typical	Linux	filesystem.	You	should	not	worry
about	learning	about	all	of	these	directories	when	you	first	start	learning	Linux,
but	some	are	important	enough	to	learn	now:

	/home—A	user’s	home	directory;	each	user	has	a	directory	under	the	/home
directory	where	she	can	store	her	files.	This	is	one	of	the	few	places	where
the	user	should	always	have	the	right	to	create	and	manage	files.
	/root—Root	user’s	home	directory;	the	system	administrator	account	on	the
system	is	called	the	root	user.	The	home	directory	for	the	root	user	isn’t
under	the	/home	directory;	instead	it	is	under	the	/root	directory.1

	/bin—Executables	(programs);	most	of	the	commands	you	execute	as	a
regular	user	are	placed	here	or	in	the	/usr/bin	directory.
	/usr/bin—Executables	(programs);	most	of	the	commands	you	execute	as	a
regular	user	are	placed	here	or	in	the	/bin	directory.
	/sbin—Executables	(programs)	for	system	administrators;	most	of	the
commands	you	execute	as	a	system	administrator	are	placed	here	or	in	the
/usr/sbin	directory.
	/usr/sbin—Executables	(programs)	for	system	administrators;	most	of	the
commands	you	execute	as	a	system	administrators	are	placed	here	or	in	the
/sbin	directory.
	/media—Removable	media	(could	also	be	/run/media);	this	is	where	you
find	the	files	for	removable	devices,	such	as	CD-ROMs	and	USB	drives.
	/tmp—Temporary	files;	typically,	programs	store	files	in	this	directory
rather	than	placing	files	in	a	user’s	home	directory.

Naming	Considerations
When	you	create	a	file	or	directory,	you	should	take	into	consideration	the
following	guidelines:

	Files	and	directories	have	same	name	rules.
	Names	are	case	sensitive.	This	means	that	a	file	named	Data.txt	is	not	the
same	as	a	file	named	data.txt.
	Special	characters	are	permitted.	However,	you	should	avoid	using
whitespace	(space	and	tab	characters)	and	certain	special	characters	called
metacharacters	(*,	?,	[,],	!,	$,	&,	and	so	on).	Metacharacters	are	special
characters	to	BASH,	and	they	can	create	problems	when	used	in	a	file	or

directory	name.
	The	/	character	is	used	to	separate	files	and	directory	names:	/usr/share/doc.
As	a	result,	you	cannot	use	the	/	character	in	file	or	directory	names.
	Extensions	(.txt,	.cvs,	and	so	on)	are	permitted	but	normally	have	no	special
meaning	to	BASH.	In	some	rare	cases	they	may	be	required	for	a	specific
command,	but	Linux	and	the	BASH	shell	typically	don’t	require	specific
extensions	for	files.	However,	extensions	are	useful	for	users	because
understanding	the	purpose	of	a	file	is	easier	if	the	extension	is	provided
(some	GUI	interfaces	also	make	use	of	extensions	to	determine	which	GUI-
based	program	to	launch).
	There	are	some	special	predefined	directory	names:
	~	—Represents	the	current	user’s	home	directory
	.	—Represents	the	current	working	directory	(the	directory	you	are
working	in	when	using	a	command-line	shell)
	..	—Represents	one	level	above	the	current	working	directory

Navigating	the	Filesystem
When	using	the	command-line	environment,	you	often	need	to	refer	to	a
directory	structure	to	access	a	file	or	subdirectory.	For	example,	you	may	want	to
view	a	file	in	a	specific	directory.
When	you	first	open	a	shell,	you	are	automatically	placed	in	your	home
directory.	The	directory	you	are	in	is	referred	to	as	your	working	directory	or
current	directory.	A	common	task	is	to	switch	the	working	directory	to	another
directory,	a	process	called	change	directory.
A	path	or	pathname	is	how	you	refer	to	a	file	or	directory	in	the	directory
structure.	The	two	types	of	pathnames	are

	Absolute—A	path	that	always	starts	from	the	root	directory;	for	example,
/home/bob/sample.txt
	Relative—A	path	that	starts	from	the	current	directory;	for	example,	if	you
are	in	the	/home	directory	and	want	to	access	the	sample.txt	file	that	is	under
the	bob	directory	(which	is	under	the	/home	directory),	you	use
bob/sample.txt.

Note
Absolute	paths	always	start	with	a	/	character	but	relative	paths
never	start	with	a	/	character.

To	help	understand	the	difference	between	an	absolute	and	relative	path,
consider	Figure	3.2.

Figure	3.2	Using	a	pathname,	example	#1

In	this	example	you	are	in	the	/home/julia	directory	and	want	to	switch	to	the
/usr/bin	directory.	To	switch	directories,	you	can	use	the	cd	command,	and	to
view	the	current	directory	you	can	use	the	pwd1	directory.	The	following	example
demonstrates	using	an	absolute	path:
julia@mintos:~	>	pwd
/home/julia
julia@mintos:~	>	cd	/usr/bin
julia@mintos:/usr/bin	>	pwd
/usr/bin

Note	that	the	prompt	(julia@mintos:/usr/bin)	indicates	the	current	directory,	so
the	pwd	command	isn’t	always	necessary.	This	isn’t	always	the	case	because	the
prompt	is	customizable.
The	next	example	demonstrates	using	a	relative	path	to	move	from	the
/home/julia	directory	to	the	/usr/bin	directory.	Note	that	the	cd	command,
when	given	no	arguments,	returns	you	to	your	home	directory:
julia@mintos:/usr/bin	>	cd
julia@mintos:~	>	pwd
/home/julia
julia@mintos:~	>	cd	../../usr/bin
julia@mintos:/usr/bin	>	pwd
/usr/bin

Why	use	..?	Because	a	relative	path	requires	giving	directions	from	the	current
directory,	and	you	have	to	tell	the	cd	command	to	“go	up”	two	levels	before
going	down	to	the	usr	and	bin	directories.
Clearly,	in	this	case,	the	absolute	path	was	easier,	but	that	isn’t	always	the	case.
For	example,	now	consider	Figure	3.3.

Figure	3.3	Using	a	pathname,	example	#2

Now	you	want	to	move	from	the	/home/julia	directory	to	the	/home/sarah
directory.	The	first	example	uses	an	absolute	path:
julia@mintos:/usr/bin	>	cd
julia@mintos:~	>	cd	/home/sarah
julia@mintos:/home/sarah	>	pwd
/home/sarah

Compare	the	previous	example	with	the	following:
julia@mintos:/home/sarah	>	cd
julia@mintos:~	>	cd	../sarah
julia@mintos:/home/sarah	>	pwd
/home/sarah

The	relative	method	is	easier	to	use	in	this	case.	Consider	if	you	were	20	levels
deep	in	the	directory	structure	and	you	just	wanted	to	move	up	one	level	and
down	to	another	subdirectory.	Using	an	absolute	path	would	result	in	a	lot	of
typing	whereas	a	relative	path	would	be	much	less	work.	The	lesson	here	is	to
know	both	methods	because	one	is	going	to	be	easier	than	the	other	most	of	the
time.

Managing	the	Filesystem
Now	that	you	know	how	to	move	from	one	directory	to	another,	you	will	want	to
see	what	is	inside	the	directories.	The	ls	command	lists	files	in	a	directory:
julia@mintos:~	>	cd	/etc/sound/events
julia@mintos:/etc/sound/events	>	ls
mate-battstat_applet.soundlist

By	default	the	ls	command	displays	all	files	in	the	current	directory	except
hidden	files.	A	hidden	file	has	a	.	character	at	the	beginning	of	the	filename.	To
see	all	files,	including	hidden	files,	use	the	-a	option	to	the	ls	command:
julia@mintos:/etc/sound/events	>	ls	-a
.	..	mate-battstat_applet.soundlist

Recall	that	.	represents	the	current	directory	and	..	represents	the	directory
above	the	current	directories.	You	will	always	see	these	two	hidden	files3
regardless	of	which	directory	you	are	in.
To	understand	why	some	files	are	hidden,	look	at	the	files	in	a	typical	user’s
home	directory:
julia@mintos:/etc/sound/events	>	ls	-a	~
.			.bash_history		.bashrc		.config					.gimp-2.8		.local				.profile
..		.bash_logout			.cache			.face.icon		.kde							.mozilla

Each	of	the	hidden	files	(in	some	cases	they	are	directories)	that	you	see	in	this
output	contain	information	that	modifies	the	user’s	environment.	For	example,
.bashrc	and	.profile	modify	how	the	BASH	shell	works	for	the	current	user.
The	.mozilla	directory	contains	configuration	settings	for	Firefox,	a	web
browser	provided	by	the	Mozilla	Foundation.
How	could	you	tell	if	.bashrc	was	a	file	or	.mozilla	was	a	directory?	Use	the	-l
option:
julia@mintos:/etc/sound/events	>	ls	-a	-l	~
total	48
drwxr-xr-x	8	julia	julia	4096	Jul	14	17:26	.
drwxr-xr-x	5	root		root		4096	Jul	14	17:26	..
-rw-------	1	julia	julia			72	Jul	14	17:26	.bash_history
-rw-r--r--	1	julia	julia		220	Apr		8		2014	.bash_logout
-rw-r--r--	1	julia	julia	1452	Jan		5		2016	.bashrc
drwx------	3	julia	julia	4096	Jul	14	17:12	.cache
drwxr-xr-x	6	julia	julia	4096	Jun		5	15:59	.config
lrwxrwxrwx	1	julia	julia				5	Jun		5	14:40	.face.icon	->	.face
drwxr-xr-x	2	julia	julia	4096	Jan		5		2016	.gimp-2.8
drwxr-xr-x	3	julia	julia	4096	Jan		5		2016	.kde
drwxr-xr-x	3	julia	julia	4096	Jan		5		2016	.local

drwxr-xr-x	3	julia	julia	4096	Jan		5		2016	.mozilla
-rw-r--r--	1	julia	julia		675	Apr		8		2014	.profile

When	you	use	the	-l	option,	each	line	describes	detailed	information	for	a	file.
See	Figure	3.4	for	a	demonstration	of	the	details	that	are	provided.

Figure	3.4	Details	of	the	ls	-l	command

The	details	of	the	information	provided	by	the	ls	-l	command:
	File	type—d	means	this	is	a	directory	whereas	-	means	it	is	a	plain	file.
There	are	additional	file	types,	but	these	are	the	primary	two	you	should
know.4

	Permissions—These	are	used	to	allow	or	disallow	access	to	the	file.
Chapter	4,	“Essential	Commands”	covers	permissions.
	Hard	link	count—A	more	advanced	topic	normally	reserved	for	system
administrators,	this	is	a	file	that	is	hard	linked	and	shares	the	same	data
block	space	with	another	filename.
	User	owner—The	user	who	owns	the	file	has	special	access	to	the	file.	For
example,	only	the	user	owner	(and	the	root	user)	can	change	the	permissions
of	a	file.
	Group	owner—Group	owners	have	special	access	to	the	file	via
permissions.
	File	size—The	size	of	the	file	in	bytes.5

	Modification	timestamp—The	date	and	time	the	file	was	last	modified.6

	Filename—The	name	of	the	file.

Note
You	can	use	many	other	options	with	the	ls	command.	Recall	the
suggestion	from	Chapter	2,	“Introduction	to	Linux,”	regarding
viewing	the	man	page	for	each	new	command	that	you	learn.	This
would	be	an	excellent	time	to	make	use	of	that	suggestion!

Managing	Directories
To	create	a	new	directory,	use	the	mkdir	command:
julia@mintos:~	>	ls
julia@mintos:~	>	mkdir	data
julia@mintos:~	>	ls	-l
total	4
drwxrwxr-x	2	julia	julia	4096	Jul	15	09:34	data

Note	a	situation	in	which	this	could	fail:
julia@mintos:~	>	ls
data
julia@mintos:~	>	mkdir	test/samples
mkdir:	cannot	create	directory	'test/samples':	No	such	file	or	directory

This	failure	occurs	because	to	make	the	samples	directory	in	the	test	directory,
the	test	directory	must	exist.	To	make	both	the	samples	and	test	directory,	use	the
-p	option	to	the	mkdir	command:
julia@mintos:~	>	ls
data
julia@mintos:~	>	mkdir	-p	test/samples
julia@mintos:~	>	ls
data	test
julia@mintos:~	>	ls	test
samples

To	delete	a	directory	that	is	empty,	use	the	rmdir	command:
julia@mintos:~	>	ls
data	test
julia@mintos:~	>	rmdir	data
julia@mintos:~	>	ls
test

The	rmdir	command	only	works	on	empty	directories:
julia@mintos:~	>	ls
test
julia@mintos:~	>	rmdir	test
rmdir:	failed	to	remove	'test':	Directory	not	empty

To	delete	an	entire	directory	structure,	including	all	the	files	and	subdirectories,
use	the	rm	command	with	the	-r	option:
julia@mintos:~	>	ls
test
julia@mintos:~	>	rm	-r	test

julia@mintos:~	>	ls
julia@mintos:~	>

Note
The	rm	command	is	normally	used	to	delete	files.	With	the	-r
option,	it	can	delete	directories	and	files.

Be	careful	when	using	the	rm	-r	command.	You	could	accidentally	delete
files	that	you	really	need	to	keep.	Consider	using	the	-i	option	when
executing	the	rm	-r	command	because	this	enables	you	to	pick	which	files
to	delete.	When	prompted,	answer	y	for	yes	and	n	for	no:7

julia@mintos:~	>	rm	-ri	events
rm:	descend	into	directory	'events'?	y
rm:	remove	regular	file	'events/mate-battstat_applet.soundlist'?	y
rm:	remove	directory	'events'?	n

Managing	Files
To	copy	a	file,	use	the	cp	command.	You	should	have	two	arguments:	what
file	to	copy	and	where	to	copy	it:
julia@mintos:~	>	ls
events
julia@mintos:~	>	cp	/etc/hosts.
julia@mintos:~	>	ls
events	hosts

Recall	that	.	represents	the	current	directory.
Be	careful	when	using	the	cp	command	because	you	can	accidentally
overwrite	an	existing	file.	This	happens	when	the	destination	(where	to
copy	the	file)	contains	a	file	with	the	exact	same	name	as	an	existing	file:
ulia@mintos:~	>	ls	-l	hosts
-rw-r--r--	1	julia	julia	221	Jul	15	10:47	hosts
julia@mintos:~	>	cp	/etc/passwd	hosts
julia@mintos:~	>	ls	-l	hosts
-rw-r--r--	1	julia	julia	2074	Jul	15	10:52	hosts

You	can	tell	that	the	original	file	was	overwritten	because	the	file	size
changed	(221	bytes	to	2074	bytes)	and	the	modification	timestamp
changed.	To	avoid	overwriting	an	existing	file,	use	the	-i	option:
julia@mintos:~	>	ls	-l	hosts
-rw-r--r--	1	julia	julia	221	Jul	15	10:56	hosts

julia@mintos:~	>	cp	-i	/etc/passwd	hosts
cp:	overwrite	'hosts'?	n
julia@mintos:~	>	ls	-l	hosts
-rw-r--r--	1	julia	julia	221	Jul	15	10:56	hosts

The	-i	option	stands	for	“interactive”	mode	and	prompts	you	if	the	cp
command	will	end	up	overwriting	an	existing	file.
Some	additional	useful	commands	to	manage	files	include	the	following:

	mv—Used	to	move	files	or	directories
	rm—Used	to	delete	files
	touch—Creates	an	empty	file	or	updates	the	modification	timestamp
of	an	existing	file

Wildcards
Suppose	you	want	to	copy	all	the	files	that	end	in	.conf	from	the	/etc
directory	to	a	directory	called	config	in	your	home	directory.	You	look	in
the	/etc	directory	and	realize	that	there	are	about	20	of	these	files.	You
don’t	want	to	have	to	type	in	the	name	of	each	file.	This	is	a	case	in	which
you	want	to	use	wildcards.
With	wildcards,	you	can	make	use	of	special	characters	to	match	file	or
directory	names.	For	example,	you	can	list	all	the	files	in	the	/etc	directory
that	end	in	.conf	by	executing	the	following	command:8

julia@mintos:~	>	ls	-d	/etc/*.conf
/etc/adduser.conf										/etc/insserv.conf					/etc/pam.conf
/etc/apg.conf														/etc/inxi.conf								/etc/pnm2ppa.conf
/etc/avserver.conf									/etc/kernel-img.conf		/etc/request-
key.conf
/etc/blkid.conf												/etc/kerneloops.conf		/etc/resolv.conf
/etc/brltty.conf											/etc/ld.so.conf							/etc/rsyslog.conf
/etc/ca-
certificates.conf		/etc/libao.conf							/etc/sensors3.conf
/etc/casper.conf											/etc/libaudit.conf				/etc/sysctl.conf
/etc/colord.conf											/etc/logrotate.conf			/etc/ts.conf
/etc/debconf.conf										/etc/ltrace.conf						/etc/ucf.conf
/etc/deluser.conf										/etc/mke2fs.conf						/etc/uniconf.conf
/etc/fuse.conf													/etc/mtools.conf						/etc/updatedb.conf
/etc/gai.conf														/etc/netscsid.conf				/etc/usb_modeswitch.conf
/etc/hdparm.conf											/etc/nsswitch.conf				/etc/wodim.conf
/etc/host.conf													/etc/ntp.conf									/etc/wvdial.conf

The	*	character	represents	“zero	or	more	characters	in	a	filename.”	So,	you
are	asking	to	see	files	in	the	/etc	directory	that	begin	with	“zero	or	more
characters,	followed	by	.conf.”	Using	the	*	character,	you	can	copy	these

files	into	a	directory	under	your	home	directory	(don’t	worry	if	you	get	an
error	message	for	some	of	the	files):1

julia@mintos:~	>	mkdir	config
julia@mintos:~	>	cp	/etc/*.conf	config
cp:	cannot	open	'/etc/fuse.conf'	for	reading:	Permission	denied
cp:	cannot	open	'/etc/wvdial.conf'	for	reading:	Permission	denied
julia@mintos:~	>	ls	config
adduser.conf										gai.conf									logrotate.conf				resolv.conf
apg.conf														hdparm.conf						ltrace.conf							rsyslog.conf
avserver.conf									host.conf								mke2fs.conf							sensors3.conf
blkid.conf												insserv.conf					mtools.conf							sysctl.conf
brltty.conf											inxi.conf								netscsid.conf					ts.conf
ca-certificates.conf		kernel-img.conf		nsswitch.conf					ucf.conf
casper.conf											kerneloops.conf		ntp.conf										uniconf.conf
colord.conf											ld.so.conf							pam.conf										updatedb.conf
debconf.conf										libao.conf							pnm2ppa.conf						usb_modeswitch.conf
deluser.conf										libaudit.conf				request-
key.conf		wodim.conf

Use	the	?	character	to	represent	a	single	character.	So,	to	display	any	files
in	the	/etc	directory	that	have	filenames	that	are	exactly	four	characters	in
length,	execute	the	following	command:
julia@mintos:~	>	ls	-d	/etc/????
/etc/acpi		/etc/dkms		/etc/init		/etc/mono		/etc/perl		/etc/udev
/etc/cups		/etc/dpkg		/etc/kde4		/etc/mtab		/etc/sgml		/etc/xrdb
/etc/dhcp		/etc/gimp		/etc/ldap		/etc/newt		/etc/skel

The	?	character	will	match	any	single	character.	If	you	want	to	match	a
specific	character,	you	can	use	a	set	of	square	brackets,	[].	For	example,	to
match	a	file	in	the	/etc	directory	that	begins	with	an	a,	b,	or	c	character,
execute	the	following	command:
julia@mintos:~	>	ls	-d	/etc/[abc]*
/etc/acpi										/etc/avserver.conf											/etc/chatscripts
/etc/adduser.conf		/etc/bash.bashrc													/etc/chromium-
browser
/etc/adjtime							/etc/bash_completion									/etc/colord.conf
/etc/akonadi							/etc/bash_completion.d							/etc/compizconfig
/etc/alternatives		/etc/bindresvport.blacklist		/etc/console
/etc/anacrontab				/etc/blkid.conf														/etc/console-setup
/etc/apg.conf						/etc/blkid.tab															/etc/cracklib
/etc/apm											/etc/bluetooth															/etc/cron.d
/etc/apparmor						/etc/brlapi.key														/etc/cron.daily
/etc/apparmor.d				/etc/brltty																		/etc/cron.hourly
/etc/apport								/etc/brltty.conf													/etc/cron.monthly
/etc/apt											/etc/ca-certificates									/etc/crontab
/etc/at.deny							/etc/ca-certificates.conf				/etc/cron.weekly
/etc/at-spi2							/etc/calendar																/etc/cups

/etc/avahi									/etc/casper.conf													/etc/cupshelpers

Using	a	Range	in	[]
Note	that	[abc]	is	the	same	as	[a-c].	Using	a	-	enables	you	to
specify	a	range	of	permitted	characters.	Just	be	sure	it	is	a
valid	range	according	to	the	ASCII	text	table.	You	can	view
this	table	by	executing	the	command	man	ascii.

The	wildcard	characters	are	not	specific	to	any	particular	command.
Instead,	they	are	part	of	the	BASH	shell.	This	is	important	to	note	because
it	means	you	can	use	wildcard	characters	with	any	command.	The	BASH
shell	interprets	the	wildcard	characters	before	the	command	runs.
In	fact,	the	command	doesn’t	even	know	that	wildcard	characters	are	being
used.	For	example,	consider	the	following	command:
julia@mintos:~	>	ls	-d	/etc/[xyz]*
/etc/xdg		/etc/xemacs21		/etc/xml		/etc/xrdb		/etc/zsh

The	argument	/etc/[xyz]*	isn’t	passed	into	the	ls	command.	BASH	first
converts	the	wildcard	pattern	into	the	filename(s)	that	match.	So,	if	you
execute	the	ls	-d	/etc/[xyz]*	command,	the	command	that	is	really
executed	is	the	ls	-d	/etc/xdg	/etc/xemacs21	/etc/xml	/etc/xrdb
/etc/zsh	command.
This	is	also	why	when	you	use	wildcards	with	the	ls	command,	you
should	use	the	-d	option.	When	the	ls	command	runs	and	is	passed	a
directory	name	as	an	argument,	the	contents	of	the	directory	are	listed:
julia@mintos:~	>	ls	/etc/xdg
autostart		menus		Trolltech.conf		user-dirs.conf		user-
dirs.defaults

When	you	use	wildcard	characters,	some	of	the	matching	files	could
actually	be	directories.	This	produces	output	that	you	likely	don’t	want	to
receive:
julia@mintos:~	>	ls	/etc/[xyz]*
/etc/zsh

/etc/xdg:
autostart		menus		Trolltech.conf		user-dirs.conf		user-
dirs.defaults

/etc/xemacs21:

site-start.d

/etc/xml:
catalog										docbook-xml.xml.old		rarian-compat.xml		xml-
core.xml
catalog.old						docbook-xsl.xml						sgml-data.xml						xml-
core.xml.old
docbook-xml.xml		docbook-xsl.xml.old		sgml-data.xml.old

/etc/xrdb:
Editres.ad	Emacs.ad	General.ad	Motif.ad	Tk.ad	Xaw.ad

To	avoid	having	the	contents	of	all	of	these	directories,	use	the	-d	option	to
the	ls	command.	The	-d	option	tells	the	ls	command	“if	any	argument
happens	to	be	a	directory,	don’t	display	what	is	in	that	directory,	just	show
the	directory	name.”

Redirection
Suppose	you	run	a	command	and	you	decide	that	you	want	to	store	the
output	of	the	command	into	a	file	for	future	use.	In	a	situation	like	this,
you	can	use	a	process	called	redirection.	The	idea	is	to	redirect	the	output
of	a	command	into	a	file	or	another	process.	You	can	also	redirect	the	input
to	a	command	from	a	file.
Each	command	has	three	data	streams:

	Standard	input	(stdin)—The	data	that	is	sent	into	the	command.	This
is	not	an	argument	but	rather	additional	information	that	is	being	sent
into	a	command.	Typically,	this	data	comes	from	a	user	who	is
executing	the	command.	The	user	provides	this	data	via	the	keyboard.
This	input	could	be	redirected	from	a	file	or	another	process.
	Standard	output	(stdout)—The	data	that	is	sent	from	the	command
when	all	goes	well.	Typically,	this	appears	on	the	screen,	but	it	can	be
sent	to	a	file	or	to	another	command.
	Standard	error	(stderr)—The	data	that	is	sent	from	the	command
when	an	error	occurs.	Typically,	this	appears	on	the	screen,	but	it	can
be	sent	to	a	file	or	to	another	command.

To	redirect	stdout,	use	the	>	character	after	the	command:
julia@mintos:~	>	cal	12	2000	>	mycal
julia@mintos:~	>	cat	mycal
			December	2000
Su	Mo	Tu	We	Th	Fr	Sa
																1		2

	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31

Note
You	use	the	cat	command	to	display	small	files;	it	is	covered
in	Chapter	4.

You	use	the	>	character	when	you	want	to	create	a	new	file	or	overwrite
the	contents	of	an	existing	file.	If	you	want	to	append	to	an	existing	file,
use	two	>	characters:
julia@mintos:~	>	cat	mycal
			December	2000
Su	Mo	Tu	We	Th	Fr	Sa
																1		2
	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31
julia@mintos:~	>	date	>>	mycal
julia@mintos:~	>	cat	mycal
			December	2000
Su	Mo	Tu	We	Th	Fr	Sa
																1		2
	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31
Sun	Jul	17	07:24:51	PDT	2016

The	output	of	the	cal	and	date	commands	in	the	previous	examples	is
considered	standard	output	because	the	command	ran	successfully.	Notice
that	if	a	command	fails	for	some	reason	(such	as	improper	options	or
arguments),	the	command’s	output	is	not	redirected	to	a	file	when	you	use
the	>	or	>>	characters:
julia@mintos:~	>	cal	-5	12	2000	>	mycal
cal:	invalid	option	--	'5'
Usage:	cal	[general	options]	[-hjy]	[[month]	year]
							cal	[general	options]	[-hj]	[-m	month]	[year]
							ncal	[general	options]	[-bhJjpwySM]	[-s	country_code]
[[month]	year]
							ncal	[general	options]	[-bhJeoSM]	[year]

General	options:	[-NC31]	[-A	months]	[-B	months]
For	debug	the	highlighting:	[-H	yyyy-mm-dd]	[-d	yyyy-mm]
julia@mintos:~	>	cat	mycal
julia@mintos:~	>

When	an	error	occurs,	the	command	sends	output	to	stderr.	You	can
redirect	this	output	by	using	the	2>	characters:10

julia@mintos:~	>	cal	-5	12	2000	>	mycal	2>	error
julia@mintos:~	>	cat	error
cal:	invalid	option	--	'5'
Usage:	cal	[general	options]	[-hjy]	[[month]	year]
							cal	[general	options]	[-hj]	[-m	month]	[year]
							ncal	[general	options]	[-bhJjpwySM]	[-s	country_code]
[[month]	year]
							ncal	[general	options]	[-bhJeoSM]	[year]
General	options:	[-NC31]	[-A	months]	[-B	months]
For	debug	the	highlighting:	[-H	yyyy-mm-dd]	[-d	yyyy-mm]

	
Important	notes	regarding	redirecting	stderr	include	the	following:

	The	2>	characters	either	create	a	new	file	or	overwrite	the	contents	of
an	existing	file.	To	append	stderr	messages	to	an	existing	file,	use	2>>.
	To	send	all	output,	both	stdout	and	stderr,	to	a	single	file,	use	the
following:11
cmd	>	file	2>&1

	Sometimes	you	will	want	to	run	a	command	without	seeing	any	of	the
error	messages.	To	discard	the	output	of	a	command,	send	it	to	the	file.
This	file	is	called	the	“bit	bucket”	or	“black	hole”	because	whatever
you	send	to	the	file	will	be	discarded.

Redirecting	stdout	and	stderr	is	a	fairly	common	practice.	Conversely,
redirecting	stdin	(standard	input)	is	much	rarer.	Before	demonstrating
redirecting	stdin,	consider	the	following	exercise,	which	demonstrates
where	stdin	comes	from	by	default.	Start	by	executing	the	following
command:
julia@mintos:~	>	tr	'a-z'	'A-Z'

It	looks	like	this	program	hangs,	but	it	is	just	waiting	for	stdin.	You	can
provide	stdin	from	the	keyboard.	For	example,	type	a	sentence	and	then
press	the	Enter	key:
julia@mintos:~	>	tr	'a-z'	'A-Z'
today	is	a	good	day	to	learn	linux

TODAY	IS	A	GOOD	DAY	TO	LEARN	LINUX

You	can	see	what	the	tr	command	does	with	the	input.	It	translates	all
lowercase	letters	to	uppercase	letters.	Clearly,	performing	this	task	on	a
file,	not	input	from	the	keyboard,	would	be	much	more	useful.
Unfortunately,	the	tr	command	doesn’t	allow	you	to	provide	a	filename
(By	the	way,	to	stop	the	current	tr	command,	hold	down	the	Ctrl	key	and
press	the	C	key.	This	is	normally	written	as	Ctrl+C	or	just	^C):
julia@mintos:~	>	tr	'a-z'	'A-Z'	mycal
tr:	extra	operand	'mycal'
Try	'tr	--help'	for	more	information.

The	tr	command	only	accepts	input	from	stdin.	So,	you	need	to	tell	the
BASH	shell	to	pull	stdin	data	from	a	file	rather	than	from	the	keyboard.	To
do	this,	use	the	<	character:
julia@mintos:~	>	tr	'a-z'	'A-Z'	<	mycal
			DECEMBER	2000
SU	MO	TU	WE	TH	FR	SA
																1		2
	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31

Note	that	the	output	of	the	tr	command	is	sent	to	the	screen	via	stdout.
Essentially,	it	is	now	lost,	but	you	can	also	run	the	command	and	redirect
stdout	to	a	file	(just	make	sure	it	is	a	different	file	than	the	original):
julia@mintos:~	>	tr	'a-z'	'A-Z'	<	mycal	>	mynewcal
julia@mintos:~	>	cat	mynewcal
			DECEMBER	2000
SU	MO	TU	WE	TH	FR	SA
																1		2
	3		4		5		6		7		8		9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31

Most	commands	that	require	input	accept	a	file	as	an	argument,	so	you
won’t	redirect	stdin	nearly	as	often	as	you	will	redirect	stdout	or	stderr.
However,	some	advanced	scenarios	exist	in	which	knowing	how	to
redirect	stdin	is	very	useful.
You	can	also	redirect	stdout	into	another	command	instead	of	a	file.	This	is

useful	because	many	of	the	commands	on	the	system	perform	filtering	or
paging	functions.12

For	example,	execute	the	following	command:	ls	-l	/etc.	Typically,	the
/etc	directory	contains	hundreds	of	files,	so	the	output	of	this	ls	command
will	quickly	scroll	by	on	the	screen.	This	can	make	viewing	large	amounts
of	information	difficult.	The	solution	is	to	send	the	output	of	the	ls
command	into	another	command	that	will	display	one	page	of	data	at	a
time:	ls	-l	/etc	|	more.
The	|	character	is	used	to	redirect	stdout	to	another	command.	It	becomes
the	stdin	of	the	command	to	the	right	of	the	|	character,	in	this	case	the
more	command,	which	displays	data	one	page	at	a	time.	Chapter	4	covers
the	more	command	in	greater	detail.	For	now,	use	the	spacebar	to	scroll	one
page	at	a	time	and	the	q	character	to	end	displaying	the	output	and	return
to	a	prompt.

This	process,	called	piping,	is	useful	when	you	work	in	a	command-line
environment.	Understanding	it	might	be	a	bit	difficult	if	this	is	your	first
exposure,	so	a	couple	of	diagrams	might	be	helpful.	First	consider	Figure
3.5,	which	shows	how	the	ls	command	functions	when	piping	is	not	used.

Figure	3.5	The	ls	-l	command	without	piping

Now	compare	this	to	Figure	3.6	in	which	the	stdout	from	the	ls	command
is	piped	into	the	more	command.

Figure	3.6	The	ls	-l	command	with	piping

Notice	in	Figure	3.6	that	only	stdout	is	redirected	when	using	piping.	The
command’s	stderr	will	still	be	displayed	on	the	screen	directly.

Linux	Humor
There	is	no	place	like	~

Summary
In	this	chapter	you	learned	how	to	manage	the	Linux	filesystem,	including	how
to	handle	files	and	directories.	The	concept	of	using	wildcards	to	match	file	and
directory	names	was	introduced.	In	addition,	you	learned	how	to	redirect	the
output	and	input	of	commands	into	either	files	or	other	commands.

1	I	realize	this	part	might	be	a	bit	confusing	because	there	are	really	three
“roots”	in	Linux.	The	/directory	is	called	the	root	directory	because	it	is	the
start	of	the	filesystem.	The	system	administrator	is	called	the	root	user	and	the
home	directory	for	the	root	user	is	the	/root	directory.	Linux	users	often	refer
to	the	root	directory	as	the	“slash”	directory	to	avoid	confusion	with	/root	and
the	root	user.

2	pwd	stands	for	print	working	directory.	In	early	Unix	times,	monitors	were
rare,	so	output	was	often	sent	to	an	actual	printer.	Because	Unix	is	the

precursor	to	Linux,	many	of	the	commands	are	named	the	same.
3	You	may	be	wondering	if	I	accidently	called	.	and	..	a	file.	In	Linux,
everything	is	considered	a	file,	including	directories.	A	directory	is	just	a
special	file	that	holds	other	directories.	Normally	I	would	refer	to	these	as
directories,	but	I	wanted	to	take	the	opportunity	to	make	this	point	as	it	could
prove	important	as	you	dive	deeper	into	Linux.

4	You	may	also	want	to	know	about	l,	which	stands	for	symbolic	link.	A
symbolic	link	is	a	file	that	points	to	another	file.	If	you	have	experience	in
Windows,	symbolic	links	are	akin	to	shortcuts	on	your	desktop.

5	File	sizes	in	bytes	can	be	difficult	to	comprehend,	especially	for	large	files.
Consider	including	the	-h	option	to	show	file	sizes	in	“human	readable”	sizes.

6	If	the	file	was	last	modified	within	the	past	six	months,	the	timestamp
includes	a	month,	day,	and	time.	If	the	file	was	last	modified	more	than	six
months	ago,	the	time	is	replaced	with	the	year.

7	The	rm-ri	command	is	the	same	as	the	rm	-ir	command,	which	is	the	same
as	the	rm	-r	-i	command.	In	most	cases,	single	character	options	can	be
combined	and	order	doesn’t	matter.

8	You	may	be	wondering	why	I	used	the	-d	option	with	the	ls	command.	Be
patient;	I	will	explain	this	soon.

9	The	cp	command	in	this	example	generates	some	error	messages	because	of
file	permission	issues.	Chapter	4	covers	file	permissions.	For	now,	don’t
worry	if	your	command	generates	a	few	error	messages	like	these.

10	It	might	seem	strange	that	you	use	>	to	redirect	stdout	and	2>	to	redirect
stderr.	However,	the	official	way	you	redirect	stdout	is	by	using	the	1>
characters.	Because	stdout	is	more	commonly	redirected	than	stderr,	the
BASH	shell	permits	you	to	drop	the	1	before	the	>	character.

11	You	can	also	use	the	following	syntax	in	the	BASH	shell:	cmd	&>	file
12	Paging	is	displaying	one	page	or	screen	of	data	at	a	time.

4.	Essential	Commands
A	major	component	of	working	on	a	Linux	system	is	the	command-line
environment.	Often	referred	to	as	the	command-line	interface	(CLI),	this
component	of	Linux	provides	a	huge	variety	of	tools.	As	a	developer,	you	don’t
have	to	learn	how	to	use	all	of	these	tools,	but	knowing	key	command-line	tools
makes	the	task	of	developing	code	a	much	easier	one.
This	chapter	focuses	on	the	essential	Linux	commands	that	all	developers	should
know.	This	chapter	builds	on	what	you	learned	in	Chapter	2	(basic	command-
line	execution)	and	Chapter	3	(filesystem	management	commands)	and	provides
you	with	a	solid	foundation	for	working	in	a	Linux	command-line	shell
environment.

Command-Line	Tools
At	this	point	you	might	be	wondering	“Why	command-line	tools?”	If	your
experience	is	primarily	with	GUI-based	systems,	such	as	Microsoft	Windows,
you	might	consider	the	CLI	something	that	belongs	in	the	dark	ages	of
computing.	However,	good	reasons	exist	for	why	command-line	tools	have	their
place	on	modern	operating	systems:

	Stability:	Many	Linux	commands	were	derived	from	Unix	and	are
essentially	decades	old.	This	stability	means	Linux	developers	can	focus	on
making	more	tools	rather	than	reinventing	features	that	already	exist.1

	Speed	of	development:	Developing	command-line	tools	takes	much	less
time	than	developing	GUI-based	tools.	As	a	result,	the	developers	who
create	Linux	tools	can	create	command-line	tools	faster	than	GUI-based
tools.
	Scripting:	Suppose	you	want	to	execute	a	set	of	instructions	each	day.	With
a	GUI-based	tool,	you	would	have	to	do	this	manually	every	day.	With
command-line	tools,	you	can	create	a	script,	which	is	a	collection	of
command-line	tools.	You	will	learn	more	about	this	in	Chapters	7	and	8.
	Speed	of	use:	Although	you	might	not	believe	this	initially,	you	can	actually
perform	tasks	quicker	on	the	command	line	(especially	if	you	are	good	at
typing	on	a	keyboard).	Normally,	GUI-based	tools	require	both	mouse	and
keyboard	input	(imagine	doing	a	“save	as”	of	a	document).	This	slows	you
down	as	you	have	to	take	your	hands	off	the	keyboard	to	use	the	mouse	(or

vice	versa).	Additionally,	in	Linux	you	can	quickly	re-execute	previous
commands	as	well	as	bring	up	previous	commands,	edit	them,	and	execute
them.	After	you	get	used	to	all	of	this,	you	can	accomplish	system	tasks
more	quickly.
	Power:	You	can	combine	commands	to	do	things	the	original	creator	never
conceived	of	doing	and	complete	tasks	in	a	much	more	elegant,	efficient,
and	useful	way.

How	Many	Commands	Are	There?
As	an	instructor	I	have	often	been	asked	by	students,	“Can	you
provide	a	full	list	of	all	the	Linux	commands?”	I	often	wonder
whether	astronomers	are	ever	asked	the	similar	question,	“Can	you
provide	a	full	list	of	all	the	stars	in	the	sky?”
Although	there	are	not	100	billion	Linux	commands,	there	are	many
more	than	you	want	to	commit	to	a	single	list.	A	typical	“small”
installation	with	just	the	basic	software	will	result	in	at	least	a
couple	thousand	commands.	It	isn’t	unusual	to	have	more	than
10,000	commands	on	a	system	that	has	many	of	the	optional
software	packages	installed.
My	advice:	Don’t	worry	about	learning	about	all	the	commands.
Focus	on	the	ones	that	help	you	do	your	job	(in	this	case,	those	that
help	you	develop	code).

Viewing	Files
A	good	number	of	the	files	on	a	Linux	filesystem	are	text	files.	As	a	result,	a	lot
of	commands	exist	to	view	the	contents	of	text	files.	This	section	introduces
many	of	these	files.

The	file	Command
Before	you	attempt	to	view	the	contents	of	a	file,	first	make	sure	the	contents	are
in	text	format	and	not	some	other	format.	Linux	supports	many	file	types	besides
just	text	files,	including	compressed	files,	files	that	contain	executable	code,	and
database	formatted	files.	To	determine	what	type	of	contents	a	file	contains,
execute	the	following	file	command:
[student@localhost	~]$	file	/usr/share/dict/linux.words
/usr/share/dict/linux.words:	ASCII	text
[student@localhost	~]$	file	/bin/ls

/bin/ls:	ELF	64-bit	LSB	executable,	x86-64,	version	1	(SYSV),
dynamically	linked	(uses	shared	libs),	for	GNU/Linux	2.6.32,
BuildID[sha1]=aa7ff68f13de25936a098016243ce57c3c982e06,	stripped
[student@localhost	~]$	file	/usr/share/doc/sed-4.2.2/sedfaq.txt.gz
/usr/share/doc/sed-4.2.2/sedfaq.txt.gz:	gzip	compressed	data,	was
"sedfaq.txt",	from	Unix,	last	modified:	Mon	Feb	10	09:11:16	2014,	max
compression

If	the	output	of	the	file	command	includes	“text”,	such	as	with	the	command
file	/usr/share/dict/linux.words,	then	you	can	use	the	commands	described
in	this	section	to	view	its	contents.	However,	you	don’t	want	to	use	these
commands	to	view	ELF	64-bit,	gzip	compressed	data,	or	other	non-text	file
types.	In	most	cases,	viewing	these	files	will	result	in	“garbage”	being	displayed
on	your	screen.	In	some	cases	it	can	even	mess	up	your	terminal	window.2

The	cat	Command
For	the	times	when	you	want	to	view	the	contents	of	a	small	file,	the	cat
command	(short	for	concatenate)	works	well:
[student@localhost	~]$	cat	/etc/cgrules.conf
#	/etc/cgrules.conf
#The	format	of	this	file	is	described	in	cgrules.conf(5)
#manual	page.
#
#	Example:
#<user>							<controllers>			<destination>
#@student					cpu,memory						usergroup/student/
#peter								cpu													test1/
#%												memory										test2/
#	End	of	file
*:iscsid	net_prio	cgdcb-4-3260

A	useful	cat	option	for	developers	is	the	-n	option,	which	is	used	to	number
lines.	This	can	be	helpful	when	viewing	source	code	scripts	that	execute	with	an
error	message,	as	shown	in	Listing	4.1.3

Listing	4.1	The	cat	-n	command
Click	here	to	view	code	image

[student@localhost	~]$./display.sh
Report	of	current	contents	of	/etc:
./display.sh:	line	5:	[-d:	command	not	found
[student@localhost	~]$	cat	-n	display.sh
					1	#!/usr/bin/bash
					2
					3	echo	"Report	of	current	contents	of	/etc:"
					4

					5	if	[-d	/etc]
					6	then
					7				echo	-n	"Number	of	directories:	"
					8				ls	-l	/etc	|	grep	"^d"	|	wc	-l
					9				echo	-n	"Number	of	links:	"
				10				ls	-l	/etc	|	grep	"^l"	|	wc	-l
				11				echo	-n	"Number	of	regular	files:	"
				12				ls	-l	/etc	|	grep	"^-"	|	wc	-l
				13	fi

The	more	and	less	Commands
The	problem	with	the	cat	command	comes	about	when	trying	to	display	large
files.	You	will	discover	that	it	doesn’t	pause	at	any	point	during	display	of	the
file,	but	rather	it	scrolls	through	the	file	as	if	you	had	some	superhero	speed-
reading	skill.
To	pause	the	display	while	displaying	the	contents	of	large	files,	use	the	more	or
the	less	commands:
[student@localhost	~]$	more	/usr/share/dict/linux.words
[student@localhost	~]$	less	/usr/share/dict/linux.words

Why	Both	more	and	less?
Why	two	commands	that	do	essentially	the	same	thing?	The	more
command	is	the	original	and	the	less	command	is	an	“improved
version”	of	the	more	command	(hence	giving	rise	to	the	joke	“less
does	more	than	more”).4

In	reality,	the	extra	features	provided	by	the	less	command	are	less-
often	used	features,	at	least	for	most	Linux	users.	The	more
command	is	also	useful	because	it	is	on	every	Linux	(and	Unix,
MacOS,	and	Windows)	system	in	the	world.	The	less	command	is
part	of	an	optional	software	package	and	not	available	by	default	on
many	systems.

The	more	and	less	commands	are	also	useful	for	pausing	the	display	of	a
command	that	produces	a	large	amount	of	output.	Use	the	pipe	character	that
was	covered	in	Chapter	3	to	send	the	output	of	a	command	to	the	more
command:
[student@localhost	~]$	ls	-l	/etc	|	more

While	viewing	a	file	with	the	more	or	less	command,	you	can	use	commands	to

control	the	display.	For	example,	press	the	spacebar	to	scroll	down	one	screen	of
data.	Use	the	Enter	key	to	move	down	one	line	at	a	time.
See	the	following	for	useful	commands	to	control	the	display	while	using	the
more	or	less	commands:

	Spacebar				Scroll	down	one	screen
	Enter				Scroll	down	one	line
	h				Displays	help	screen	(summary	of	commands)
	q				Exit
	/{pattern}				Search	for	{pattern}
	n				Find	next	occurrence	of	previous	{pattern}
	:f				Displays	filename	and	current	line	number

The	head	and	tail	Commands
Sometimes	you	might	want	to	display	only	the	top	or	bottom	part	of	a	file.	For
example,	you	might	want	to	look	at	the	comments	at	the	top	of	a	source	code
file.	Or,	you	want	to	display	recent	entries	of	a	log	file,	which	are	normally
placed	at	the	bottom	of	the	file.	For	these	situations,	use	the	head	and	tail
commands.
By	default,	these	commands	display	ten	lines.	For	example	Listing	4.2
demonstrates	displaying	the	top	ten	lines	of	the	/usr/share/dict/linux.words
file.

Listing	4.2	The	head	command
Click	here	to	view	code	image

[student@localhost	~]$	head	/usr/share/dict/linux.words
1080
10-point
10th
11-point
12-point
16-point
18-point
1st
20-point

Use	the	-n	option	to	specify	how	many	lines	to	display.	For	example,	the
command	tail	-n	5	/etc/passwd	displays	the	last	five	lines	of	the	/etc/passwd
file.

The	wc	command
To	display	statistical	information	about	a	file,	including	the	number	of	lines,
words,	and	characters	in	the	file,	use	the	wc	command:
[student@localhost	~]$	wc	display.sh
					13		59	291	display.sh

The	output	displayed	is	the	number	of	lines	(13),	the	number	of	words	(59),	and
number	of	bytes	(291)	that	are	in	the	display.sh	file.	Because	display.sh	is	a
text	file,	the	number	of	bytes	is	actually	the	number	of	characters	(1	character	=
1	byte).
You	can	limit	or	modify	the	output	of	the	wc	command	by	using	the	following
options:

	-c	Display	number	of	bytes
	-m	Display	number	of	characters	(different	than	number	of	bytes	for	non-text
files)
	-l	Display	number	of	lines
	-w	Display	the	number	of	words

Finding	Files
There	is	bound	to	be	a	time	when	you	have	misplaced	a	file	or	just	cannot
remember	where	a	file	is	stored.	In	these	cases,	you	can	turn	to	the	locate	or
find	commands	to	search	the	system	for	the	missing	file.

The	locate	Command
Early	each	morning	a	database	is	created	that	contains	a	list	of	all	files	and
directories	on	the	system.	The	locate	command	is	used	to	search	this	database.
For	example,	to	find	the	linux.words	file,	execute	the	following	command:
[student@localhost	~]$	locate	linux.words
/usr/share/dict/linux.words

The	locate	command	searches	for	any	file	that	contains	the	pattern
“linux.words,”	which	might	result	in	more	output	than	expected:
[student@localhost	~]$	locate	words	|	head
/etc/libreport/forbidden_words.conf
/etc/libreport/ignored_words.conf
/usr/include/bits/wordsize.h
/usr/lib64/perl5/CORE/keywords.h
/usr/lib64/perl5/bits/wordsize.ph

The	find	Command
The	locate	command	is	useful,	but	it	does	have	a	couple	of	drawbacks.	One
drawback	is	that	it	searches	a	database	that	was	created	earlier	in	the	day.	So,	if
you	lose	a	file	that	you	created	today,	the	locate	command	won’t	be	able	to	find
this	file.
The	find	command	searches	the	live	filesystem,	which	takes	more	time	than
using	the	locate	command	(searching	databases	is	much	faster),	but	it	does	find
files	that	are	currently	on	the	filesystem.	The	syntax	for	the	find	command	is	as
follows:
find	[starting	location]	[option/arguments]

For	example,	to	search	for	the	linux.words	file,	execute	the	following	command:
[student@localhost	~]$	find	/usr	-name	linux.words
find:	'/usr/lib/firewalld':	Permission	denied
find:	'/usr/lib64/Pegasus':	Permission	denied
/usr/share/dict/linux.words
find:	'/usr/share/Pegasus/scripts':	Permission	denied
find:	'/usr/share/polkit-1/rules.d':	Permission	denied
find:	'/usr/libexec/initscripts/legacy-actions/auditd':	Permission
denied

Note	the	error	messages	that	appear	are	because	directories	existed	that	the
current	user	was	not	allowed	to	search.	This	is	one	of	the	reasons	why	you	want
to	start	your	search	in	a	subdirectory,	not	in	the	/	directory.	Another	reason	is
because	a	search	of	the	entire	filesystem,	starting	from	the	root	directory,	might
take	a	lot	of	time.
You	can	prevent	these	error	messages	by	using	the	redirection	method	discussed
in	Chapter	3:
[student@localhost	~]$	find	/usr	-name	linux.words	2>	/dev/null
/usr/share/dict/linux.words

Another	advantage	of	the	find	command	over	the	locate	command	is	that	the
find	command	can	search	using	a	variety	of	different	file	attributes.	For
example,	you	can	search	for	files	that	are	owned	by	specific	users:
find	/home	-user	student

Commonly	used	find	options	for	specifying	what	to	search	for	include	the
following:

	-mmin	n—Display	files	that	were	modified	n	minutes	ago.	Use	-mmin	+n	to
specify	“more	than	n	minutes	ago”	or	-mmin	-n	to	specify	“less	than	n

minutes	ago.”
	-mtime	n—Display	files	that	were	modified	n	days	ago	(technically	n*24
hours	ago).	Can	use	+n	and	-n	like	the	-mmin	option.
	-group	groupname—Display	files	owned	by	groupname.
	-size	n—Display	files	of	a	given	size	represented	by	n.	Follow	the	n	value
with	a	character	to	represent	a	unit	of	space.	For	example,	-size	+10M	would
display	files	that	were	10	megabytes	or	larger.

You	can	change	what	the	find	command	does	when	it	finds	a	file.	For	example,
the	-ls	option	can	provide	detailed	information	about	each	file	found:
[student@localhost	~]$	find	/usr	-name	linux.words	-ls	2>	/dev/null
22096370	4840	-rw-r--r--			1	root					root						4953680
Jun		9		2014			➥/usr/share/dict/linux.words

Commonly	used	find	options	for	specifying	what	to	do	with	the	files	that	are
found:

	-delete	Deletes	the	file.
	-ls	Provides	a	long	display	listing	of	the	files	that	were	found	(like	the	ls	-
l	command).
	-exec	{	}	\;	Executes	a	command	on	that	file	that	was	found.	For	example:
find	/home/student	-name	sample.txt	-exec	more	{}	\;

Note
I	know	that	the	syntax	here	is	very	strange.	In	a	nutshell,	the	find
command	generates	a	series	of	commands	like	this:	more	file1;
more	file2;	more	file3.	The	{}	represents	where	to	place	the
filename	that	was	found	and	\;	tells	the	find	command	“put	a
semicolon	between	each	command	to	treat	them	as	separate
commands.”

Comparing	Files
As	a	developer,	you	are	going	to	have	different	versions	of	files	as	you	improve
and	bug-fix	existing	programs.	This	can	cause	confusion	because	determining
whether	two	files	are	the	same	or	somehow	different	is	sometimes	hard.	In	these
cases,	you	should	use	the	cmp	and	diff	commands.

The	cmp	Command

If	you	only	want	to	determine	whether	two	files	are	different,	not	how	they	are
different,	then	use	the	cmp	command.	Based	on	the	output	of	the	following
commands,	the	display.sh	and	show.sh	files	contain	identical	content	(this
results	in	no	output	when	cmp	is	executed)	whereas	present.sh	contains	different
content:
[student@localhost	~]$	ls	*.sh
display.sh	present.sh	show.sh
[student@localhost	~]$	cmp	display.sh	show.sh
[student@localhost	~]$	cmp	display.sh	present.sh
display.sh	present.sh	differ:	byte	66,	line	5

The	cmp	command	is	also	useful	for	comparing	two	non-text	files.	For	example,
you	could	compare	two	files	that	contain	compiled	code.

The	diff	Command
If	you	want	two	see	how	two	text	files	differ,	use	the	diff	command:
[student@localhost	~]$	diff	display.sh	present.sh
5c5
<	if	[-d	/etc]

>	if	[-d	/etc]
13a14,15
>
>	echo	"The	end	of	the	report"

The	output	of	the	diff	command	is	essentially	saying,	“If	you	make	these
changes,	then	the	files	will	look	the	same.”	Each	section	starts	with	a	code	that
includes	the	line	of	the	first	file,	what	action	to	take	and	the	line	of	the	second
file.	For	example,	5c5	means	“Change	line	5	of	the	first	file	to	look	like	line	5	of
the	second	file.”
Additional	lines	after	the	“code”	line	indicate	what	the	changes	would	look	like:
<	if	[-d	/etc]

>	if	[-d	/etc]

The	line	that	begins	with	<	shows	the	current	fifth	line	of	the	first	file.	The	---	is
just	used	to	separate	the	lines,	and	the	line	that	begins	with	the	>	shows	the
current	fifth	line	of	the	second	file.

Shell	Features
The	bash	shell	includes	a	large	number	of	features	designed	to	make	it	an	easier
and	more	powerful	command-line	environment.	Some	of	these	features,	such	as

wildcards	and	redirection,	have	already	been	covered	in	Chapter	3.
In	this	section	you	learn	about	more	bash	shell	features,	including	shell
variables,	aliases,	and	history.	Knowing	how	to	use	these	features	will	make	it
much	easier	to	work	in	the	bash	shell	and	make	you	a	more	powerful	software
developer.

Shell	Variables
Just	like	programming	languages	use	variables	to	store	values,	the	bash	shell
also	stores	critical	shell	information	in	variables.	To	create	a	variable,	use	the
following	syntax:	VAR=value.	To	display	a	variable,	use	the	echo	command	and
place	a	$	character	in	front	of	the	variable	name:
[student@localhost	~]$	EDITOR=vi
[student@localhost	~]$	echo	$EDITOR
vi

To	display	all	variables,	use	the	set	command.	There	are	many	predefined
variables,	so	you	might	want	to	pipe	the	output	to	the	more	or	head	command	to
limit	the	output.	See	Listing	4.3	for	an	example.

Listing	4.3	The	set	command
Click	here	to	view	code	image

[student@localhost	~]$	set	|	head
ABRT_DEBUG_LOG=/dev/null
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdhist:expand_aliases:extglob:extquote:force_
fignore:histappend:interactive_comments:login_shell:progcomp:promptvars:sourcepath
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
BASH_CMDS=()
BASH_COMPLETION_COMPAT_DIR=/etc/bash_completion.d
BASH_LINENO=()
BASH_REMATCH=()

Variables	serve	three	primary	purposes:
	To	store	useful	information	for	the	user.	For	example,
DOCS=/usr/share/docs

	To	store	useful	information	for	the	shell	or	a	command.	For	example,	the
EDITOR	variable	is	used	to	tell	commands	like	visudo	and	crontab	which
editor	to	use	by	default.	For	this	to	work,	you	must	convert	the	variable	to	an
environment	variable	(see	the	“Environment	Variables”	sidebar).

	To	store	script	data.	When	creating	bash	shell	scripts,	you	will	need	to
store	information.	Variables	are	very	useful	for	that	purpose	(see	Chapter	8,
“BASH	Shell	Scripting,”	for	more	details	on	BASH	shell	scripting).

Environment	Variables
By	default,	variables	are	only	available	to	the	shell	they	are	created
in.	However,	you	can	tell	the	shell	to	pass	variables	to	other
commands	by	making	them	environment	variables.
For	example,	if	you	want	to	pass	the	EDITOR	variable	to	any
command	that	is	executed	in	the	shell,	execute	the	following
commands:5
EDITOR=vi
export	EDITOR

Aliases
If	you	find	yourself	using	the	find	command	daily	to	search	the	system	for	new
shell	scripts:
find	/	-name	"*.sh"	-ls

At	some	point	you	ask	yourself,	“Why	do	I	need	to	type	this	long	command
every	day?”	The	fact	is,	you	don’t	need	to.	You	can	make	an	alias	for	this
command,	which	can	be	much	shorter	and	easier	to	type.	For	example:
alias	myfind='find	/	-name	"*.sh"	-ls'

Now	when	you	execute	the	myfind	alias,	it	will	run	that	long	find	command.
However,	you	must	create	this	alias	every	time	you	log	in	and	every	time	you
open	a	new	shell.	To	have	this	happen	automatically,	place	this	alias	command
in	a	file	named	.bashrc	in	your	home	directory.	You	can	also	use	this	file	to
create	variables	that	you	want	enabled	every	time	you	log	in	to	the	system.

History
Commands	that	you	execute	in	a	shell	are	saved	in	memory	so	you	can	execute
them	again.	To	see	these	commands,	execute	the	history	command	(the	output
could	be	hundreds	of	commands,	so	limit	the	output	with	the	tail	command):
[student@localhost	~]$	history	|	tail	-n	5
		258		alias	hidden='ls	-ld	.*'
		259		alias	c=clear
		260		alias

		261		date
		262		history	|	tail	-n	5

Each	command	is	assigned	a	number.	You	can	re-execute	a	command	by	using
this	number	with	an	!	character	preceding	it:6

[student@localhost	~]$!261
date
Sun	May	1	01:06:21	PDT	2016

You	can	also	bring	up	the	previous	command	by	pressing	the	up	arrow	key.	This
allows	you	to	modify	a	command	before	re-executing	it.

Permissions
Understanding	file	and	directory	permissions	is	critical	for	Linux	developers
because	Linux	is	a	multi-user	environment	and	permissions	are	designed	to
protect	your	work	from	others.	To	understand	permissions,	you	first	need	to
know	the	types	of	permissions	that	are	available	in	Linux	and	how	these
permissions	differ	when	they	are	applied	to	files	versus	when	they	are	applied	to
directories.
You	also	need	to	know	how	to	set	permissions.	Linux	provides	two	methods:	the
symbolic	method	and	the	octal	(or	numeric)	method.

Viewing	Permissions
To	view	the	permissions	of	a	file	or	directory,	use	the	ls	-l	command:
[student@localhost	~]$	ls	-l	/etc/chrony.keys
-rw-r-----.	1	root	chrony	62	May	9	2015	/etc/chrony.keys

The	first	ten	characters	of	the	output	denote	the	file	type	(recall	that	-	is	for	plain
files	and	d	is	for	directories)	and	the	permissions	for	the	file.	Permissions	are
broken	into	three	sets:	the	user	owner	of	the	file	(root	in	the	previous	example),
the	group	owner	(chrony),	and	all	other	users	(referred	to	as	“others”).
Each	set	has	three	possible	permissions:	read	(symbolized	by	r),	write	(w),	and
execute	(x).	If	the	permission	is	set,	the	character	that	symbolizes	the	permission
displays.	Otherwise,	a	-	character	displays	to	indicate	that	permission	isn’t	set.
So,	r-x	means	“read	and	execute	are	set,	but	write	is	not	set.”

	

Files	versus	Directories
What	read,	write,	and	execute	permissions	really	mean	depends	on	whether	the

object	is	a	file	or	directory.	For	files,	it	means	the	following:
	Read—Can	view	or	copy	file	contents.
	Write—Can	modify	file	contents.
	Execute—Can	run	the	file	like	a	program;	after	you	create	a	program,	you
must	make	it	executable	before	you	can	run	it.

For	directories,	it	means	the	following:
	Read—Can	list	files	in	directory.
	Write—Can	add	and	delete	files	in	directory	(requires	execute).
	Execute—Can	cd	into	directory	or	use	in	pathname.

The	write	permission	on	directories	is	potentially	the	most	dangerous.	If	a	user
has	write	and	execute	permission	on	one	of	your	directories,	then	that	user	can
delete	every	file	in	that	directory.

Changing	Permissions
The	chmod7	command	is	used	to	change	permissions	on	files.	It	can	be	used	in
two	ways:	symbolic	method	and	octal	method.	With	the	octal	method,	the
permissions	are	assigned	numeric	values:

	Read	=	4
	Write	=	2
	Execute	=	1

With	these	numeric	values,	one	number	can	be	used	to	describe	an	entire
permission	set:

	7	=	rwx
	6	=	rw-
	5	=	r-x
	4	=	r--
	3	=	-wx
	2	=	-w-
	1	=	--x
	0	=	---

So,	to	change	the	permissions	of	a	file	to	rwxr-xr--,	you	execute	the	following

command:
chmod	754	filename

With	octal	permissions,	you	should	always	provide	three	numbers,	which	will
change	all	the	permissions.	But	what	if	you	only	want	to	change	a	single
permission	of	the	set?	For	that,	use	the	symbolic	method	by	passing	three	values
to	the	chmod	command	as	shown	in	Table	4.1.

Table	4.1	Symbolic	method	values

The	following	demonstrates	adding	execute	permission	to	all	three	sets	(user
owner,	group	owner,	and	others):
[student@localhost	~]$	ls	-l	display.sh
-rw-rw-r--.	1	student	student	291	Apr	30	20:09	display.sh
[student@localhost	~]$	chmod	a+x	display.sh
[student@localhost	~]$	ls	-l	display.sh
-rwxrwxr-x.	1	student	student	291	Apr	30	20:09	display.sh

Developer	Tools
Knowing	how	to	view	files,	modify	file	permissions,	and	use	shell	features	are
important	for	all	Linux	users.	Developers	also	should	know	how	to	compress
files	and	how	to	use	the	powerful	filtering	tool,	the	grep	command.

File	Compression	Commands
As	a	developer	you	will	be	in	a	position	to	transfer	files	from	one	system	to
another.	You	might	be	downloading	software	from	the	Internet,	uploading	your
programs	to	a	server,	or	sending	your	programs	to	someone	via	email.	In	all	of
these	cases,	knowing	how	to	merge	files	into	a	single	file	and	compressing	this
merged	file	will	be	useful.	This	process	makes	transporting	large	amounts	of
data	easy	and	quick	as	well	as	provides	something	that	will	take	up	less	disk
space.
Many	commands	in	Linux	enable	you	to	create	compressed	files,	including	the
gzip,	bzip2,	and	tar	commands.

The	gzip	Command
The	purpose	of	the	gzip	command	is	to	create	a	compressed	version	of	a	file.	By
default,	it	replaces	the	original	file	with	the	compressed	version:
[student@localhost	~]$	cp	/usr/share/dict/linux.words	.
[student@localhost	~]$	ls	-l	linux.words
-rw-r--r--.	1	student	student	4953680	May	1	09:19	linux.words
[student@localhost	~]$	gzip	linux.words
[student@localhost	~]$	ls	-l	linux.words.gz
-rw-r--r--.	1	student	student	1476083	May	1	09:19	linux.words.gz

If	you	want	both	the	compressed	and	original	file,	you	have	to	use	the	-c	option
to	send	the	output	to	standard	output	and	keep	the	original	file.	Of	course,	you
don’t	really	want	the	output	to	be	sent	to	the	screen,	so	redirect	the	compressed
output	to	a	file:
[student@localhost	~]$	ls	-l	linux.words
-rw-r--r--.	1	student	student	4953680	May	1	09:19	linux.words
[student@localhost	~]$	gzip	-c	linux.words	>	linux.words.gz
[student@localhost	~]$	ls	-l	linux.words	linux.words.gz
-rw-r--r--.	1	student	student	4953680	May	1	09:19	linux.words
-rw-rw-r--.	1	student	student	1476083	May	1	09:23	linux.words.gz

Note
Typically	file	extensions,	such	as	.txt	and	.cvs,	are	unnecessary	in
Linux.	However,	they	are	important	for	files	that	you	create	with	the
gzip	command.	This	utility	expects	the	extension	of	.gz	when	it
uncompresses	a	file.	If	you	name	the	file	linux.words.zipped,	for
example,	the	gzip	command	will	attempt	to	use	the	file	named
linux.words.zipped.gz	when	uncompressing	the	file	(and	this	will
fail).

To	uncompress	a	gzipped	file,	use	the	-d	option:8

[student@localhost	~]$	ls	-l	linux.words.gz
-rw-rw-r--.	1	student	student	1476083	May	1	09:23	linux.words.gz
[student@localhost	~]$	gzip	-d	linux.words.gz
[student@localhost	~]$	ls	-l	linux.words
-rw-rw-r--.	1	student	student	4953680	May	1	09:23	linux.words

The	bzip2	Command
The	difference	between	gzip	and	bzip2	is	how	they	perform	the	compression
operation.	In	some	cases,	gzip	results	in	better	compression,	whereas	in	others

the	bzip2	command	does.	The	gzip	utility	is	the	older	of	the	two	and	considered
more	established,	but	the	bzip2	utility	is	used	fairly	often	on	modern	Linux
distributions.
Fortunately,	the	developers	of	bzip2	decided	to	use	the	same	options	that	the
gzip	utility	uses:
[student@localhost	~]$	ls	-l	linux.words
-rw-rw-r--.	1	student	student	4953680	May	1	09:23	linux.words
[student@localhost	~]$	bzip2	linux.words
[student@localhost	~]$	ls	-l	linux.words.bz2
-rw-rw-r--.	1	student	student	1711811	May	1	09:23	linux.words.bz2
[student@localhost	~]$	bzip2	-d	linux.words.bz2
[student@localhost	~]$	ls	-l	linux.words
-rw-rw-r--.	1	student	student	4953680	May	1	09:23	linux.words

Which	One	Should	You	Use?
Keep	in	mind	that	gzip	and	bzip2	are	just	two	of	the	compression
commands	available	on	Linux.	Others	include	the	zip	utility	and	the
xz	command.	With	so	many	to	choose	from,	which	should	you	use?
If	you	are	only	concerned	about	the	compressed	file	being	used	on
Linux,	then	it	really	comes	down	to	compression	ratio.	Try	them	all,
and	find	out	which	compresses	the	best	(or	the	fastest	because
higher	compression	is	often	slower).
If	you	are	considering	compressing	a	file	that	will	be	used	on	other
platforms,	such	as	Microsoft	Windows,	I	suggest	using	zip	or	gzip
because	they	use	a	more	standard	compression	algorithm.

The	tar	Command
The	gzip	and	bzip	commands	are	great	for	compressing	a	single	file,	but	what	if
you	want	to	merge	a	bunch	of	files	together?	Typically,	this	means	using	the	tar9
command.
To	create	a	tar	file	(also	called	a	tar	ball),	use	the	following	syntax:
[student@localhost	~]$	tar	-cvf	zip.tar	/usr/share/doc/zip-3.0
tar:	Removing	leading	'/'	from	member	names
/usr/share/doc/zip-3.0/
/usr/share/doc/zip-3.0/CHANGES
/usr/share/doc/zip-3.0/LICENSE
/usr/share/doc/zip-3.0/README
/usr/share/doc/zip-3.0/README.CR
/usr/share/doc/zip-3.0/TODO
/usr/share/doc/zip-3.0/WHATSNEW

/usr/share/doc/zip-3.0/WHERE
/usr/share/doc/zip-3.0/algorith.txt

You	use	the	-c	option	to	create	the	tar	file.	The	-v	option	stands	for	verbose	and
results	in	a	list	of	the	files	that	are	being	merged	into	the	tar	file.	You	use	the	-f
option	to	specify	the	name	of	the	resulting	tar	file.10

Note
What	happens	when	you	try	to	create	a	tar	file	and	forget	to	provide
a	name	for	it?	You	get	the	following	message:11
tar:	Cowardly	refusing	to	create	an	empty	archive

To	list	the	contents	of	an	existing	tar	file,	use	the	-t	option	(t	for	table	of
contents:
[student@localhost	~]$	tar	-tf	zip.tar
usr/share/doc/zip-3.0/
usr/share/doc/zip-3.0/CHANGES
usr/share/doc/zip-3.0/LICENSE
usr/share/doc/zip-3.0/README
usr/share/doc/zip-3.0/README.CR
usr/share/doc/zip-3.0/TODO
usr/share/doc/zip-3.0/WHATSNEW
usr/share/doc/zip-3.0/WHERE
usr/share/doc/zip-3.0/algorith.txt

To	extract	the	files	from	the	tar	ball,	use	the	-x	option:
[student@localhost	~]$	tar	-xf	zip.tar

In	the	current	directory	there	should	now	be	a	usr	directory	with	a	directory
structure	of	usr/share/doc/zip-3.0.	All	the	extracted	files	are	in	the	zip-3.0
directory.
By	default,	the	tar	command	does	not	compress.	However,	you	can	have	the	tar
command	use	either	gzip	or	bzip2	to	compress	by	using	the	-z	(gzip)	or	-j
(bzip2)	options.

The	grep	Command
Many	tools	available	on	Linux	are	designed	to	perform	operations	on	text	data,
but	the	most	powerful	and	useful	for	a	software	developer	is	the	grep	command.
This	command	is	designed	to	act	as	a	filter,	only	displaying	the	lines	of	data	that
match	a	pattern.

Origin	of	the	Word	grep
Clearly	grep	is	not	a	real	word.	So,	where	did	the	name	come	from?
It	comes	from	a	feature	of	the	ed	editor	(an	editor	that	predates	the
vi	editor	that	you	will	learn	about	in	Chapter	5).	In	the	ed	editor,
you	could	display	only	the	lines	that	contain	a	pattern	by	using	the
following	syntax:
:g/pattern/p

Because	the	pattern	could	be	a	regular	expression	(regular
expressions	are	covered	in	the	next	section),	ed	documentation
typically	displayed	this	command	as
:g/re/p

The	individual	who	created	the	grep	command	(Ken	Thompson)
also	created	the	ed	feature,	so	he	naturally	named	the	command	after
the	feature.12

For	example,	to	view	all	the	comment	lines	in	a	shell	script,	execute	the
following	command:
[student@localhost	~]$	grep	"#"	/etc/rc.local
#!/bin/bash
#	THIS	FILE	IS	ADDED	FOR	COMPATIBILITY	PURPOSES
#
#	It	is	highly	advisable	to	create	own	systemd	services	or	udev	rules
#	to	run	scripts	during	boot	instead	of	using	this	file.
#
#	In	contrast	to	previous	versions	due	to	parallel	execution	during	boot
#	this	script	will	NOT	be	run	after	all	other	services.
#
#	Please	note	that	you	must	run	'chmod	+x	/etc/rc.d/rc.local'	to	ensure
#	that	this	script	will	be	executed	during	boot.

By	default,	the	grep	command	matches	the	pattern	regardless	of	whether	it	is
part	of	another	word.	You	can	see	the	result	of	this	by	looking	at	line	2	of	Listing
4.4	where	the	the	is	matched	within	the	word	then.

Listing	4.4	Matching	with	grep
Click	here	to	view	code	image

[student@localhost	~]$	grep	the	/etc/bashrc	|	cat	-n
					1	#	will	prevent	the	need	for	merging	in	future	updates.
					2	if	["$PS1"];	then
					3			if	[-z	"$PROMPT_COMMAND"];	then
					4							if	[-e	/etc/sysconfig/bash-prompt-xterm];	then

					5							elif	["${VTE_VERSION:-0}"	-ge	3405];	then
					6							if	[-e	/etc/sysconfig/bash-prompt-screen];	then
					7			#	if	["$PS1"];	then
					8	if	!	shopt	-q	login_shell	;	then	#	We're	not	a	login	shell
					9					#	Need	to	redefine	pathmunge,	it	gets	undefined	at	the
end		➥of	/etc/profile
				10																	if	["$2"	=	"after"]	;	then
				11					if	[$UID	-gt	199]	&&	["'id	-gn'"	=	"'id	-un'"];	then
				12					#	and	interactive	-	otherwise	just	process	them	to	set
envvars
				13									if	[-r	"$i"];	then
				14													if	["$PS1"];	then

If	you	only	want	to	match	a	pattern	as	a	separate	word,	use	the	-w	option:
[student@localhost	~]$	grep	-w	the	/etc/bashrc	|	cat	-n
					1	#	will	prevent	the	need	for	merging	in	future	updates.
					2					#	Need	to	redefine	pathmunge,	it	gets	undefined	at	the
end		➥of	/etc/profile

Regular	Expressions
Chapter	3	discussed	wildcards,	special	characters	that	the	bash	shell	uses	to
match	filenames	in	a	directory.	Wildcards	are	fairly	simple	to	use,	because
filenames	are	typically	small	and	not	very	complex.	However,	text	within	a	file
can	be	much	more	rich	and	complex.	To	perform	flexible	matching	with	the	grep
command,	use	regular	expressions	(think	“wildcards	on	steroids”).
Regular	expressions	are	a	huge	topic	(seriously,	enough	to	fill	up	a	book	larger
than	the	size	of	this	one).	As	a	developer,	you	don’t	need	to	know	everything
about	regular	expressions,	so	to	get	you	started,	I	just	cover	the	basics.
As	you	can	see	from	the	following	example,	the	grep	command	returns	results
regardless	of	where	on	the	line	the	pattern	is	found:
[student@localhost	~]$	grep	"growths"	/usr/share/dict/linux.words
growths
ingrowths
outgrowths
regrowths
undergrowths
upgrowths

If	you	only	want	to	see	the	lines	that	begin	with	the	pattern,	use	the	regular
expression	character	^	at	the	beginning	of	the	pattern:
[student@localhost	~]$	grep	"^growths"	/usr/share/dict/linux.words
growths

If	you	only	want	to	see	the	lines	that	end	with	the	pattern,	use	the	regular

expression	character	$	at	the	end	of	the	pattern.

Remember	Listing	4.1?
Listing	4.1	is	a	bash	shell	script	(with	an	error)	that	includes	lines
like	the	following:
ls	-l	/etc	|	grep	"^d"	|	wc	-l
ls	-l	/etc	|	grep	"^-"	|	wc	-l
ls	-l	/etc	|	grep	"^l"	|	wc	-l

These	lines	took	the	output	of	the	ls	-l	command	and	sent	it	to	the
grep	command	to	display	file	times.	Lines	from	the	ls	-l	command
that	begin	with	the	letter	d	are	directories.	By	sending	this	output	to
the	wc	command,	you	get	a	count	of	how	many	directories	are	in	the
/etc	directory.
In	Chapter	8,	“BASH	Shell	Scripting,”	you	will	learn	about	the	rest
of	what	this	bash	shell	script	is	doing.

Another	useful	regular	expression	character	is	the	.	character,	which	represents
exactly	one	character.	In	the	following	example,	"r..t"	matches	“root”	on	lines
1	and	2.	For	line	3	"r..t"	matches	“r/ft”:
	[student@localhost	~]$	grep	"r..t"	/etc/passwd	|	cat	-n
					1				root:x:0:0:root:/root:/bin/bash
					2				operator:x:11:0:operator:/root:/sbin/nologin
					3				ftp:x:14:50:FTP	User:/var/ftp:/sbin/nologin

Additional	useful	grep	regular	expressions	(some	of	which	require	using	the	-E
option	for	extended	regular	expressions)	include

	*	Matches	zero	or	more	of	the	previous	character.
	+	Matches	one	or	more	of	the	previous	character	(requires	using	the	-E
option).
	.	Matches	any	single	character.
	[]	Matches	a	single	character	from	a	subset	of	characters;	[abc]	matches
either	an	a,	b,	or	c.
	?	Matches	an	optional	character;	a?	means	“match	either	the	character	‘a’	or
nothing”	(requires	using	the	-E	option).
	|	Match	one	or	another;	abc|xyz	matches	either	abc	or	xyz	(requires	using
the	-e	option).
	\	Escapes	the	special	meaning	of	a	regular	expression	character;	*	matches

simply	a	*	character.

Note
Regular	expressions	are	extremely	useful,	not	just	for	the	grep
command,	but	many	other	Linux	tools	as	well	as	many
programming	languages.	This	is	a	very	good	topic	to	expand	your
knowledge	on	to	become	a	more	powerful	developer.

Searching	for	Files	with	grep
The	find	and	locate	commands	are	useful	for	finding	files	by	name,	but	they
can’t	find	files	based	on	the	contents	of	a	file.	The	grep	command	can	search	all
files	within	a	directory	structure	recursively	if	you	use	the	-r	option.
When	you	use	the	grep	command	in	this	manner,	you	probably	want	to	use	the	-
l	option,	which	will	list	matching	filenames	(rather	than	listing	every	line	in
every	file	that	matches).	You	probably	also	want	to	redirect	STDERR	to
suppress	error	messages	for	files	and	directories	that	you	don’t	have	permission
to.	See	Listing	4.5	for	an	example	that	searches	for	all	bash	shell	scripts	in	the
/etc	directory	structure.

Listing	4.5	Searching	with	grep
Click	here	to	view	code	image

[student@localhost	~]$	grep	-rl	'^#!/bin/bash'	/etc/*	2>	/dev/null
/etc/auto.net
/etc/auto.smb
/etc/cron.daily/0yum-daily.cron
/etc/cron.daily/man-db.cron
/etc/cron.hourly/0yum-hourly.cron
/etc/init.d/netconsole
/etc/kernel/postinst.d/51-dracut-rescue-postinst.sh
/etc/NetworkManager/dispatcher.d/11-dhclient
/etc/NetworkManager/dispatcher.d/13-named
/etc/pki/tls/certs/renew-dummy-cert
/etc/ppp/ip-down
/etc/ppp/ip-up
/etc/ppp/ipv6-up
/etc/qemu-ga/fsfreeze-hook
/etc/rc.d/init.d/netconsole
/etc/rc.d/rc.local
/etc/rc.local
/etc/sysconfig/network-scripts/ifdown-eth
/etc/sysconfig/network-scripts/ifdown-tunnel
/etc/sysconfig/network-scripts/ifup-aliases

/etc/sysconfig/network-scripts/ifup-eth
/etc/sysconfig/network-scripts/ifup-sit
/etc/sysconfig/network-scripts/ifup-tunnel
/etc/sysconfig/network-scripts/ifup-wireless
/etc/sysconfig/network-scripts/ifdown-ib
/etc/sysconfig/network-scripts/ifup-ib
/etc/sysconfig/raid-check
/etc/vsftpd/vsftpd_conf_migrate.sh
/etc/X11/xinit/xinitrc.d/50-xinput.sh
/etc/X11/xinit/xinitrc.d/zz-liveinst.sh
/etc/X11/xinit/Xclients
/etc/X11/xinit/Xsession

Linux	Humor
Who	needs	to	go	to	the	movies?	Big	screen	Hollywood	action	is
available	right	on	your	Linux	computer.	Type	the	following
command,	grab	some	popcorn,	and	enjoy:
telnet	towel.blinkenlights.nl

P.S.	To	stop	the	“movie,”	hold	down	the	Ctrl	button	and	press	the]
key.	Then	type	quit	at	the	telnet>	prompt	and	press	the	Enter	key.

Summary
At	this	point	you	should	have	a	solid	foundation	that	will	enable	you	to	work	in
the	Linux	command-line	environment.	You	learned	the	essentials,	such	as	how	to
view	a	file	and	make	use	of	bash	shell	features.	You	should	now	know	how	to
secure	your	files	using	permissions.	In	the	next	chapter	you	will	build	on	these
tools	to	learn	some	important	system	administrative	tasks	of	which	developers
should	be	aware.

1	It	also	means	that	you	can	wake	up	a	Unix	developer	who	was	cryogenically
frozen	in	the	1970s	and	that	developer	would	already	understand	the	basics	of
working	in	Linux.	Note	that	the	process	of	waking	up	cryogenically	frozen
developers	is	beyond	the	scope	of	this	book.

2	If	you	view	a	non-text	file	accidentally	and	it	messes	up	your	terminal	display
with	“garbage”	characters,	type	the	reset	command	and	press	the	Enter	key.
Don’t	worry	if	it	looks	like	garbage	when	you	type	the	command,	it	will
execute	properly	and	fix	your	terminal	display.

3	Are	you	wondering	what	this	script	actually	does?	Keep	reading	this	chapter
to	find	out!

4	This	is	about	as	funny	as	Linux	jokes	get.	I	apologize	for	all	future	Linux
jokes	made	throughout	this	book.

5	You	can	also	do	this	in	one	step:	export	EDITOR=vi
6	The	!	character	is	often	called	the	bang	character	in	Linux.	Other	common
character	nicknames	include	splat	for	*	and	hash	for	#.

7	Permissions	used	to	be	called	modes	of	access,	hence	the	origin	of	the	name
chmod	(change	mode	of	access).

8	You	can	also	use	the	gunzip	command.
9	The	command	comes	from	the	phrase	Tape	ARchive.	Or	it	could	be	TApe
aRchive.	You	pick.

10	Note	that	for	the	tar	command,	the	-	character	before	the	options	is	optional.
So,	tar	cvf	is	the	came	as	tar	-cvf.	A	handful	of	Linux	commands	don’t
require	the	-	character	before	options.

11	Okay,	some	Linux	jokes	are	a	little	bit	funny.
12	With	this	new	Linux	trivia,	you	are	bound	to	be	the	life	of	any	party.

5.	Text	Editors
As	a	developer,	you	will	edit	text	files	on	a	regular	basis.	This	can	sometimes
pose	a	challenge	because	Linux	offers	a	variety	of	editors.	In	many	cases,	you
should	be	able	to	pick	your	editor,	but	sometimes	you	might	be	forced	to	use	one
of	the	standard	editors,	such	as	the	vi	editor.
This	chapter	focuses	on	the	editors	that	are	available	on	Linux	distributions.	The
primary	focus	is	on	the	vi	(or	vim)	editor	because	it	has	the	advantage	of	always
being	available	on	whatever	Linux	distribution	you	are	working	on.	I	introduce
some	additional	editors	to	help	you	determine	which	tool	will	work	best	for	your
situation.

The	vi	Editor
Consider	the	early	days	of	Unix,	the	precursor	to	Linux:	A	developer	would	sit
down	at	a	keyboard,	ready	to	edit	a	program	that	he	is	working	on.	He	stares	at
the	printer	(yes,	printer,	not	monitor)	considering	what	commands	to	execute.
Monitors	were	very	rare	in	the	early	1970s	and	even	if	a	developer	had	one,	it
was	primarily	designed	to	display	the	output	of	executed	code,	not	to
interactively	edit	files.
Instead,	the	developer	would	use	a	simple	command-based	editor,	such	as	the	ed
editor.	With	this	editor	a	developer	could	perform	operations	such	as	list	the
contents	of	a	file	(print	the	file),	modify	specific	characters	of	a	file,	or	save	the
contents	of	a	file.	However,	he	accomplished	all	this	in	a	way	that	might	seem
foreign	today.	The	developer	wouldn’t	see	what	he	was	editing,	but	rather	just
assume	the	commands	were	successful	(or	print	the	file	to	verify).1

When	monitors	became	more	commonplace,	the	ed	editor	seemed	like	a	clumsy
way	to	edit	a	text	file.	In	the	mid-1970s	a	replacement	editor	named	vi	(short	for
visual)	was	introduced	to	Unix.2	It	was	a	great	improvement	over	the	ed	editor3
because	you	could	actually	see	and	move	around	in	your	document.

Why	Learn	vi?
You	will	soon	discover	that	some	editors	are	easier	to	use	than	vi.	This	discovery
will	result	in	your	asking	the	question,	“Why	the	heck	should	I	bother	learning
the	vi	editor?”	Several	good	reasons	exist,	even	if	you	never	plan	on	using	the	vi
editor	on	a	daily	basis:

	vi	requires	no	GUI:	Many	of	the	editing	tools	that	this	chapter	introduces
require	a	graphical	user	interface.	Normally	that	is	not	a	problem,	but	on
many	servers,	the	GUI	isn’t	even	installed	because	it	tends	to	be	a	resource
(CPU,	memory,	and	hard	drive	space)	hog.	If	you	might	be	called	upon	to
edit	code	on	a	server,	then	you	might	need	to	know	a	command-line	editor
like	the	vi	editor.
	vi	is	a	very	stable	standard:	You	could	take	a	cryogenically	frozen
developer	from	the	1970s	who	used	the	vi	editor,	unfreeze	him	today	and	he
could	edit	files	using	a	modern	vi	editor.	Certainly,	features	have	been	added
to	the	vi	editor	since	the	1970s,	but	the	core	functionality	of	vi	does	not
change,	making	it	very	easy	for	you	to	use	throughout	your	career	without
having	to	“relearn”	how	newer	versions	work.
	vi	is	always	there:	In	every	Linux	distribution	(and	all	Unix	ones	as	well)
the	vi	editor	is	there.	After	you	know	how	to	edit	files	with	the	vi	editor,	you
can	edit	files	on	any	Linux	machine.4

	Speed	of	use:	Although	you	might	not	believe	this	initially,	you	can	actually
edit	files	quickly	using	the	vi	editor.	Granted,	this	will	take	many	years	of
practice,	but	because	you	never	need	to	use	the	mouse,	you	never	need	to
take	your	hands	off	your	keyboard	when	editing	a	file.	The	commands	are
also	very	short,	so	you	can	edit	files	very	quickly.

What	Is	vim?
The	vim	editor5	was	released	in	1991	as	a	clone	of	the	vi	editor.	The	vim	editor
has	the	same	base	functionality	as	the	vi	editor,	but	it	has	several	additional
features.	Some	of	these	features	can	be	useful	for	software	developers.
Your	distribution	might	only	have	the	vi	editor.	Many	distributions	have	both	the
vi	and	vim	editor.	On	some	distributions,	the	command	vi	is	actually	a	link	to
the	vim	editor.
An	easy	way	to	tell	whether	you	are	using	the	vi	or	vim	editor	is	to	try	executing
the	vi	command.	If	you	are	using	vim,	a	message	like	the	following	appears:	VIM
–	Vi	IMproved.	If	you	don’t	get	this	message,	then	you	are	using	a	standard	vi
editor.6

Note:
Unless	stated	otherwise,	the	commands	shown	in	this	chapter	work
in	both	the	vi	and	vim	editors.	Any	command	that	only	works	in	vim
is	denoted	as	such.

Essential	vi	Commands
To	become	an	expert	vi	user	can	take	a	lot	of	practice,	but	to	be	able	to
effectively	edit	files	requires	the	knowledge	of	a	subset	of	the	large	amount	of	vi
commands.
It	helps	to	have	a	large	file	to	edit.	All	Linux	distributions	should	come	with	a
/etc/services	file	that	is	typically	thousands	of	lines	long.	You	can	start	by	first
copying	this	file	to	your	home	directory	and	then	edit	the	copy	with	the	vi
command:
[student@fedora	~]$	cp	/etc/services.
[student@fedora	~]$	vi	services

Entering	Insert	Mode
When	you	first	start	the	vi	editor,	you	are	placed	in	the	command	mode.	This
mode	allows	you	to	perform	commands	such	as	moving	around	the	screen,
copying	text,	and	deleting	text.
While	in	the	command	mode,	you	can’t	insert	new	text	into	your	document
because	all	the	keyboard	keys	are	assigned	to	command	tasks.	To	insert	new	text,
you	must	use	the	s	command	to	move	from	command	mode	to	insert	mode.
These	commands	include	the	following:

	i—New	text	will	appear	before	the	cursor	position.
	a—New	text	will	appear	after	the	cursor	position.
	I—New	text	will	appear	at	the	beginning	of	the	line.
	A—New	text	will	appear	at	the	end	of	the	line.
	o—Opens	a	new	line	below	the	line	that	contains	the	cursor;	new	text	will
be	placed	on	this	line.
	O—Opens	a	new	line	above	the	line	that	contains	the	cursor;	new	text	will	be
placed	on	this	line.

See	Figure	5.1	for	a	visual	description	of	how	these	vi	commands	work.

Figure	5.1	vi	commands	to	enter	insert	mode

Note	that	when	you	are	using	the	vim	editor	and	enter	the	insert	mode,	the
bottom	part	of	the	screen	changes	to	indicate	this.	See	the	--	INSERT	--	at	the
bottom	of	Figure	5.2.

Figure	5.2	The	insert	mode

If	you	are	working	in	a	standard	vi	editor,	then	--	INSERT	--	does	not	appear	at
the	bottom	of	the	screen	by	default.	To	enable	this	feature	in	a	standard	vi	editor,
type	the	following	command	while	in	command	mode:
:set	showmode

When	you	want	to	return	to	command	mode,	just	press	the	escape	(Esc)	key.
This	is	normally	denoted	in	documentation	as	<ESC>.	If	you	return	to	the
command	mode,	then	the	--	INSERT	--	should	disappear	from	the	bottom	of	the
screen.

Movement	Commands
While	in	the	command	mode,	you	can	move	the	cursor	in	your	document	by
using	a	variety	of	keys.	One	of	the	common	methods	is	to	move	the	cursor	one
character	to	the	left	or	right	or	one	line	up	or	down.	You	do	this	by	using	either
the	arrow	keys	on	your	keyboard	or	using	the	h,	j,	k,	and	l	keys7	as	shown	in
Figure	5.3.

Figure	5.3	vi	movement	commands

Many	additional	movement	commands	are	available,	including	the	following:
	$	Move	to	the	last	column	(character)	on	the	current	line
	0	Move	to	the	first	column	(character)	on	the	current	line
	w	Move	to	the	beginning	of	the	next	word	or	punctuation	mark
	W	Move	to	past	the	next	space
	b	Move	to	the	beginning	of	the	previous	word’s	punctuation	mark
	B	Move	to	the	beginning	of	the	previous	word,	ignoring	punctuation

	e	Move	to	the	end	of	next	word	or	punctuation	mark
	E	Move	to	the	end	of	next	word,	ignoring	punctuation
)	Move	forward	one	sentence
	(Move	back	one	sentence
	}	Move	forward	one	paragraph
	{	Move	back	one	paragraph
	H	Move	to	the	top	of	the	screen
	M	Move	to	the	middle	of	the	screen
	L	Move	to	the	bottom	of	the	screen
	[[Move	to	the	beginning	of	the	document
]]	Move	to	the	end	of	the	document
	G	Move	to	the	end	of	the	document	(same	as]])
	xG	Move	to	line	x	(you	can	also	use	:x)

Note	that	these	are	just	some	of	the	movement	commands.	Here’s	a	suggestion:
spend	some	time	trying	out	these	movement	commands	and	then	create	a	cheat
sheet	of	the	commands	that	you	feel	will	be	most	useful	to	you.	Make	this	a
cheat	sheet	that	you	can	add	more	commands	to	as	you	learn	additional	useful
commands.8

Repeater	Modifiers
In	the	previous	section,	you	discovered	that	you	can	jump	to	a	specific	line	in	a
document	by	typing	a	number	followed	by	a	G	while	you	are	in	the	command-
mode.	For	example,	the	command	7G	will	take	you	to	line	number	7	in	the
document.
Placing	a	number	before	a	command	acts	as	a	modifier.	You	can	use	modifiers
on	many	different	command-mode	commands;	for	example:

	3w	Move	forward	three	words
	5i	Insert	something	five	times9

	4(Move	back	three	paragraphs

You	can	also	use	repeat	modifiers	on	commands	like	deleting,	copying,	and
pasting.	Typically,	if	there	is	a	command-mode	command	that	you	would
logically	want	to	execute	multiple	times,	then	repeat	modifiers	should	work	with
that	command.

Are	You	Trying	These	Commands?
I	had	you	copy	the	/etc/services	file	to	your	home	directory	so
you	can	try	the	commands	out.	Remember,	if	you	get	stuck	in	insert
mode,	just	press	the	Esc	key	to	return	to	command	mode.
Don’t	worry	if	you	end	up	with	a	big	mess	in	this	file.	It	is	just	a
practice	file	and	you	are	about	to	learn	how	to	correct	mistakes.

Undoing
You	can	undo	whatever	change	has	been	made	to	the	document	by	typing	the	u
character	in	command	mode.	In	the	standard	vi	editor,	you	can	only	undo	a
single	action;10	in	fact,	the	u	command	acts	as	an	undo/redo	key.
If	you	are	using	the	vim	editor,	you	can	undo	several	actions.	Just	keep	pressing
the	u	character	to	undo	older	modifications.	You	can	perform	a	redo	that	undoes
the	changes	performed	by	the	undo	command	by	using	the	^r	(Ctrl+r)	command.
Suppose	you	made	a	large	number	of	changes	since	you	opened	the	document
and	you	want	to	discard	them	all.	In	this	case,	you	probably	want	to	close	the
document	without	saving	and	open	it	again.	To	close	the	document	without
saving	changes,	type	the	command	:q!.	You	can	find	more	on	this	command	and
other	ways	to	quit	the	vi	editor	in	the	“Saving	and	Quitting”	section	later	in	this
chapter.

Copying,	Deleting,	and	Pasting
The	following	is	a	summary	of	commonly	used	copying	commands.	Keep	in
mind	that	you	should	execute	these	while	in	command	mode:

	yw—Copy	word.	This	actually	copies	from	the	current	character	in	a	word
until	the	end	of	the	word	(including	punctuation)	and	the	white	space	after
the	word.	So,	if	your	cursor	was	on	the	h	in	“this	is	fun,”	the	cw	command
would	copy	“his	”	into	memory.
	yy—Copy	current	line.
	y$—Copy	from	current	character	to	end	of	the	line.
	yG—Copy	current	line	to	the	end	of	the	document.

You	might	be	wondering	“Why	use	the	y	character?”	This	is	because	the	process
of	copying	text	into	the	memory	buffer	used	to	be	called	yanking.
The	following	is	a	summary	of	commonly	used	deleting	commands.	Keep	in

mind,	you	should	execute	these	while	in	command	mode:11

	dw—Delete	word;	this	command	actually	deletes	from	the	current	character
in	the	word	until	the	end	of	the	word	(including	punctuation)	and	the	white
space	after	the	word.	So,	if	your	cursor	was	on	the	h	in	“this	is	fun”	the	dw
command	would	delete	“his	”,	resulting	in	“tis	fun.”
	dd—Delete	current	line.
	d$—Delete	from	current	character	to	end	of	the	line.
	dG—Delete	current	line	to	the	end	of	the	document.12

	x—Delete	the	character	the	cursor	is	currently	on	(like	a	delete	key).13

	X—Delete	the	character	before	the	character	the	cursor	is	currently	on	(like	a
backspace	key).

Where	Are	the	Cut	Commands?
When	you	use	a	delete	command,	the	text	that	was	deleted	is	placed
into	the	copy	buffer.	As	a	result,	no	need	exists	for	a	separate	set	of
cut	commands.

Pasting	commands	can	be	a	bit	trickier	because	how	they	work	depends	on	what
you	are	pasting.	For	example,	suppose	you	had	copied	a	word	into	the	buffer.	In
this	case,	the	following	describes	how	the	paste	commands	would	work:

	p—Pastes	the	buffer	contents	before	the	cursor
	P—Pastes	the	buffer	contents	after	the	cursor

The	behavior	is	a	bit	different	if	you	copy	an	entire	line	(or	multiple	lines)	into
the	buffer:

	p—Pastes	the	buffer	contents	in	the	line	above	the	cursor
	P—Pastes	the	buffer	contents	in	the	line	below	the	cursor

Finding	Text
Finding	text	is	a	critical	function	for	a	software	developer	who	is	using	the	vi
editor	because	error	messages	that	appear	when	code	is	executed	often	include
bits	of	code	where	the	error	occurs.	You	can	search	for	text	by	using	one	of	the
following	methods:

	/	While	in	command	mode,	type	the	/	key;	this	character	appears	in	the
bottom-left	corner	of	the	terminal	window.	Now	type	what	you	want	to

search	for	and	then	press	the	Enter	key.	The	vi	editor	will	search	forward	in
the	document	for	the	text	you	asked	it	to	search	for.
	?	While	in	command	mode,	type	the	?	key;	this	character	appears	in	the
bottom-left	corner	of	the	terminal	window.	Now	type	what	you	want	to
search	for	and	then	press	the	Enter	key.	The	vi	editor	will	search	backward
in	the	document	for	the	text	you	asked	it	to	search	for.

Suppose	your	search	didn’t	find	the	specific	match	you	were	looking	for.	You
can	use	the	n	command	to	find	the	next	match.	The	n	command	searches	forward
when	your	last	search	started	with	the	/	key	and	searches	backward	when	your
last	search	started	with	the	?	key.14

What	if	you	searched	for	“/one”	and	realize	you	will	need	to	press	the	n	key
many	times	to	find	what	you	are	looking	for?	After	furiously	typing	n	repeatedly,
you	realize	you	went	past	the	match	that	you	wanted.	To	reverse	the	current
search,	use	the	N	character	(capital	N	rather	than	lowercase).	When	you’re
searching	forward,	N	will	reverse	and	search	backward	in	the	document.	When
you’re	searching	backward,	N	will	reverse	and	search	forward	in	the	document.

Case	Sensitive
As	with	just	about	everything	you	use	in	Linux,	the	search	function
is	case	sensitive.	In	other	words,	a	search	of	/the	will	not	match	the
following	line:
The	end	is	near

Searching	and	Replacing
To	search	for	text	and	replace	it	with	other	text,	use	the	following	format:
:x,ys/pattern/replace/

The	values	of	x	and	y	represent	which	lines	you	want	to	perform	the	search	on.
For	example,	to	search	and	replace	on	only	the	first	ten	lines	of	the	document,
use	the	following	syntax:
:1,10s/I/we/

You	can	use	the	$	character	to	represent	the	last	line	in	the	document:
:300,$s/I/we/

So,	to	perform	the	substitution	on	the	entire	document,	use	the	following:

:1,$s/I/we/

By	default,	only	the	first	match	on	each	line	is	replaced.	Imagine	if	the	line	you
are	searching	for	and	replacing	looked	like	the	following:
The	dog	ate	the	dog	food	from	the	dog	bowl

If	the	command	:s/dog/cat/	were	executed	on	the	previous	line,	then	the	result
would	be:
The	cat	ate	the	dog	food	from	the	dog	bowl

To	replace	all	occurrences	on	a	line,	add	a	g15	at	the	end	of	the	search	command:
:s/dog/cat/g

Searching	and	replacing	is	case	sensitive.	Imagine	if	the	line	you	are	searching
and	replacing	looked	like	the	following:
The	Dog	ate	the	dog	food	from	the	dog	bowl

If	the	command	:s/dog/cat/	were	executed	on	the	previous	line,	then	the	result
would	be:
The	Dog	ate	the	cat	food	from	the	dog	bowl

The	result	matched	the	second	dog	because	the	first	one	had	a	capital	D
character.	To	perform	a	case-insensitive	search	and	replace,	add	an	i	at	the	end
of	the	search	command:
:s/dog/cat/i

Saving	and	Quitting
In	the	previous	section,	you	typed	a	:	character	to	perform	a	search	and	replace
operation.	Complex	commands	are	performed	in	the	last	line	mode,	also	called
the	ex	mode	in	honor	of	the	ex	editor.	The	:	character	takes	you	to	the	bottom	of
the	screen	where	the	command	appears	as	you	type	it.
Another	operation	you	can	do	in	this	mode	is	save	and	quit	your	document:
:wq

Note
You	must	save	before	quitting,	so	you	can’t	execute	the	command
:qw	because	that	will	attempt	to	quit	and	then	save.

You	might	also	want	to	just	save,	but	continue	working:
:w

You	can	also	save	to	a	different	document,	but	there	is	a	little	gotcha	to	this
operation	that	you	will	discover.	Suppose	you	want	to	save	changes	made	to
your	services	file	into	a	file	called	myservices.	Execute	the	following:
:s	myservices

The	changes	will	be	placed	into	this	file.	However,	any	further	changes	will	be
saved	by	default	into	the	original	services	file.	Most	modern	editors	“switch”	the
default	save	document	to	whatever	the	last	saved	document	was,	but	vi	doesn’t
do	this.	To	see	your	current	document,	type	^G	(Ctrl+g).
So,	if	you	want	to	edit	the	new	file,	you	should	quit	the	vi	editor	and	open	the
new	file.
If	you	make	changes	to	a	file	and	then	try	to	quit	without	saving	(:q),	you
receive	an	error	message	like	the	following:
E37:	No	write	since	last	change	(add	!	to	override)

To	force	quit	(quit	without	saving	changes),	execute	the	following	command:
:q!

Expanding	Your	vi	Knowledge
Although	the	discussion	has	covered	many	vi	commands,	it	really	just	scratches
the	surface.	The	vi	editor	is	a	very	powerful	tool	with	hundreds	of	commands.	In
addition,	it	provides	some	very	advanced	features,	such	as	syntax	highlighting,
the	capability	to	create	macros,	features	for	editing	multiple	files	at	the	same
time,	and	much	more.
The	vim	editor	has	some	very	useful	built-in	documentation,	but	you	must	have
a	specific	software	package	installed	on	Red	Hat–based	distributions16	in	order
to	be	able	to	access	this	documentation.	Chapter	6	covers	installing	software	in
greater	detail.	For	now,	just	make	sure	you	are	logged	in	as	the	root	user	and
execute	the	following	command:	yum	install	vim-enhanced
If	this	package	is	installed,	you	can	execute	the	command	:help	while	in	the	vim
editor	to	see	a	help	document.	See	Figure	5.4	for	an	example.

Figure	5.4	vim	help	output

Use	your	arrow	keys	(or	h,	j,	k,	and	l)	to	scroll	through	the	document.	About	20
lines	down,	you	will	start	to	see	some	subtopics,	as	shown	in	Figure	5.5.

Figure	5.5	vim	help	topics

Each	of	these	topics,	such	as	quickref	and	usr_01.txt,	are	separate	help	topics.	To
view	them,	first	exit	from	the	current	help	document	by	typing	the	:q	command.
Then	type	a	command	like	the	following,	replacing	topic	with	the	full	name	of
the	topic	you	want	to	view:
:help	topic

For	example,	to	see	help	on	“Using	syntax	highlighting,”	type	the	following
command:
:help	usr_06.txt

vimtutor
A	great	tool	to	help	you	learn	the	vi	editor	is	the	vimtutor
command.	This	command	takes	you	into	vi	and	provides	a	useful
guide	to	learning	the	vim	editor.

Additional	Editors

A	large	number	of	editors	are	available	that	you	can	use	in	Linux.	The	focus	of
this	section	is	to	make	you	aware	of	these	editors,	not	to	teach	you	how	to	use
them.

Note
It	is	likely	that	not	all	of	these	editors	will	be	installed	on	your
distribution.	You	might	need	to	install	additional	software	packages
to	have	access	to	them.

Emacs
Like	the	vi	editor,	the	Emacs	editor	was	developed	in	the	mid-1970s.17	Linux
users	who	like	Emacs	will	praise	how	easy	it	is	to	use	and	how	customizable	it
is.	If	you	launch	Emacs	(just	run	the	emacs	command)	while	in	a	GUI-based
terminal,	it	should	open	a	GUI-based	version	of	the	program	as	shown	in	Figure
5.6.	As	you	can	see,	the	GUI-based	version	has	menus	in	addition	to	the
commands	that	you	can	execute	via	the	keyboard.

Figure	5.6	GUI-based	Emacs

If	you	execute	the	Emacs	editor	in	a	command	line–only	environment,	the	editor
will	look	like	Figure	5.7.

Figure	5.7	Text-based	Emacs

GUI	vim?
If	you	install	the	vim-X11	software	package,	you	get	access	to	a
GUI-based	version	of	the	vim	editor.	Just	execute	gvim	or	vim	-g	on
Red	Hat–based	distributions	or	vim-gtk	on	Debian-based
distributions.

gedit	and	kwrite
These	editors	are	fairly	standard	GUI-based	editors	(gedit	comes	with	GNOME
and	kwrite	comes	with	KDE).	If	you	are	used	to	Notepad	on	Microsoft
Windows,	then	you	will	find	these	editors	fairly	easy	to	use	(although	somewhat
limited).
The	gedit	editor	typically	is	installed	on	distributions	that	use	the	GNOME
desktop	by	default.	The	kwrite	(or	KATE)	editor	typically	is	installed	on
distributions	that	use	the	KDE	desktop	by	default.	However,	you	can	easily
install	gedit	on	a	system	that	uses	KDE	desktop	or	install	kwrite	on	a	GNOME
desktop	system.

nano	and	joe
The	vi	and	emacs	editors	are	extremely	powerful.	In	some	cases,	you	might	find
that	you	want	to	just	use	a	simple	edit	in	a	command-line	environment.	The

gedit	and	kwrite	editors	only	work	in	GUI-based	environments.	The	nano	editor
is	also	typically	installed	by	default	on	most	Linux	distros.
The	nano	and	joe	editors	provide	a	simple	interface	for	editing	text	files.	They
are	command	line–only	editors,	so	no	GUI	is	required.	See	Figure	5.8	for	an
example	of	the	nano	editor.

Figure	5.8	The	nano	editor

lime	and	bluefish
The	lime	and	bluefish	editors	take	the	process	of	editing	a	text	file	to	the	next
level	by	providing	tools	and	features	that	are	designed	to	help	a	developer	create
code.	These	tools	provide	features	like	syntax	highlighting,	insertion	of	code	(by
clicking	a	button),	and	automatic	formatting	(like	automatically	indenting	code).
If	you	are	going	to	make	a	career	of	coding	on	Linux,	you	should	start	to	explore
these	tools	(or	many	of	the	other	similar	editing	tools).	See	Figure	5.9	for	an
example	of	the	bluefish	editor.

Figure	5.9	The	bluefish	editor

Linux	Humor
Try	this	one	in	your	shell:
bo@mintos:~	>	cd	/
bo@mintos:/	>	touch	me
touch:	cannot	touch	'me':	Permission	denied

Summary
The	focus	of	this	chapter	was	editors,	primarily	the	vi	or	vim	editor.	We	covered
the	basics	of	editing	files	in	vi/vim,	including	how	to	start	the	editor,	the	three
modes	of	operation,	how	to	add	and	delete	text,	and	some	more	advanced
features.	You	were	also	introduced	to	some	additional	editors	that	are	available
in	Linux.	At	this	point,	using	these	editors	comes	down	to	practice,	which	you
should	get	plenty	of	when	you	start	writing	code	on	Linux.

1	On	some	modern	Linux	distributions,	the	ed	editor	still	exists.	Try	typing	the
command	ed	in	a	terminal	window.	If	the	editor	does	exist	on	your	system,
you	will	be	placed	in	the	ed	editor	environment	(essentially	a	blank	prompt).
In	reality,	the	only	ed	command	you	want	to	know	is	q	because	this	quits	the
ed	editor.

2	By	the	way,	vi	is	pronounced	vee-eye,	not	a	single	syllable	vi.
3	Technically,	it	was	an	improvement	of	the	ex	editor,	which	was	an

improvement	of	the	em	editor,	which	as	an	improvement	of	the	ed	editor.	Use
this	Unix	trivia	to	entertain	your	friends	at	your	next	party.	On	second
thought,	maybe	just	keep	this	nugget	to	yourself.

4	Although	removing	the	vi	editor	is	possible,	I’ve	never	heard	of	any
distribution	that	has	done	so.

5	vim	=	a	contraction	of	Vi	IMproved
6	To	exit	vi/vim,	type	:q	and	then	press	the	Enter	key.
7	Why	use	the	h,	j,	k,	and	l	keys	when	you	can	use	the	arrow	keys?	When	the	vi
editor	was	developed,	most	keyboards	didn’t	have	arrow	keys.	Even	today,
rack-mounted	servers	are	sometimes	connected	to	dump	terminals	that	have
keyboards	that	lack	arrow	keys.

8	Or	visit	the	“Vi	lovers”	page	(http://thomer.com/vi/vi.html)	and	download	one
of	the	reference	cards	under	the	“Vi	pages/manuals/tutorials”	section.
Personally,	I	prefer	to	make	my	own	because	the	commands	that	someone	else
finds	useful,	I	might	not	find	very	helpful.

9	Be	careful	here.	I	once	accidently	typed	the	8	key	twice	before	pressing	the	i
key	to	enter	insert	mode.	After	typing	pages	of	text,	I	pressed	the	Esc	key	and
received	88	times	the	text	that	I	typed.	Read	on	to	learn	how	I	fixed	this
problem	quickly.

10	Actually,	if	you	don’t	move	to	another	line,	you	can	undo	all	changes	on	the
current	line	by	typing	the	u	character	while	in	command	mode.	However,	I
think	you	will	find	that	you’ll	rarely	use	this	feature	because	the	moment	you
move	to	a	new	line,	these	undos	are	lost.

11	Notice	how	similar	these	deleting	commands	are	to	the	copying	commands.
Not	only	did	this	allow	me	to	avoid	a	lot	of	extra	typing	in	this	book	(call	me
lazy,	or	just	an	effective	developer	who	“reuses”	good	“code”),	but	it
highlights	that	most	of	the	copying	commands	are	just	like	deleting
commands,	which	should	make	the	process	of	learning	them	easier.

12	In	a	previous	footnote,	I	mentioned	that	I	once	accidently	inserted	several
pages	of	text	88	times.	To	fix	this,	I	went	to	the	first	line	in	the	second	“set”
and	typed	the	dG	command.	This	deleted	all	but	the	first	copy	of	what	I	had
typed	with	minimal	effort.

13	If	you	are	using	the	vim	editor,	you	can	use	the	delete	key	to	delete	the
character	you	are	currently	on.	However,	the	backspace	key	works	like	a	back
arrow	key.

14	Remember	the	regular	expressions	that	were	covered	in	the	section	on	the

http://thomer.com/vi/vi.html

grep	command	in	Chapter	4?	If	not,	go	back	and	read	that	section	again!
Regular	expressions	show	up	in	many	tools	in	Linux,	including	the	vi	editor.
For	example,	if	you	search	for	^The,	the	vi	editor	will	only	match	lines	that
begin	with	The,	rather	than	The	anywhere	on	the	line.

15	You	can	think	of	g	standing	for	get	them	all.	It	actually	stands	for	global.
16	The	help	feature	comes	with	vim	by	default	on	Debian-based	distributions.
17	Emacs	versus	vi/vim	has	been	referred	to	as	a	“religious	war”	between	the
users	of	these	editors.	It	is	a	war	that	I’ve	always	avoided;	be	aware	that	there
are	some	in	the	Linux	community	who	take	this	war	very	seriously.

6.	System	Administration
System	administration	is	a	huge	topic	that	incorporates	tasks	such	as	configuring
services,	maintaining	the	health	of	the	operating	system,	and	keeping	the	system
secure.	Whole	volumes	have	been	devoted	to	teaching	individuals	how	to
administer	a	Linux	distribution.	As	a	developer,	you	should	consider	leaving	the
heavy	lifting	aspects	of	system	administration	to	full-time	system	administrators.
However,	that	doesn’t	mean	that	you	should	never	take	on	some	of	the
responsibilities	of	system	administration.	Some	tasks	you	will	want	to	be	able	to
accomplish	without	having	to	bother	a	system	administrator.	These	tasks	include
installing	software	and	maintaining	user	accounts.	This	chapter	focuses	on	the
essential	system	administration	tasks	that	all	software	developers	should	have	in
their	skill	set.

Essential	Tasks
In	almost	all	cases,	you	should	log	in	to	the	system	using	a	regular	user	account
and	avoid	logging	in	as	the	root	user	(the	system	administrator	account).
Routinely	executing	commands	as	the	root	user	is	just	asking	for	trouble.
The	root	user	has	full	control	over	the	system,	including	the	capability	to	delete
all	files	and	directories.	The	problem	with	working	as	the	root	user	on	a	regular
basis	is	that	you	can	potentially	damage	your	operating	system,	making	it
unusable.	For	example,	consider	the	following	command	(but	don’t	run	this
command!):
[root@fedora	~]$	rm	-rf	/

If	you	ran	the	preceding	command	while	you	were	logged	in	as	the	root	user,
every	file	and	directory	on	the	system	would	be	removed.	As	a	regular	user,	this
could	result	in	loss	of	files	in	your	home	directory,	but	even	that	could	be
avoided	by	pressing	Ctrl+C	after	you	noticed	all	the	error	messages	that	would
appear	as	you	try	to	delete	files	that	you	don’t	have	permission	to	delete.
So	to	summarize,	the	best	practice	is	this:	Log	in	as	a	regular	user	and	only
assume	the	identity	of	the	root	user	if	you	need	to	perform	a	specific	task	as	the
root	user.

Gaining	Access	to	the	Root	Account
You	can	use	three	techniques	to	assume	the	identity	of	the	root	user:

	Log	in	directly	as	the	root	user:	As	previously	mentioned,	this	is	not	the
ideal	method.	Even	system	administrators	avoid	logging	in	directly	as	the
root	user.
	Use	the	su	command:	With	the	su	command	you	can	switch	user	to	the	root
account	if	you	know	the	root	password.	This	command	opens	a	new	shell,
and	in	that	new	shell	you	can	commands	as	the	root	user.	To	return	to	your
regular	user	account,	you	close	the	shell	by	executing	the	exit	command.
	Use	the	sudo	command:	With	the	sudo	command,	you	can	execute
commands	as	the	root	user	without	having	to	even	know	the	root	password.
However,	this	feature	does	need	to	be	set	up	by	the	system	administrator	to
work	properly.

Let’s	look	at	the	su	and	sudo	commands	in	a	little	more	depth.

Using	the	su	Command
To	use	the	su	command,	execute	the	command	as	shown:
[student@localhost	~]$	id
uid=1000(student)	gid=1000(student)	groups=1000(student),10(wheel)
context=unconfined_
u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[student@localhost	~]$	su	-	root
Password:
[root@localhost	~]#	id
uid=0(root)	gid=0(root)	groups=0(root)
context=unconfined_u:unconfined_r:unconfined_
t:s0-s0:c0.c1023

Note	that	the	id	command	displays	your	current	user	account.	In	this	case	the	id
command	wasn’t	necessary	because	you	can	see	the	current	user	name	in	the
prompt.
You	will	often	see	the	argument	root	omitted	when	using	the	su	command.	If
you	don’t	specify	a	user	account	name,	the	root	user	is	assumed	by	default:
[student@localhost	~]$	su	-
Password:
[root@localhost	~]#	id
uid=0(root)	gid=0(root)	groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The	-	option	is	not	only	strange	because	it	lacks	a	character	after	the	-,	but	it	is
also	very	important.1	Without	the	-	character,	you	will	not	fully	switch	to	the
root	user	account	because	the	login	scripts	for	the	root	user	do	not	execute.	The

best	way	to	demonstrate	the	difference	between	using	the	-	and	not	using	it	is	by
looking	at	the	code	in	Listing	6.1.

Listing	6.1	The	-	option	of	the	su	command
Click	here	to	view	code	image

[student@localhost	~]$	su	root
Password:
[root@localhost	student]#	pwd
/home/student
[root@localhost	student]#	echo	$PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/student/.local/bin:/home/student/bin
[root@localhost	student]#	exit
exit
[student@localhost	~]$	su	-	root
Password:
[root@localhost	~]#	pwd
/root
[root@localhost	~]#	echo	$PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin

Note	that	in	Listing	6.1	when	the	-	was	not	used,	the	current	directory	did	not
change	and	the	value	of	the	$PATH	variable	didn’t	change	to	the	value	for	the	root
user.	Using	the	-	character	fully	switches	you	to	the	root	account,	the	current
directory	switches	to	the	root	user’s	home	directory,	and	the	$PATH	variable	is	set
to	the	proper	value	for	the	root	user	(look	at	the	end:	/root/bin).
In	many	cases,	it	won’t	matter	if	you	use	the	-	character	or	not.	However,
sometimes	not	fully	switching	to	the	root	user	account	can	cause	problems.	The
best	practice	is	to	use	the	-	character	when	switching	to	the	root	account.

Important	Note
Always	remember	that	when	you	finish	executing	commands	that
require	root	privileges,	switch	back	to	your	regular	user	account	by
executing	the	exit	command.

Using	the	sudo	Command
The	sudo	command	allows	you	to	execute	commands	as	the	root	user	without
even	knowing	the	root	password	but	only	if	this	feature	has	already	been
configured.	On	some	distributions,	notably	Ubuntu	and	Mint,	the	sudo	command
is	set	up	for	the	first	user	account	by	default:
bo@mintos:~	>	sudo	id

[sudo]	password	for	bo:
uid=0(root)	gid=0(root)	groups=0(root)

Note	that	the	password	that	was	requested	was	not	the	root	password,	but	rather
the	password	of	the	current	user	(the	bo	user	in	this	case).	The	sudo	command
takes	another	command	as	its	argument	and	will	execute	that	other	command	as
the	root	user	provided	the	correct	password	is	provided	and	the	sudo	command
has	been	set	up	correctly.
To	set	up	the	sudo	command,	add	a	line	like	the	following	in	the	/etc/sudoers
file2:
!!
bo						ALL=(ALL:ALL)	ALL

The	previous	line	would	allow	the	user	bo	to	use	the	sudo	command	to	execute
commands	as	the	root	user.	Note	that	you	can	also	apply	this	feature	to	entire
groups3	as	shown	in	the	following:
bo@mintos:~	>	sudo	grep	%sudo	/etc/sudoers
%sudo	ALL=(ALL:ALL)	ALL
bo@mintos:~	>	id
uid=1000(bo)	gid=1000(bo)
groups=1000(bo),4(adm),24(cdrom),27(sudo),30(dip),
46(plugdev),108(lpadmin),111(sambashare)

So,	the	reason	why	the	bo	user	in	the	previous	example	can	execute	commands
as	the	root	user	using	the	sudo	command	is	because	the	bo	user	is	a	member	of
the	sudo	group.
If	you	need	to	give	sudo	access	to	a	user	or	group,	first	switch	to	the	root	account
and	then	execute	the	visudo	command.	This	command	automatically	edits	the
/etc/sudoers	file	using	the	vi	or	vim	editor.	One	advantage	of	using	the	visudo
command	rather	than	the	regular	vi	or	vim	editor	is	that	the	visudo	command
performs	some	basic	error	checking	when	you	save	your	changes.

Displaying	Disk	Usage
As	a	developer,	displaying	disk	usage	can	be	an	important	task.	The	amount	of
free	space	available	will	have	an	impact	regarding	what	software	you	can	install
on	the	system.	In	addition,	the	programs	you	create	might	be	very	large	or	create
large	files,	so	displaying	disk	usage	can	be	critical	to	making	sure	enough	room
exists	for	your	program	data.
On	a	Linux	system,	the	space	on	the	hard	drive	is	broken	into	chunks	called
partitions	or	volumes.	This	is	also	true	on	other	operating	systems,	such	as

Microsoft	Windows;	however,	typically	the	result	is	a	bit	different.	Making	a
partition	out	of	an	entire	hard	disk	is	common	practice	on	Windows	OS,	whereas
in	Linux	creating	several	partitions	(or	volumes4)	on	one	hard	disk	is	common.
To	display	these	partitions,	including	how	much	space	is	available,	execute	the
df	command	as	shown	in	the	following:5

[student@localhost	~]$	df	-h
Filesystem															Size		Used	Avail	Use%	Mounted	on
/dev/mapper/centos-root		6.7G		4.1G		2.6G		61%	/
devtmpfs																	1.9G					0		1.9G			0%	/dev
tmpfs																				1.9G			88K		1.9G			1%	/dev/shm
tmpfs																				1.9G			17M		1.9G			1%	/run
tmpfs																				1.9G					0		1.9G			0%	/sys/fs/cgroup
/dev/sda1																497M		196M		302M		40%	/boot
tmpfs																				389M		8.0K		389M			1%	/run/user/0

The	Filesystem	column	is	used	to	indicate	the	partition	(/dev/sda1)	or	volume
(/dev/mapper/centos-root).	Lines	that	don’t	represent	a	path	to	a	file,	such	as
devtmpfs	or	tmpfs,	are	memory-based	filesystems	and	are	not	important	for	this
topic.
The	Mounted	on	column	indicates	to	which	directory	structure	the	partition	or
volume	is	attached.	Recall	that,	unlike	Microsoft	Windows,	devices	are	not
assigned	drive	letters	but	rather	are	placed	under	directory	structures,	like	the
/boot	directory.
Based	on	the	output	of	the	df	command,	you	can	see	how	much	space	is
available.	For	example,	in	the	previous	output,	the	/boot	directory	structure
could	support	up	to	302MB	more	data.	The	following	directory	structures	are
normally	the	most	critical	for	developers	to	be	aware	of	the	available	space:

	/usr—Location	where	new	software	will	be	installed
	/home—Home	directories	for	regular	users,	including	your	own	account
	/tmp—A	location	to	store	temporary	files.	As	a	developer	you	might	need	to
create	a	file	to	hold	data	while	your	program	is	executing.	Placing	this	file	in
the	home	directory	of	the	user	who	is	running	the	program	is	not	ideal	(they
might	delete	it	accidently).	The	/tmp	directory	is	the	best	place	to	store	such
a	file.

Note
If	you	don’t	see	/usr,	/home,	or	/tmp	in	the	Mounted	on	column	of	the
output	of	the	df	command,	then	these	directories	are	not	separate
partitions	or	volumes,	but	rather	are	part	of	the	/	directory	structure.

Determining	how	much	space	the	files	in	a	specific	directory	use	on	the	hard
disk	is	also	useful.	This	can	be	important	when	you	want	to	see	how	much	space
the	removal	of	some	large	files	within	a	directory	can	free	up.	To	see	how	much
space	the	files	in	a	directory	(and	all	subdirectories)	are	using,	use	the	du
command:
[student@localhost	~]$	du	-sh	/usr/sbin
54M			/usr/sbin

The	-s	option	displays	a	summary	of	the	entire	base	directory,	rather	than	each
separate	subdirectory.	The	-h	option	shows	human-readable	sizes.

Managing	Software
Most	of	what	appears	in	this	book	works	the	same	(or	at	least	similarly)	on
different	distributions.	Software	management	is	different,	because	three	different
sets	of	tools	are	available	to	enable	you	to	add	and	remove	software.	Which	set
of	tools	you	use	depends	on	the	distribution	on	which	you	are	working:

	yum	and	rpm—These	tools	enable	you	to	manage	software	on	Red	Hat
Enterprise	Linux,	CentOS,	Fedora,	and	other	Red	Hat–based	distributions.
	apt-get	and	dpkg—These	tools	enable	you	to	manage	software	on	Debian,
Ubuntu,	Mint,	and	other	Debian-based	distributions.
	zypper	and	rpm—These	tools	enable	you	to	manage	software	on	SUSE	and
SUSE-based	distributions.

The	rpm	and	dpkg	commands	perform	very	similar	tasks.	Historically,	they	were
designed	to	install	software	packages	that	had	been	downloaded	to	the	local
system.	This	function	is	now	normally	handled	by	the	yum,	apt-get,	and	zypper
commands,	which	are	used	to	both	download	the	package	and	install	it.	These
commands	download	the	package	from	a	server	called	a	repository.
The	advantage	of	the	yum,	apt-get	and	zypper	commands	over	the	rpm	and	dpkg
commands	is	that	package	dependencies	are	automatically	taken	care	of.	So,	if	a
package	needs	three	other	packages	to	work	successfully,	the	yum,	apt-get,	and
zypper	commands	would	also	download	and	install	these	packages.
You	can	also	use	all	of	these	commands	to	remove	software	packages.	Again,	the
yum,	apt-get,	and	zypper	commands	have	an	advantage	over	the	rpm	and	dpkg
commands	because	they	check	dependency	issues	before	removing	the	package.
So,	if	you	try	to	remove	a	package	that	is	required	by	another	package,	an	error
message	appears.

So	why	would	you	ever	use	the	rpm	or	dpkg	commands?	The	yum,	apt-get,	and
zypper	commands	are	really	front-end	programs	that	eventually	run	rpm	and	dpkg
commands.	The	rpm	and	dpkg	commands	have	some	more	powerful	options	that
can’t	be	accessed	by	the	yum,	apt-get,	or	zypper	commands,	particularly	options
regarding	querying	information	regarding	packages.	This	is	much	more	critical
for	system	administrators	than	it	is	for	developers,	so	you	will	likely	run	the	yum,
apt-get,	and	zypper	commands	much	more	often	than	rpm	or	dpkg.
Developers	often	install	new	software	packages	to	enhance	what	features	(or
programming	languages)	they	can	use	on	the	system.	Keep	in	mind	that
installing	and	removing	software	requires	root	privileges.

Listing	and	Finding	Software
Sometimes	one	of	the	challenges	to	installing	software	is	trying	to	find	the
correct	name	for	the	software	package.	On	Red	Hat–based	systems,	you	can
execute	the	yum	search	command	to	query	the	repository	for	packages	that
match	a	word	or	pattern:
[root@localhost	~]#	yum	search	editor	|	head
Loaded	plugins:	fastestmirror,	langpacks
Loading	mirror	speeds	from	cached	hostfile
*	base:	centos.mia.host-engine.com
*	epel:	linux.mirrors.es.net
*	extras:	mirrors.sonic.net
*	updates:	mirror.steadfast.net
========================	N/S	matched:	editor	=========================
ckeditor.noarch	:	WYSIWYG	text	editor	to	be	used	inside	web	pages
ckeditor-samples.noarch	:	Sample	files	for	ckeditor
dconf-editor.x86_64	:	Configuration	editor	for	dconf

The	yum	search	command	can	produce	a	lot	of	output,	so	consider	using	the	grep
command	to	perform	a	secondary	filter:
[root@localhost	~]#	yum	search	editor	|	grep	GUI
nedit.x86_64	:	A	GUI	text	editor	for	systems	with	X
root-guibuilder.x86_64	:	GUI	editor	library	for	ROOT
torrent-file-editor.x86_64	:	Qt	based	GUI	tool	designed	to	create	and
edit
To	search	for	a	package	on	a	Debian-based	system,	use	the	apt-get	search
term	command	(replace	term	with	your	search	term).	To	install	a	package
on	a	SUSE-based	system,	use	the	zypper	search	-t	term	command.

To	list	currently	installed	packages	on	Red	Hat–based	systems,	use	the	yum	list
installed	command:
[root@localhost	~]#	yum	list	installed	|	tail
yelp-libs.x86_64																				1:3.14.2-1.el7															@base

yelp-xsl.noarch																					3.14.0-1.el7																	@base
yum.noarch																										3.4.3-132.el7.centos.0.1					@base
yum-langpacks.noarch																0.4.2-4.el7																		@base
yum-metadata-parser.x86_64										1.1.4-
10.el7																	@anaconda
yum-plugin-fastestmirror.noarch					1.1.31-34.el7																@base
yum-utils.noarch																				1.1.31-34.el7																@base
zenity.x86_64																							3.8.0-5.el7																		@base
zip.x86_64																										3.0-
10.el7																			@anaconda
zlib.x86_64																									1.2.7-15.el7																	@base

The	yum	list	installed	command	also	produces	a	lot	of	output.	Consider	piping
the	output	to	the	more	or	grep	command.	Note	that	the	first	column	of	the	output
of	this	command	displays	the	package	name,	the	second	column	displays	the
version	of	the	package,	and	the	third	column	displays	the	repository	name	where
the	package	was	installed	from.
To	list	all	installed	packages	on	a	Debian-based	system,	use	the	dpkg	-l
command.	To	list	all	installed	packages	on	a	Red	Hat–based	system,	use	the	rpm
-qa	command.

Installing	Software
On	Red	Hat–based	systems,	install	a	package	using	the	yum	install	command	as
shown	in	Listing	6.2.

Listing	6.2	The	yum	install	command
Click	here	to	view	code	image

[student@localhost	Desktop]$	su	-
Password:
[root@localhost	~]#	yum	install	kernel-doc
Loaded	plugins:	fastestmirror,	langpacks
Loading	mirror	speeds	from	cached	hostfile
*	base:	centos.mia.host-engine.com
*	epel:	linux.mirrors.es.net
*	extras:	mirrors.sonic.net
*	updates:	mirror.steadfast.net
Resolving	Dependencies
-->	Running	transaction	check
--->	Package	kernel-doc.noarch	0:3.10.0-327.28.2.el7	will	be	installed
-->	Finished	Dependency	Resolution

Dependencies	Resolved

==
	Package										Arch									Version																Repository					Size
==

Installing:
	kernel-doc							noarch							3.10.0-327.28.2.el7				updates								13
M
Transaction	Summary
==
Install		1	Package
Total	download	size:	13	M
Installed	size:	48	M
Is	this	ok	[y/d/N]:	y
Downloading	packages:
kernel-doc-3.10.0-327.28.2.el7.noarch.rpm																		|		13
MB			00:03
Running	transaction	check
Running	transaction	test
Transaction	test	succeeded
Running	transaction
		Installing	:	kernel-doc-3.10.0-
327.28.2.el7.noarch																								1/1
		Verifying		:	kernel-doc-3.10.0-
327.28.2.el7.noarch																								1/1
Installed:
		kernel-doc.noarch	0:3.10.0-327.28.2.el7
Complete!

To	install	a	package	on	a	Debian-based	system,	use	the	apt-get	install
command.	To	install	a	package	on	a	SUSE-based	system,	use	the	zypper
install	command.

Removing	Packages
Although	developers	often	want	to	install	packages	on	their	own
systems,	wanting	to	remove	or	perform	more	advanced	package
manipulation	commands	is	not	as	common.	The	rpm	and	dpkg
commands	were	mentioned	in	the	event	you	want	to	learn	more
about	package	management,	but	this	is	normally	something	that
interests	system	administrators	more.
In	the	event	you	do	want	to	remove	a	software	package,	switch	to
the	root	account	and	run	the	proper	command	for	your	distribution:6
yum	remove	package_name
apt-get	remove	package_name	or	apt-get	purge	package_name
zypper	remove	package_name

User	Accounts
Typically,	maintaining	user	accounts	is	the	responsibility	of	the	system

administrator.	However,	this	can	also	be	an	important	task	for	a	software
developer	because	you	might	want	to	be	able	to	test	your	software	using
different	user	accounts.	For	example,	you	might	want	to	have	different	accounts
to	test	access	for	unprivileged	users	to	a	database.
This	section	focuses	on	the	basics	of	creating,	modifying,	and	deleting	user
accounts,	and	also	explores	the	topic	of	group	accounts.

Adding	User	Accounts
To	add	a	user	account,	you	need	root	privileges.	GUI-based	tools	are	available
that	you	can	use	to	create	user	accounts.	However,	they	differ	between
distributions.	The	command-line	tools	are	easy	enough	and	you	can	use	them	to
quickly	create	user	accounts.
To	create	a	user	account,	execute	the	useradd	command	as	shown	in	the
following:
[root@localhost	~]#	useradd	julia
[root@localhost	~]#	tail	-1	/etc/passwd
julia:x:1001:1001::/home/julia:/bin/bash
[root@localhost	~]#	ls	/home
julia	student

Notice	the	new	entry	in	the	/etc/password	file,	one	of	the	files	that	contains	user
account	information.	To	see	details	about	the	format	of	this	file,	execute	the	man
5	passwd	command.
The	new	user	was	provided	with	a	home	directory	automatically	(/home/julia).
This	does	not	happen	on	all	distributions;	on	some	distros	you	must	specify	the
name	of	the	home	directory	with	the	-d	option	and	tell	the	useradd	command	to
create	this	home	directory	with	the	-m	option:
[root@localhost	~]#	useradd	-d	/home/julia	-m	julia

Typically	the	default	settings	for	the	user	account	are	fine	for	accounts	that	you
are	creating	for	testing	purposes.	A	few	settings	that	you	might	want	to	modify
include	the	following:

	-s	Specify	the	login	shell.	For	example:	-s	/bin/tcsh
	-g	Specify	the	primary	group	for	the	account.	For	example:	-g	sudo
	-G	Specify	the	primary	group(s)	for	the	account.	For	example:	-G
sudo,payroll

After	creating	the	user	account,	assign	the	new	account	with	a	password	by
executing	the	passwd	command	as	shown	in	the	following:

[root@localhost	~]#	passwd	julia
Changing	password	for	user	julia.
New	password:
Retype	new	password:
passwd:	all	authentication	tokens	updated	successfully.

Bad	Passwords
You	might	get	a	warning	message	like	the	following	when	assigning
a	password	to	a	user	account:
BAD	PASSWORD:	The	password	fails	the	dictionary	check	-	it
is	based	on	a	dictionary	word

If	the	system	you	are	working	on	has	access	to	the	Internet,	you
should	heed	this	warning	and	use	a	more	complex	password.
However,	if	this	is	an	internal-only	system,	making	a	more	complex
password	can	be	more	trouble	than	it	is	worth.
Ask	yourself,	“Will	I	ever	connect	this	system	to	the	Internet?”	If
the	answer	is	“yes,”	make	a	more	complex	password.

Modifying	User	Accounts
To	change	a	user	account,	use	the	usermod	command.	The	usermod	command
accepts	the	same	options	as	the	useradd	command.	So,	to	change	the	login	shell
for	a	user,	use	the	-s	option	as	shown	in	the	following:
[root@localhost	~]#	grep	julia	/etc/passwd
julia:x:1001:1001::/home/julia:/bin/bash
[root@localhost	~]#	usermod	-s	/bin/tcsh	julia
[root@localhost	~]#	grep	julia	/etc/passwd
julia:x:1001:1001::/home/julia:/bin/tcsh

If	you	look	at	the	last	field	of	data	in	the	“julia”	line	of	the	/etc/passwd	file,	you
can	see	that	the	login	shell	has	changed	from	/bin/bash	to	/bin/tcsh.

Deleting	User	Accounts
To	delete	a	user	account,	use	the	userdel	command.	If	you	want	to	delete	both
the	account	and	the	user’s	home	directory,	use	the	-r	option.	Not	using	the	-r
option	removes	the	account	from	the	/etc/passwd	file	(and	other	files	that
contain	user	account	information),	but	does	not	remove	the	user’s	home
directory	and	its	contents.
[root@localhost	~]#	userdel	-r	julia

Understanding	Groups
Chapter	4,	“Essential	Commands”	mentioned	group	accounts	during	the
discussion	on	permissions.	To	understand	how	important	group	membership	is,
consider	the	output	of	the	following	commands:
[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah)
[root@localhost	~]#	ls	-l	/tmp/sample.txt
-rw-r-----.	1	root	wheel	158	Aug	16	21:11	/tmp/sample.txt

Based	on	the	output	of	the	previous	id	command,	you	can	see	that	the	user	sarah
is	a	member	of	one	group	(the	group	named	sarah).	If	you	look	at	the	output	of
the	previous	ls	-l	command,	you	can	see	that	the	/tmp/sample.txt	file	is	owned
by	the	user	root	and	the	wheel	group.	So,	in	this	situation,	the	permissions	for	the
user	sarah	are	---,	the	“others”	section	of	permissions.
What	if	the	root	user	wanted	the	user	sarah	to	be	able	to	view	this	file?	By
adding	the	user	sarah	to	the	wheel	group,	she	would	have	the	permissions	r--,
allowing	her	to	view	the	contents	of	the	file:
[root@localhost	~]#	usermod	-aG	wheel	sarah
[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah),10(wheel)
[root@localhost	~]#	ls	-l	/tmp/sample.txt
-rw-r-----.	1	root	wheel	158	Aug	16	21:11	/tmp/sample.txt

Managing	Groups
To	create	a	new	group,	use	the	groupadd	command:
[root@localhost	~]#	groupadd	staff

To	add	a	user	to	a	group,	use	the	-G	option	to	the	usermod	command.	Very
important:	Make	sure	you	use	the	-a	option	with	the	-G	option.	Using	-G	alone
removes	the	user	from	all	of	their	secondary	groups.	See	the	following	for	the
wrong	way	to	do	this:
[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah),10(wheel)
[root@localhost	~]#	usermod	-G	staff	sarah
[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah),1003(staff)

Notice	the	output	of	the	previous	id	commands.	You	can	see	that	the	usermod
command	removed	the	user	sarah	from	the	wheel	group.	The	following
demonstrates	the	right	way	to	add	a	user	to	a	group:

[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah),10(wheel)
[root@localhost	~]#	usermod	-a	-G	staff	sarah
[root@localhost	~]#	id	sarah
uid=1002(sarah)	gid=1002(sarah)	groups=1002(sarah),10(wheel),1003(staff)

To	remove	a	group,	you	might	want	to	first	use	the	find	command	to	search	the
filesystem	for	all	files	owned	by	that	group:
[root@localhost	~]#	find	/	-group	staff	-ls	2>	/dev/null
27304379	4	-rw-r-----	1	root	staff	158	Aug	16	21:11	/tmp/sample.txt

This	is	an	important	step	because	you	should	change	the	group	ownership	of
these	files	to	another	group	before	removing	the	group.	After	you	change	the
group	ownership,	you	can	use	the	groupdel	command	to	delete	the	group:
[root@localhost	~]#	chgrp	wheel	/tmp/sample.txt
[root@localhost	~]#	ls	-l	/tmp/sample.txt
-rw-r-----.	1	root	wheel	158	Aug	16	21:11	/tmp/sample.txt
[root@localhost	~]#	groupdel	staff

Linux	Humor
If	you	are	like	me	(or	99%	of	folks	who	work	in	Linux),	you	will
eventually	end	up	typing	the	command	sl	instead	of	the	ls
command.	Why	not	make	the	result	a	bit	more	interesting	than
bash:	sl:	command	not	found...?
First,	install	the	package	named	sl	(choose	the	right	command	for
your	distribution):
yum	install	sl
apt-get	install	sl
zypper	install	sl

Now,	type	sl	and	press	the	Enter	key!

Summary
A	system	administrator	performs	many	additional	tasks	that	were	not	covered	in
this	chapter.	However,	the	chapter	did	cover	the	administrative	tasks	that	you,	as
a	software	developer,	might	routinely	perform.	You	should	now	know	to	switch
to	the	root	account	to	perform	system	administration	tasks.	You	also	learned	how
to	display	disk	usage,	add	and	remove	software,	and	manage	group	and	user
accounts.

1	The	-	option	is	the	same	as	the	-l	or	-login	options.
2	Note	that	this	is	a	very	simple	example	and	perfectly	fine	for	a	standalone
system.	However,	for	a	system	in	which	security	is	a	concern,	you	should
learn	more	about	the	sudo	command	or	have	a	system	administrator	set	up	this
feature.

3	A	group	in	Linux	is	a	collection	of	user	accounts.	Managing	groups	is	covered
in	detail	later	in	this	chapter.

4	The	difference	between	a	partition	and	a	volume	is	not	critical	for	developers
to	understand.	If	you	choose	to	become	a	system	administrator,	the	difference
becomes	very	important	because	they	are	managed	differently.	Because	this
book	is	for	developers,	I	have	chosen	not	to	describe	these	differences.
Consider	them	both	to	be	a	container	where	files	and	directories	can	be	stored.

5	Use	the	-h	option	to	show	the	output	in	human-readable	sizes	rather	than	one
kilobyte	block	sizes.

6	The	purge	argument	to	apt-get	removes	the	package	entirely.	The	remove
argument	removes	everything	except	the	configuration	files	(left	behind	in
case	you	reinstall	the	software	at	a	later	date).

III.	Linux	Programming	Languages
One	of	the	more	important	benefits	to	Linux	is	the	vast	amount	of	software	that
is	freely	available	for	the	operating	system.	This	poses	both	advantages	and
disadvantages.	For	example,	having	dozens	of	text	editors	to	choose	from	is	an
advantage	because	that	means	you	aren’t	“locked	into”	using	an	editor	that	you
really	don’t	like.	However,	it	can	also	be	a	disadvantage	because	exploring	the
different	editors	to	find	one	that	suits	you	best	might	take	some	time.
The	same	can	be	said	for	programming	languages.	Many	languages	are
available,	and	finding	the	one	that	best	fits	your	programming	style	often	takes	a
lot	of	trial	and	error.	The	focus	of	this	part	of	the	book	is	to	provide	a	review	of
some	of	the	more	popular	languages	that	are	available	for	Linux.	Chapter	7
provides	general	information	about	these	languages	and	Chapters	8	through	11
provide	additional	details	about	select	languages.

7.	Overview	of	Linux	Programming	Languages

Most	Linux	programming	languages1	can	be	placed	into	two	general	categories:
scripting	languages	(sometimes	called	interpreted	languages)	and	compiled
languages	(sometimes	called	structured	languages).	There	isn’t	a	strict
definition	that	separates	these	categories,	but	the	following	provides	the	essential
differences:

	Complied	languages	cannot	be	executed	directly	from	source	code.	The
source	code	must	be	converted	into	compiled	code	first.
	Scripts	traditionally	are	not	compiled.
	Scripting	languages	are	typically	easier	to	learn.
	Scripts	typically	take	less	coding	to	perform	a	task.

As	an	example	of	how	these	categories	are	not	strictly	defined,	consider	this:
Perl	is	a	popular	scripting	language	that	is	executed	directly	from	source	code,
but	before	executing	it	is	compiled	into	memory	and	the	compiled	form	of	the
code	is	executed.

Scripting	Languages
Many	scripting	languages	are	available	for	Linux,	making	it	difficult	to	create	a
complete	list	in	this	book.	However,	you	should	find	that	the	languages
described	in	this	section	are	the	most	popular	and	widely	used	on	Linux
distributions.

BASH	Shell	Scripting
In	Chapters	2–6	you	learned	the	basics	of	working	in	Linux	and	the	BASH
shell.2	You	can	also	use	those	commands	you	learned	in	shell	scripting
programs.	For	example,	suppose	you	routinely	execute	the	following	commands:
cd	/home
ls	-l	/home	>	/root/homedirs
du	-s	/home/*	>>	/root/homedirs
date	>>	/root/homedirs

Instead	of	executing	each	of	these	commands	manually,	day	after	day,	you	can
place	all	the	commands	into	a	file,	make	the	file	executable,	and	then	run	the	file
as	a	program:

[root@fedora	~]$	more	/root/checkhome.sh
#!/bin/bash

cd	/home
ls	-l	/home	>	/root/homedirs
du	-s	/home/*	>>	/root/homedirs
date	>>	/root/homedirs
[root@fedora	~]$	chmod	a+x	/root/checkhome.sh
[root@fedora	~]$	/root/checkhome.sh

Because	you	can	use	Linux	commands	natively	in	BASH	shell	scripts,	this
scripting	language	can	be	extremely	powerful.	Another	advantage	of	using	this
language	is	that	you	can	be	confident	that	just	about	every	Linux	(and	UNIX)
distribution	will	have	the	BASH	shell,	making	it	easy	to	port	a	script	from	one
system	to	another.
In	addition	to	being	able	to	use	Linux	commands	in	BASH	shell	scripts,	you
should	be	aware	that	this	language	has	other	programming	features,	such	as:

	Variables
	Loop	controls	(if,	while,	and	so	on)
	Exit	status	values
	The	ability	to	source	code	from	other	files

With	all	of	its	advantages,	BASH	shell	scripting	has	some	disadvantages,
including:

	It	lacks	some	advanced	programming	features,	such	as	object-oriented
programming.
	It	is	often	much	slower	than	executing	other	languages	as	each	command	is
normally	executed	as	a	separate	process.3

Even	with	these	disadvantages,	BASH	shell	scripting	is	very	popular	in	Linux.
In	fact,	a	search	for	BASH	scripts	(files	that	end	in	.sh)	on	a	typical	Linux
distribution	normally	yields	hundreds	of	results:
[root@fedora	~]$	find	/	−name	"*.sh"	|	wc	−l
578

Because	of	this,	Chapter	8,	“BASH	Shell	Scripting,”	is	devoted	to	additional
details	regarding	BASH	shell	scripting.

Perl	Scripting
In	the	mid-1980s,	a	developer	named	Larry	Wall	began	work	on	a	new	scripting

language	that	would	eventually	be	named	Perl.	At	the	time	he	was	working	on
UNIX-based	systems,	which	had	tools	such	as	the	C	programming	language,	the
Bourne	Shell	scripting	language	(precursor	to	BASH),	and	sed	and	awk	(more
about	these	tools	later).	However,	none	of	these	tools	worked	as	he	wanted	them
to,	so	he	created	his	own	language.
Of	course,	Larry	didn’t	want	to	lose	the	features	that	he	did	like	about	these
tools,	so	he	combined	the	features	that	he	liked	into	his	new	language.	This
resulted	in	a	language	that	looks	a	bit	like	C,	a	bit	like	shell	scripting,	and	a	bit
like	a	hodgepodge	collection	of	UNIX	utilities.

Which	Scripting	Language	Is	the	Best?
I	believe	trying	to	list	the	pros	and	cons	of	each	scripting	language
is	a	mistake.	To	begin	with,	this	is	often	a	matter	of	opinion.4	For
example,	Perl	is	a	very	flexible	language	whereas	Python	(see	the
next	section)	is	more	structured.	If	I	want	to	write	a	quick	script	and
I	am	not	worried	about	maintaining	the	code	long	term,	then
flexibility	might	be	a	pro	and	structure	a	con.	However,	if	I	was
working	with	multiple	developers	on	a	larger	product,	then	structure
might	be	a	pro	and	flexibility	a	con.
Rather	than	trying	to	compare	and	contrast	the	pros	and	cons	of
each	scripting	language,	I	try	to	focus	on	what	developers	typically
like	about	each	language	and	what	each	language	is	typically	used
for.	I	would	rather	you	decide	what	aspect	of	a	language	is	a	feature
versus	a	liability.

Several	aspects	of	Perl	that	developers	like	include	the	following:
	You	can	very	quickly	write	Perl	code	because	much	of	what	you	need	for
basic	scripting	is	already	built	into	the	core	language.
	Perl	code	is	very	flexible;	you	are	not	limited	by	the	structure	as	much	as
some	other	languages.
	Perl’s	syntax	is	fairly	simple,	derived	primarily	from	the	C	language.
	It	normally	doesn’t	take	very	long	to	learn	Perl.
	Perl	has	very	powerful	features,	such	as	robust	regular	expressions.

Although	Perl	can	be	used	for	many	different	applications,	it	is	often	used	for	the
following:

	Data	parsing—Perl	has	powerful	regular	expression	features	that	make	it
ideal	for	data	munging	(pulling	chunks	from	data	and	generating	reports).
	Web	development—Perl	is	often	a	component	of	LAMP-based5	technology
because	of	its	web	development	features,	including	Common	Gateway
Interface	(CGI).
	Code	testing—Because	Perl	is	easy	and	quick	to	code,	developers	often	use
it	to	create	tools	to	test	their	applications.
	GUI	programs—Additional	Perl	modules	(libraries),	such	as	WxPerl	and
Tk,	provide	Perl	programmers	with	the	option	of	easily	creating	a	GUI-
interface	for	users	to	interact	with	the	Perl	code.
	Administrative	tools—System	administrators	create	Perl	scripts	to	help
them	automate	administrative	tasks.

Chapter	9,	“Perl	Scripting,”	provides	additional	details	regarding	the	creation	of
Perl	programs.

Python	Scripting
The	beginnings	of	Python	are	best	described	by	Guido	van	Rossum,	its	creator,
who	wrote	the	following	as	a	forward	for	a	book	on	Python	published	in	1996:

Over	six	years	ago,	in	December	1989,	I	was	looking	for	a	“hobby”
programming	project	that	would	keep	me	occupied	during	the	week
around	Christmas.	My	office	…	would	be	closed,	but	I	had	a	home
computer,	and	not	much	else	on	my	hands.	I	decided	to	write	an
interpreter	for	the	new	scripting	language	I	had	been	thinking	about	lately:
a	descendant	of	ABC	that	would	appeal	to	Unix/C	hackers.	I	chose
Python	as	a	working	title	for	the	project,	being	in	a	slightly	irreverent
mood	(and	a	big	fan	of	Monty	Python’s	Flying	Circus).

Little	did	he	know	that	Python	would	one	day	become	one	of	the	world’s	most
popular	scripting	languages.	Since	that	fateful	Christmas	break	in	the	late	1980s,
Python	has	developed	over	time	into	a	robust	programming	language	that	is	the
core	of	many	Linux	tools	and	open	source	projects.
One	of	the	driving	philosophies	of	Python	is	well-structured	code.	Python
enforces	this	with	rules	such	as	a	very	rigid	indentation	scheme.	You	can	see
how	seriously	Python	developers	take	the	concept	of	well-structured	code	by
reading	some	of	the	rules	defined	by	the	document	“Zen	of	Python”:

	Beautiful	is	better	than	ugly.

	Explicit	is	better	than	implicit.
	Simple	is	better	than	complex.
	Complex	is	better	than	complicated.
	Flat	is	better	than	nested.
	Sparse	is	better	than	dense.
	Readability	counts.

In	addition	to	being	a	well-structured	language,	the	following	components	make
Python	a	popular	language:

	It	has	object-oriented	features.
	It	has	a	large	standard	library.
	It	is	extendable	or	embedded.
	The	data	structures	provided	by	Python	are	more	diverse	than	those	of	many
languages.

Although	Python	can	be	used	for	many	different	applications,	it	is	often	used	for
the	following:

	Network-based	applications—By	using	Twisted,	a	Python-based	network
framework,	network-based	applications	can	be	developed.
	Web	development—	The	Apache	Web	Server	provides	the	option	of	using
Python	scripts	for	dynamic	websites.
	Scientific	applications—	Several	libraries	are	available	for	Python	that
make	it	a	good	choice	to	create	scientific	applications.
	System	tools—	Linux	developers	often	use	Python	to	create	system	tools
for	the	operating	system.

Additional	details	regarding	the	creation	of	Python	programs	are	provided	in
Chapter	10,	“Python	Scripting.”

Additional	Scripting	Languages
Although	this	book	focuses	on	BASH	shell,	Perl,	and	Python	scripting,	other
scripting	languages	exist	that	you	might	want	to	explore	when	considering	a
Linux	scripting	language.

Ruby
Developed	in	the	mid-1990s	by	Yukihiro	Matsumoto,	Ruby’s	origin	is	best

described	by	its	creator:

I	was	talking	with	my	colleague	about	the	possibility	of	an	object-oriented
scripting	language.	I	knew	Perl	(Perl4,	not	Perl5),	but	I	didn’t	like	it
really,	because	it	had	the	smell	of	a	toy	language	(it	still	has).	The	object-
oriented	language	seemed	very	promising.	I	knew	Python	then.	But	I
didn’t	like	it,	because	I	didn’t	think	it	was	a	true	object-oriented	language
—OO	features	appeared	to	be	add-on	to	the	language.	As	a	language
maniac	and	OO	fan	for	15	years,	I	really	wanted	a	genuine	object-
oriented,	easy-to-use	scripting	language.	I	looked	for	but	couldn’t	find
one.	So	I	decided	to	make	it.6

Initially	Ruby	wasn’t	as	popular	as	Perl	and	Python,	although	it	was	praised	for
being	a	good	object-oriented	scripting	language.	Ruby	became	more	popular
when	Ruby	on	Rails,	a	web	application	framework,	was	introduced.

Ruby	Essentials
Is	it	installed?
root@centos:~#	which	ruby
/usr/bin/ruby

Install	(if	needed):
	Red	Hat/Fedora/CentOS:	yum	install	ruby
	Debian/Mint/Ubuntu:	apt–get	install	ruby

Sample	script:
root@centos:~#	more	hello.rb
#!/usr/bin/ruby
puts	"Hello	World"
root@centos:~#	chmod	a+x	hello.rb
root@centos:~#	./hello.rb
Hello	World

To	learn	more	about	Ruby,	visit	http://www.ruby-lang.org.

PHP
PHP	is	a	recursive	acronym	that	stands	for	PHP:	Hypertext	Preprocessor,
although	when	it	was	originally	released	PHP	stood	for	Personal	Home	Page.
Like	Ruby,	PHP	was	developed	in	the	mid-1990s.	Created	by	Rasmus	Lerdorf	to
dynamically	create	web	pages,	it	has	become	a	popular	scripting	language	for
website	designers.

http://www.ruby-lang.org

PHP	is	an	important	part	of	the	LAMP	architecture.	Seeing	embedded	PHP	code
within	an	HTML	document	is	common.	PHP	can	also	be	used	as	a	standalone
scripting	language.

PHP	Essentials
Is	it	installed?
root@centos:~#	which	php
/usr/bin/php

Install	(if	needed):
	Red	Hat/Fedora/CentOS:	yum	install	php5
	Debian/Mint/Ubuntu:	apt–get	install	php5
Sample	script—	standalone	example:
root@kali:~#	more	hello.php
#!/usr/bin/php
<?php
	echo	"Hello,	world\n";
?>
root@kali:~#	chmod	a+x	hello.php
root@kali:~#	./hello.php
Hello	World

Sample	script—	embedded	HTML	example:
<html>
	<head>
		<title>PHP	Test</title>
	</head>
	<body>
	<?php	echo	'<p>Hello	World</p>';	?>
	</body>
</html>

To	learn	more	about	PHP,	visit	http://www.php.net.

JavaScript
In	the	mid-1990s	the	World	Wide	Web	was	just	starting	to	become	popular.	An
organization	named	Mosaic	Communications	(later	becoming	Netscape
Communications)	had	just	developed	a	graphical	web	browser	and	was
exploring	the	possibility	of	using	a	programming	language	to	enhance	HTML.
Initially	they	chose	to	incorporate	Java.	However,	they	soon	decided	that	a
scripting	language	would	be	a	better	solution.

http://www.php.net

JavaScript	was	designed	to	be	similar	to	Java	in	terms	of	syntax.	However,	it	is
not	a	“spin-off”	or	extension	of	Java,	but	rather	a	scripting	language	that	has
similar	syntax.
In	addition	to	being	heavily	used,	JavaScript	is	also	used	as	an	embedded
scripting	language	in	many	products	including	Adobe	Acrobat,	MongoDB,	and
extensions	for	the	Chrome	and	Opera	web	browsers.

JavaScript	Essentials
Is	it	installed?
JavaScript	is	executed	as	part	of	the	web	browser,	not	typically
installed.	However,	you	can	download	and	install	an	executable
version	from	http://www.	http://javascript-exe.com.
Sample	script—embedded	HTML	example:
				<html>
				<head>
						<title></title>
				</head>
				<body>
					
				<script>
				console.log("hello	world");
				</script>
				</body>
				</html>

To	learn	more	about	JavaScript,	visit	https://developer.mozilla.org.

Tcl
Tcl7	was	created	in	the	late	1980s	by	John	Ousterhout.	The	tool	was	originally
created	for	his	students	to	use	while	he	was	a	professor	at	the	University	of
California,	Berkeley.	As	additional	features	were	added	to	the	language	and
these	students	graduated,	the	popularity	of	the	language	grew.
In	the	early	1990s,	the	scripting	language	market	was	growing	crowded	and	it
was	hard	for	a	newer	language	to	build	traction.	One	of	the	main	reasons	Tcl
became	popular	was	the	introduction	of	Tk,	the	Tool	Kit	extension	to	the	Tcl
language.	Essentially	a	separate	language	itself,	Tk	made	use	of	Tcl	as	a	base
language	and	added	features	that	enabled	developers	to	quickly	and	easily	create
graphical-based,	platform-independent	programs.	The	combination	of	Tcl	and	Tk
is	referred	to	as	Tcl/Tk.

http://javascript-exe.com
https://developer.mozilla.org

Tcl/Tk	Essentials
Is	it	installed	(Tcl=tclsh,	Tk=wish)?
root@centos:~#	which	tclsh
/usr/bin/tclsh
root@centos:~#	which	wish
/usr/bin/wish

Install	(if	needed):
	Red	Hat/Fedora/CentOS:	yum	install	tcl
	Red	Hat/Fedora/CentOS:	yum	install	tk
	Debian/Mint/Ubuntu:	apt-get	install	tcl
	Debian/Mint/Ubuntu:	apt-get	install	tk
Sample	Tcl	script:
root@centos:~#	more	hello.tcl
#!/usr/bin/tclsh
puts	"Hello	World"
root@centos:~#	chmod	a+x	hello.tcl
root@centos:~#	./hello.tcl
Hello	World

Sample	Tk	script:
root@centos:~#	more	hello.tk
#!/usr/bin/wish
button	.hello	-text	"Hello	World"	-command	{	exit	}
pack	.hello
root@kali:~#	chmod	a+x	hello.tk
root@kali:~#	./hello.tk
#Note:	output	is	a	graphical	program

To	learn	more	about	Ruby,	visit	http://www.tcl.tk.

sed	and	awk
The	sed	and	awk	executables	are	command-line	utilities	that	also	have
programming	features.	Typically,	you	use	the	sed	command	to	parse	a	data
stream	(like	a	file)	one	line	at	a	time	and	preform	some	sort	of	change	to	a
document.	For	example,	the	following	sed	command	replaces	all	numbers	with
an	X	character:8

root@centos:~#	more	/etc/hosts
127.0.0.1						localhost
127.0.1.1						centos

http://www.tcl.tk

#	The	following	lines	are	desirable	for	IPv6	capable	hosts
::1					localhost	ip6-localhost	ip6-loopback
ff02::1	ip6-allnodes
ff02::2	ip6-allrouters

root@centos:~#	sed	's/[0-9]/X/g'	/etc/hosts
XXX.X.X.X						localhost
XXX.X.X.X						centos

#	The	following	lines	are	desirable	for	IPvX	capable	hosts
::X					localhost	ipX-localhost	ipX-loopback
ffXX::X	ipX-allnodes
ffXX::X	ipX-allrouters

The	awk	utility	is	designed	to	work	on	database-based	information,	such	as	a
system	file.	For	example,	consider	the	following	data	from	the	/etc/passwd	file:
root@centos:~#	head	/etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

With	the	awk	utility,	we	either	display	or	modify	fields	of	data.	For	example,	to
print	just	the	user	name	(first	field)	and	login	shell	(seventh	field),	use	the
following	awk	command:
root@centos:~#	head	/etc/passwd	|	awk	-F	:	'{print	$1,	$7}'
root	/bin/bash
daemon	/usr/sbin/nologin
bin	/usr/sbin/nologin
sys	/usr/sbin/nologin
sync	/bin/sync
games	/usr/sbin/nologin
man	/usr/sbin/nologin
lp	/usr/sbin/nologin
mail	/usr/sbin/nologin
news	/usr/sbin/nologin

Both	sed	and	awk	are	not	only	powerful	command-line	utilities,	but	they	also
have	simple	programming	features,	such	as	variable	usage	and	flow	control.	For
more	details	on	creating	sed	scripts,	view	the	man	page	for	sed	or	see
https://www.gnu.org/software/sed/manual/sed.html.	The	awk	utility	also	has	a

https://www.gnu.org/software/sed/manual/sed.html

good	man	page	in	addition	to	the	following	website:
https://www.gnu.org/software/gawk/manual/gawk.html.

Compiled	Languages
The	primary	focus	of	this	book	is	to	introduce	developers	to	Linux	and
languages	that	are	specifically	popular	in	Linux.	Complied	languages,	such	as	C,
C++,	and	Java9	are	not	covered	in	great	detail	in	this	book	for	several	reasons:

	These	languages	are	huge	topics	and	more	difficult	to	learn	than	scripting
languages.
	Although	these	languages	certainly	exist	and	are	popular	in	Linux,	they	are
even	more	widely	used	on	non-Linux	platforms,	such	as	Microsoft	Windows
(particularly	C++	and	Microsoft's	C#).	In	other	words,	they	aren't	languages
that	are	primarily	popular	in	Linux	but	standard	languages	commonly	found
on	many	platforms.
	The	assumption	is	that	you	are	already	a	developer	and	likely	already	know
one	or	more	of	these	complied	languages.

Although	this	book	won't	include	specifics	on	how	to	create	C,	C++,	or	Java
programs,	Chapter	11,	“C,	C++,	and	Java,”	does	cover	topics	specifically	related
to	writing	code	in	these	languages	on	Linux	platforms.	This	includes	the
following:

	Handling	system	libraries
	Building	packages
	Java	installation

C	Programming	Basics
In	the	event	that	you	are	not	familiar	with	the	C	language,	here	are	some	basics
that	you	should	be	aware	of:

	It’s	an	older	and	well-established	language.
	It	lacks	object-oriented	features.
	It	is	often	used	for	low-level	tasks,	such	as	the	Linux	kernel.
	It	typically	requires	much	more	coding	because	simple	tasks	require	loading
libraries.
	Code	must	be	compiled	for	a	specific	operating	system:	Write	Once,
Compile	Anywhere	(WOCA).

https://www.gnu.org/software/gawk/manual/gawk.html

C++	Programming	Basics
In	the	event	that	you	are	not	familiar	with	the	C++	language,	here	are	some
basics	that	you	should	be	aware	of:

	It	adds	features	to	C.
	Its	additional	features	include	object-oriented	programming.
	It’s	typically	used	for	more	complicated,	high-level	programming	tasks.
	Code	must	be	compiled	for	a	specific	operating	system:	Write	Once,
Compile	Anywhere	(WOCA).

Java	Programming	Basics
In	the	event	that	you	are	not	familiar	with	the	Java	language,	here	are	some
basics	that	you	should	be	aware	of;	it	is

	An	object-oriented	language
	Designed	to	be	more	flexible	than	C++
	Runs	via	a	“virtual	machine,”	with	the	result	being	more	portable	code:
Write	Once,	Run	Anywhere/Everywhere	(WORA/WORE)

IDEs
As	a	developer	you	might	already	be	familiar	with	Integrated	Development
Environments	(IDEs).	For	example,	if	you	have	developed	C	or	C++	code	on
Microsoft	Windows	platforms,	you	are	likely	familiar	with	Microsoft	Visual
Studio.
An	IDE	provides	you	with	tools	to	make	the	process	of	developing	code	easier.
These	tools	could	include	a	debugger	program,	a	special	editor	that	provides
syntax	highlighting	and	other	features	or	features	that	enable	you	to	insert	new
code	quickly	(and	without	error).
Many	IDEs	are	available	for	Linux.	Some	are	very	specific	to	a	language,
whereas	others	are	a	bit	more	generic.	It	is	also	important	to	note	that	some	of
these	IDEs	are	free,	but	others	might	require	a	fee	of	some	sort	to	use	them.
The	goal	of	mentioning	IDEs	is	to	encourage	you	to	explore	what	is	available.
Suppose,	for	example,	you	explore	the	different	Linux	programming	languages
and	decide	that	Python	is	the	best	language	for	you.	Before	diving	into	the
language	further,	explore	the	available	IDEs	(more	than	a	dozen	exist	just	for
Python)	and	make	a	point	to	learn	how	to	use	the	one	that	best	meets	your
needs.10

Programming	Humor
Algorithm	(noun):	Word	used	by	software	developers	when	they	do
not	want	to	explain	what	their	code	does.

Summary
This	chapter	provided	you	with	a	foundation	in	programming	languages	that	are
commonly	used	on	Linux	distributions.	You	learned	the	difference	between	a
scripting	language	and	a	structured	language.	You	were	also	introduced	to
several	different	scripting	languages	that	are	popular	on	Linux.	The	topics
described	in	this	chapter	lay	the	groundwork	for	the	next	four	chapters	in	which
you	will	learn	more	about	BASH,	Perl,	and	Python	scripting	as	well	as	essentials
regarding	writing	C,	C++,	and	Java	code	on	Linux	distributions.

1	Although	I	refer	to	these	languages	as	“Linux	programming	languages,”	be
aware	that	most	of	these	languages	could	also	be	available	on	other	platforms,
including	Microsoft	Windows.

2	Given	that	BASH	stands	for	Bourne-Again	SHell,	it	is	actually	redundant	to
refer	to	the	scripting	component	of	BASH	as	“BASH	shell	scripting.”
However,	just	as	the	term	ATM	machine	(ATM=Automated	Teller	Machine)
has	become	standard,	the	term	BASH	shell	scripting	has	become	standard.

3	This	isn’t	always	the	case	as	some	commands	are	built-in	shell	commands
that	don’t	require	a	separate	process.

4	Warning:	Discussions	on	this	matter	often	escalate	to	the	level	of	a	serious
“religious	war.”

5	LAMP	=	Linux,	Apache	HTTP	Server,	MySQL,	and	Perl	(or	PHP).	LAMP	is
a	collection	of	technologies	that	make	up	a	solution	stack	to	provide	web
services.

6	Posted	on	the	ruby-talk	mailing	list	in	1999.
7	Originally	Tool	Command	Language,	Tcl	is	commonly	referred	to	as	tickle.
8	Does	the	syntax	's/[0-9]/X/g'	look	familiar?	It	should	remind	you	of	the
search	and	replace	feature	of	the	vi	editor	(see	Chapter	5,	“Text	Editors”).	This
is	because,	like	vi,	sed	was	derived	from	older	UNIX	editors.

9	Technically	Java	isn’t	a	complied	language,	but	it	belongs	more	in	this
category	than	the	scripting	language	category.

10	If	you	follow	my	advice	on	IDEs,	you	will	not	be	sorry.	I	can’t	tell	you	how

many	developers	I	have	spoken	to	who	are	using	simple	text	editors	to	create
their	code	and	not	taking	advantage	of	great	debugging	tools	that	are
available.	They	waste	hours	of	time	by	using	inadequate	tools.	Save	yourself
future	headaches	and	find	a	good	IDE	now,	not	sometime	in	the	future!

8.	BASH	Shell	Scripting
The	primary	benefit	of	BASH	scripting	is	that	you	can	use	everything	that	is
available	in	the	BASH	shell	within	a	BASH	script.	Because	your	Linux
distribution	has	hundreds	(maybe	even	thousands)	of	commands,	each	of	which
can	be	used	in	a	BASH	script,	BASH	shell	scripting	can	be	a	very	powerful	tool.
This	chapter	focuses	on	providing	you	a	firm	understanding	of	how	to	write
basic	BASH	scripts	as	well	as	introducing	you	to	some	of	the	more	advanced
features.

Basics	of	BASH	Scripting
To	an	extent,	you	already	know	many	of	the	basics	of	BASH	scripting	because
you	have	already	learned	many	features	of	the	BASH	shell	in	this	book.	For
example,	you	learned	about	shell	variables	in	Chapter	4,	“Essential	Commands.”
Shell	variables	are	used	in	BASH	scripting	to	store	values.
To	start	a	BASH	script,	enter	the	following	as	the	first	line	of	the	script	file:
#!/bin/bash

This	special	sequence	is	called	the	sha-bang,	and	it	tells	the	system	to	execute
this	code	as	a	BASH	script.

The	Story	Behind	sha-bang
To	understand	the	origin	of	the	term	sha-bang,	you	first	need	to
know	two	other	slang	terms.	In	Linux,	a	#	character	is	called	a	hash
and	a	!	character	is	called	a	bang.	Put	them	together	and	you	get
hash-bang	or	sha-bang	for	short.
Some	documentation	referred	to	this	as	a	she-bang,	but	because	of
the	origin	of	the	term,	I	think	sha-bang	makes	more	sense.	In	any
case,	you	now	know	why	#!	is	called	sha-bang!

Comments	in	a	BASH	script	start	with	a	#	character	and	extend	to	the	end	of	the
line.	For	example:
echo	"hello	world"	#prints	"hello"	to	the	screen

As	shown	in	the	preceding	example,	you	can	use	the	echo	command	to	display
information	to	the	user	who	is	running	a	program.	The	arguments	to	the	echo

command	can	contain	any	text	data	and	can	also	include	the	value	of	a	variable:
echo	"The	answer	is	$result"

After	creating	your	BASH	script	and	saving	it,	you	then	make	it	executable:
[student@OCS	~]$	more	hello.sh
#!/bin/bash
#hello.sh

echo	"hello	world!"
[student@OCS	~]$	chmod	a+x	hello.sh

Now	it	can	be	run	as	a	program	by	using	the	following	syntax:
[student@OCS	~]$./hello.sh
hello	world!

Note	the	need	to	place	./	before	the	name	of	the	command.	This	is	because	the
command	might	not	be	in	one	of	the	directories	specified	by	the	$PATH	variable:
[student@OCS	~]$	echo	$PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

To	avoid	the	need	to	include	./	whenever	you	want	to	run	your	script,	you	can
modify	the	$PATH	variable	to	include	the	directory	in	which	your	script	is	stored.
Typically,	regular	users	create	a	“bin”	directory	in	their	home	directory	and	place
scripts	in	this	location:
[student@OCS	~]$	mkdir	bin
[student@OCS	~]$	cp	hello.sh	bin
[student@OCS	~]$	PATH="$PATH:/home/student/bin"
[student@OCS	~]$	hello.sh
hello	world!

In	addition	to	the	built-in	variables	that	were	discussed	in	Chapter	4,	variables
are	available	in	BASH	scripts	that	represent	the	arguments	being	passed	into	the
script.	For	example,	consider	the	following	execution	of	a	script	called	test.sh:
[student@OCS	~]$	test.sh	Bob	Sue	Ted

The	values	“Bob,”	“Sue,”	and	“Ted”	are	assigned	to	variables	within	the	script.
The	first	argument	(“Bob”)	is	assigned	to	the	$1	variable,	the	second	argument	is
assigned	to	the	$2	variable,	and	so	on.	Additionally,	all	arguments	collectively
are	assigned	to	the	$@	variable.
For	additional	details	regarding	these	positional	parameters	variables,	or
anything	related	the	BASH	scripting,	consult	the	man	page	for	bash:
[student@OCS	~]$	man	bash

Conditional	Expressions
Several	conditional	statements	are	available	for	the	BASH	shell,	including	the	if
statement:
!!
if	[cond]
then
				statements
elif	[cond]
then
				statement
else
				statements
fi

Note	the	following:
	An	else	if	is	spelled	elif	and	is	optional.
	After	the	if	and	elif,	you	need	a	then	statement.	However,	after	an	else,
do	not	include	a	then	statement.
	End	the	if	statement	with	the	word	if	spelled	backwards:	fi

See	Listing	8.1	for	an	example	of	an	if	statement.

Listing	8.1	Sample	if	statement
Click	here	to	view	code	image

!!
#!/bin/bash
#if.sh

color=$1

if	["$color"	=	"blue"]
then
			echo	"it	is	blue"
elif	["$color"	=	"red"]
then
			echo	"it	is	red"
else
			echo	"no	idea	what	this	color	is"
fi

Listing	8.1	used	the	following	conditional	statement:
!!

["$color"	=	"blue"]

Quoting	variables
Get	in	the	habit	of	putting	double	quotes	around	your	variables	in
BASH	scripts.	This	is	important	in	the	event	the	variable	hasn’t
been	assigned	a	value.	For	example,	suppose	the	script	in	Listing
8.1	was	execute	with	no	arguments.	The	result	would	be	that	the
color	variable	is	unassigned	and	the	resulting	conditional	statement
would	be	if	[""	=	"blue"]
The	result	would	be	false,	but	without	the	quotes	around	$color,	the
result	would	be	an	error	message	and	the	script	would	exit
immediately.	This	is	because	the	resulting	conditional	statement
would	be	missing	one	of	its	key	components	after	the	value	of
$color	has	been	returned:	if	[=	"blue"]

This	syntax	performs	an	implicit	call	of	a	BASH	command	named	test	that	you
can	use	to	perform	several	comparison	tests.	This	can	include	integer	(numeric)
comparisons,	string	comparisons,	and	file	testing	operations.1	For	example,	use
the	following	syntax	to	test	whether	the	string	value	that	is	stored	in	the	$name1
variable	does	not	equal	the	string	stored	in	the	$name2	variable:
!!
["$name1"	!=	"$name2"]

Important	Note
The	spacing	around	the	square	brackets	is	very	important.	There
should	be	a	space	before	and	after	each	square	bracket.	Without
these,	an	error	message	occurs.

In	addition	to	determining	whether	two	strings	are	equal	or	not	equal	to	each
other,	you	might	also	find	the	-n	option	useful.2	This	option	determines	whether
a	string	is	not	empty,	which	is	useful	when	testing	user	input.	For	example,	the
code	in	Listing	8.2	reads	data	from	user	input	(the	keyboard),	assigns	the	input	to
the	$name	variable,	and	tests	to	make	sure	the	user	typed	something	for	the	name.

Listing	8.2	Testing	user	input
Click	here	to	view	code	image

[student@OCS	~]$	more	name.sh
#!/bin/bash
#name.sh

echo	"Enter	your	name"
read	name

if	[-n	"$name"]
then
			echo	"Thank	you!"
else
			echo	"hey,	you	didn't	give	a	name!"
fi
[student@OCS	~]$./name.sh
Enter	your	name
Bo
Thank	you!
[student@OCS	~]$./name.sh
Enter	your	name
hey,	you	didn't	give	a	name!

Integer	Comparisons
If	you	want	to	perform	integer	(numeric)	comparison	operations,	use	the
following:

	-eq	True	if	values	are	equal	to	each	other.
	-ne	True	if	values	are	not	equal	to	each	other.
	-gt	True	if	first	value	is	greater	than	second	value.
	-lt	True	if	first	value	is	less	than	second	value.
	-ge	True	if	first	value	is	greater	than	or	equal	to	second	value.
	-le	True	if	first	value	is	less	than	or	equal	to	second	value.

File	Test	Comparisons
You	can	also	perform	test	operations	on	files	and	directories	to	determine
information	about	their	status.	These	operations	include:

	-d	True	if	“file”	is	a	directory.
	-f	True	if	“file”	is	a	regular	file.
	-r	True	if	“file”	exists	and	is	readable	by	the	user	running	the	script.
	-w	True	if	“file”	exists	and	is	writable	by	the	user	running	the	script.
	-x	True	if	“file”	exists	and	is	executable	by	the	user	running	the	script.
	-L	True	if	“first”	value	is	less	than	or	equal	to	second	value.

Flow	Control	Statements
In	addition	to	if	statements,	the	BASH	scripting	language	has	several	other	flow
control	statements:

	The	while	loop—Executes	a	block	of	code	repeatedly	as	long	as	the
conditional	statement	is	true.
	The	until	loop—Executes	a	block	of	code	repeatedly	as	long	as	the
conditional	statement	is	false.	Essentially	the	opposite	of	a	while	loop.
	The	case	statement—Similar	to	an	if	statement	but	provides	an	easier
branching	method	for	multiple	situations.
	The	for	loop—Executes	a	block	of	code	for	each	item	of	a	list	of	values.

The	while	loop
The	following	code	segment	prompts	the	user	for	a	five-digit	number.	If	the	user
complies,	the	program	will	continue	because	the	condition	of	the	while	loop	will
be	false.	However,	if	the	user	provides	incorrect	data,	the	condition	of	the	while
loop	will	be	true	and	the	user	will	be	prompted	for	the	correct	data	again:
!!
echo	"Enter	a	five-digit	ZIP	code:	"
read	ZIP

while	echo	$ZIP	|	egrep	-v	"^[0-9]{5}$"	>	/dev/null	2>&1
do
			echo	"You	must	enter	a	valid	ZIP	code	–	five	digits	only!"
			echo	"Enter	a	five-digit	ZIP	code:	"
			read	ZIP
done

echo	"Thank	you"

The	egrep	command	from	the	previous	example	may	be	a	bit	tricky	to
understand.	To	begin	with,	the	regular	expression	pattern	is	matching	a	value
that	is	exactly	five	digits.	The	–v	option	is	used	to	return	a	value	if	the	pattern	is
not	found.	So,	if	$ZIP	contains	a	valid	five-digit	number,	then	egrep	returns	a
false	result	because	it	is	trying	to	find	lines	that	don’t	contain	a	five-digit
number.	The	egrep	command	returns	a	true	result	if	the	$ZIP	contains	something
besides	a	five-digit	number.
Why	the	>	/dev/null	2>&1?	Because	we	don’t	want	to	display	anything	from	the
egrep	command,	just	make	use	of	its	true/false	return	value.	All	OS	commands
return	true	or	false3	when	executed,	and	that	is	what	is	needed	here.	Any	STDOUT

or	STDERR	from	the	command	is	unnecessary	and	only	serves	to	confuse	matters
if	it	is	displayed	to	the	user.

The	for	Loop
A	for	loop	enables	you	to	perform	an	operation	on	a	set	of	items.	For	example,
the	following	command,	when	run	as	the	root	user,	creates	five	user	accounts:
!!
for	person	in	bob	ted	sue	nick	fred
do
			useradd	$person
done

Loop	Control
Like	most	languages,	BASH	scripting	provides	a	way	to
prematurely	exit	a	loop	or	to	stop	the	current	iteration	of	a	loop	and
start	a	new	iteration	of	a	loop.	Use	the	break	command	to
immediately	exit	a	while,	until,	or	for	loop.	Use	the	continue
command	to	stop	the	current	iteration	of	a	while,	until,	or	for	loop
and	start	the	next	iteration.

The	case	Statement
A	case	statement	is	designed	for	when	you	want	to	perform	multiple	conditional
checks.	Although	you	could	use	an	if	statement	with	multiple	elif	statements,
the	syntax	of	if/elif/else	is	often	more	cumbersome	than	a	case	statement.
The	syntax	for	a	case	statement	is:
!!
case	var	in
cond1)		cmd
													cmd;;
cond2)		cmd
													cmd;;
esac

For	the	preceding	syntax	example,	var	represents	a	variable’s	value	that	you
want	to	conditionally	check.	For	example,	consider	the	following	code:
!!
name="bob"

case	$name	in
ted)		echo	"it	is	ted";;
bob)	echo	"it	is	bob";;
*)					echo	"I	have	no	idea	who	you	are"
esac

The	“condition”	is	a	pattern	that	uses	the	same	matching	rules	as	file	wildcards.
An	*	matches	zero	or	more	of	any	character,	a	?	matches	a	single	character,	and
you	can	use	square	brackets	to	match	a	single	character	of	a	specific	range.	You
can	also	use	a	|character	to	represent	“or.”	For	example,	consider	Listing	8.3,
which	is	used	to	check	a	user’s	answer	to	a	question:

Listing	8.3	Example	of	the	case	statement
Click	here	to	view	code	image

!!
answer=yes

case	$answer	in
y|ye[sp])	echo	"you	said	yes";;
n|no|nope)	echo	"you	said	no";;
*)		echo	"bad	response";;
esac

User	Interaction
The	example	in	Listing	8.3	is	a	bit	of	a	puzzle	because	it	is	intended	to	check
user	input.	However,	the	variable	is	hard	coded.	Using	actual	user	input,	which
the	read	statement	can	gather,	would	make	more	sense:
!!
read	answer

The	read	statement	prompts	the	user	to	provide	information	and	reads	that	data
(technically	from	STDIN)	into	a	variable	that	is	specified	as	the	argument	to	the
read	statement.	See	Listing	8.4	for	an	example.

Listing	8.4	Example	of	the	read	statement
Click	here	to	view	code	image

!!
read	answer

case	$answer	in
y|ye[sp])	echo	"you	said	yes";;
n|no|nope)	echo	"you	said	no";;
*)		echo	"bad	response";;
esac

Additional	Information
Do	you	want	to	learn	more	about	creating	BASH	scripts?	The	following	are
good	resources	for	additional	information:

	man	bash—The	man	page	for	the	BASH	shell	has	a	great	deal	of	information
about	writing	BASH	scripts.
	http://tldp.org—A	website	that	is	(sadly)	mostly	out	of	date.4	However,	it
has	one	gem	of	a	document	called	the	“Advanced	Bash-Scripting	Guide.”
Click	on	the	Guides	link	under	the	Documents	section	and	scroll	down	until
you	see	this	guide.	The	author	of	this	guide	normally	updates	it	on	a	regular
basis.	Because	the	guides	are	listed	by	publication	date,	this	guide	is	almost
always	at	the	top	of	the	list.

BASH	Scripting	Humor
This	isn’t	technically	a	script	humor	item,	but	because	you	will
likely	be	editing	files	using	the	vim	editor…
Open	the	vim	editor	by	executing	the	command	vim	at	the	command
line.	Then	type	:help	42.

Summary
This	book	does	not	cover	some	additional	features	of	BASH	scripting.	However,
the	goal	of	this	chapter	was	to	provide	you	with	enough	information	to
determine	whether	BASH	scripting	is	a	good	language	for	you.	If	you	liked	the
features	and	syntax	of	BASH	scripting,	consider	exploring	the	documentation
provided	to	learn	more	about	this	flexible	language.

1	See	the	man	page	for	test	to	learn	more	about	its	comparison	operations:	man
test

2	A	similar	option,	-z,	returns	true	if	the	string	contains	zero	characters.
3	Technically	they	return	0	for	“true”	and	a	positive	number	for	“false.”
4	It	has	a	few	up-to-date	documents,	but	most	are	very	much	outdated.	Look	at

http://tldp.org

the	publication	date	of	the	document	and	realize	that	anything	older	than	a
couple	of	years	is	probably	no	longer	accurate	(but	still	might	provide	you
with	some	useful	information).

9.	Perl	Scripting
Although	Perl	might	have	started	as	a	simple	scripting	language,	it	has	grown
into	a	robust	language	designed	to	tackle	many	different	coding	situations.	There
is	a	great	deal	to	learn	about	Perl	scripting	(as	well	as	the	other	programming
languages	discussed	in	this	book),	so	don’t	expect	to	become	an	expert
overnight.
This	chapter’s	focus	is	to	give	you	a	firm	understanding	of	how	to	write	basic
Perl	scripts	as	well	as	provide	an	understanding	of	some	of	Perl’s	more	advanced
features.

Basics	of	Perl	Scripting
Perl	is	an	unstructured	language,	which	means	white	space	within	the	program	is
typically	ignored.	For	example,	the	following	code	prints	“hi”	to	the	screen:
print	"hi\n";

This	could	also	be	written	as	follows:1

print
"hi\n"
															;

Note	that	a	semicolon	(;)	is	used	to	end	a	statement	in	Perl.	Also	note	that	the	\n
string	represents	a	newline	character.	The	print	statement	doesn’t	naturally
display	a	newline	character,	which	makes	for	awkward	output	when	multiple
print	statements	are	executed.
Comments	in	Perl	begin	with	a	pound	sign	character	(#)	and	extend	to	the	end	of
the	line.	For	example:
#	This	is	my	first	Perl	script
print	"hello\n";	#displays	"hello"

Executing	Perl	Code
In	most	cases,	you	place	Perl	code	within	a	file	and	execute	the	code	as	shown	in
the	following:
[student@OCS	~]$	more	hello.pl
print	"hello\n";
[student@OCS	~]$	perl	hello.pl
hello

Typing	the	perl	command	before	each	execution	can	become	annoying.	To
avoid	that,	make	use	of	the	#!	line:
[student@OCS	~]$	more	hello.pl
#!/bin/perl

print	"hello\n";
[student@OCS	~]$	chmod	a+x	hello.pl
[student@OCS	~]$./hello.pl
hello

You	can	also	make	use	of	a	feature	called	the	Perl	debugger	to	execute	Perl	code
interactively.	Start	by	executing	the	following	command:	perl	-d	-e	"1;"
The	-d	option	enters	the	Perl	debugger,	which	requires	valid	Perl	code.	The	-e
option	means	“execute	the	code	provided	on	the	command	line.”	The	"1;"	is
valid	Perl	code;	it	doesn’t	do	anything	but	return	the	value	of	true.	The	result	of
this	command	should	be	a	prompt	like	the	one	shown	in	Listing	9.1.

Listing	9.1	The	interactive	Perl	debugger
Click	here	to	view	code	image

[student@OCS	~]$	perl	-d	-e	"1;"

Loading	DB	routines	from	perl5db.pl	version	1.37
Editor	support	available.

Enter	h	or	'h	h'	for	help,	or	'man	perldebug'	for	more	help.

main::(-e:1):	1;
DB<1>

At	the	DB<1	prompt	you	can	type	a	Perl	statement.	Press	the	Enter	key	to	execute
the	command.	This	enables	you	to	test	Perl	code	interactively.2	A	couple	of
things	to	note:

	Normally	you	need	to	place	a	;	character	after	each	Perl	statement.	In	the
Perl	debugger,	the	Enter	key	acts	like	a	;	character.	This	means	you	don’t
need	a	;	character	at	the	end	of	a	Perl	statement	within	the	debugger.
	A	few	things	don’t	work	in	the	Perl	debugger	(for	example,	a	regular
expression	feature	called	backreferencing).	However,	almost	everything
that	works	in	a	Perl	script	also	works	in	the	interactive	Perl	debugger.
	To	exit	the	Perl	debugger,	type	q	and	then	press	the	ENTER	key.

Additional	Perl	Documentation

Perl	is	a	language	that	offers	a	large	number	of	features,	well	beyond	what	is
covered	in	this	book	(or	any	book	for	that	matter).	Fortunately,	you	can	use	a
number	of	resources	to	get	additional	information	about	Perl:

	perldoc.perl.org—Primary	documentation	website.
	man	perl—On	UNIX	and	Linux	systems,	this	command	provides	details
about	Perl.
	perldoc—On	all	platforms,	this	command	provides	information	about	Perl.

The	perldoc	command	is	especially	useful.	Try	running	the	following	command:
perldoc	perl

Man	page-like	output	appears	that	provides	information	about	Perl.	Included	in
this	is	a	list	of	additional	categories	as	shown	in	Figure	9.1.

Figure	9.1	Perl	help	topics

So,	if	you	want	to	learn	about	Perl	regular	expressions,	you	could	execute	the
perldoc	perlrequick	or	perldoc	perlretut	commands.	You	can	view	dozens	of

different	categories	to	learn	more	about	Perl.	As	you	learn	more	details	about
Perl	while	reading	this	book,	consider	diving	into	this	documentation	as	well.

Variables	and	Values
Perl	has	three	data	structure	types:

	Scalar—A	single	data	type	that	can	be	used	as	either	a	string	or	a	number.
	Array—An	ordered	list	of	scalar	values,	separated	by	commas.
	Hash—A	collection	of	unordered	values	that	are	referenced	by	using	a
scalar	key.	Also	called	an	associate	array.

Scalar	variables	are	assigned	and	referenced	using	a	$	character:
[student@localhost	Desktop]$	perl	-d	-e	"1;"

Loading	DB	routines	from	perl5db.pl	version	1.37
Editor	support	available.

Enter	h	or	'h	h'	for	help,	or	'man	perldebug'	for	more	help.

main::(-e:1):	1;
DB<1>	$name="Bob"
DB<2>	print	$name
Bob

Note
To	read	data	from	the	user	(the	keyboard),	use	the	syntax	$name=
<STDIN>;

Several	useful	built-in	Perl	statements	are	used	on	scalars,	including	the
statements	shown	in	Listing	9.2.

Listing	9.2	Useful	scalar	statements
Click	here	to	view	code	image

[student@localhost	Desktop]$	perl	-d	-e	"1;"

Loading	DB	routines	from	perl5db.pl	version	1.37
Editor	support	available.

Enter	h	or	'h	h'	for	help,	or	'man	perldebug'	for	more	help.

main::(-e:1):		1;
		DB<1>	$name=<STDIN>				#grabs	data	from	keyboard	and	assigns	to	$name

Bob	Smith
		DB<2>	print	$name						#prints	"Bob	Smith\n";	\n	is	a	newline
character
Bob	Smith
		DB<3>	chomp	$name						#removes	newline	character	at	the	end	of	string
		DB<4>	print	$name						#prints	"Bob	Smith"	without	newline	character
Bob	Smith
		DB<5>	$name=lc	($name)	#returns	lower	case	"bob	smith"
		DB<6>	print	$name
bob	smith

Arrays	are	defined	by	creating	variables	that	begin	with	an	@	character:
DB<1>	@colors=("red",	"blue",	"green")
DB<2>	print	"@colors"
red	blue	green

One	confusing	element	of	Perl	is	how	you	refer	to	individual	elements	in	an
array.	Because	those	individual	elements	are	scalar	values,	you	use	a	$	character
to	display	a	single	value.	For	example,	to	display	the	first	element	in	an	array
you	do	something	like	the	following:
DB<1>	@colors=("red",	"blue",	"green")
DB<2>	print	$colors[0]
red

Important	statements	that	manipulate	arrays	include	the	following:
	push—Adds	a	new	element	to	end	of	the	array
	unshift—Adds	a	new	element	to	beginning	of	the	array
	pop—Removes	(and	returns)	the	last	element	of	the	array
	shift—Removes	(and	returns)	the	first	element	of	the	array
	splice—Add	or	remove	one	or	more	items	in	any	part	of	the	array
	sort—Sorts	elements	in	an	array

You	can	perform	an	operation	on	each	element	in	an	array	by	using	the	foreach
statement:
DB<1>	@names=("Smith",	"Jones",	"Rothwell")
DB<2>	foreach	$person	(@names)	{print	"Hello,	Mr.	$person\n";}
Hello,	Mr.	Smith
Hello,	Mr.	Jones
Hello,	Mr.	Rothwell

Creating	an	array	can	be	a	pain	because	of	all	the	quotes3	and	commas.	To	make
life	easier,	use	the	qw	or	qq	statements:

		DB<1>	@colors=qq(red	blue	green)	#same	as	@colors=("red",	"blue",
"green")
		DB<2>	@colors=qw(red	blue	green)	#same	as	@colors=('red',	'blue',
'green')

Single	versus	Double	Quotes
A	double-quoted	string	allows	for	special	characters	whereas	a
single-quoted	string	does	not.	For	example,	the	string	"hello\n"
means	hello	followed	by	a	newline	character	(\n	=	newline
character).	However,	the	string	'hello\n'	means	hello\n.

A	hash	(called	a	dictionary	in	some	other	languages)	provides	a	way	to
associate	a	key	with	a	value.	For	example,	to	keep	track	of	the	favorite	color	of
some	people,	you	could	use	the	following	code:
		DB<1>	%favorite=("Sue"	=>	"blue",	"Ted"	=>	"green",	"Nick"	=>	"black")
		DB<2>	print	$favorite{"Ted"}
green

To	see	all	the	keys	in	a	hash,	use	the	keys	command:
		DB<1>	%favorite=("Sue"	=>	"blue",	"Ted"	=>	"green",	"Nick"	=>	"black")
		DB<2>	@people=keys(%favorite)
		DB<3>	print	"@people"
Ted	Nick	Sue

Special	Variables
Several	variables	in	Perl	have	a	special	meaning	to	the	language.
Typically	these	variables	have	cryptic	names,	such	as	$|	or	$_.	For
example,	the	$$	variable	contains	the	process	ID	of	the	Perl	process
itself.
Some	of	these	variables	hold	important	information	whereas	others
can	be	modified	to	change	the	behavior	of	how	Perl	functions.	To
see	a	description	of	all	of	these	special	variables,	visit	this	URL:
http://perldoc.perl.org/perlvar.html.

Flow	Control
Perl	supports	many	traditional	flow	control	statements,	including	the	if
statement:4

$name=<STDIN>;

http://perldoc.perl.org/perlvar.html

chomp	$name;
if	($name	eq	"Tim")
				{
								print	"Welcome,	Tim!";
				}
elsif	($name	eq	"Bob")
				{
								print	"Welcome,	Bob!";
				}
else
				{
								print	"Welcome,	stranger!";
				}

elsif?
Be	careful	when	writing	Perl	if	statements	because	the	“else	if”
statement	is	oddly	spelled.	It	is	a	single	word,	with	the	second	“e”
missing!

Another	common	conditional	statement	is	the	while	loop.	With	the	while	loop,	a
conditional	check	is	performed	and,	if	the	condition	is	true,	a	block	of	code	is
executed.	After	the	block	of	code	is	executed,	the	conditional	check	is	performed
again.	See	Listing	9.3	for	an	example.

Listing	9.3	The	while	loop
Click	here	to	view	code	image

print	"Enter	your	age:	";
$age=<STDIN>;
chomp	$age;

#Make	sure	the	user	entered	a	proper	age:
while	($age	<	0)
{
			print	"You	can't	be	that	young!\n";
			print	"Enter	your	age:	";
			$age=<STDIN>;
			chomp	$age;
}
print	"Thank	you!\n";

Additional	flow	control	statements	include	the	following:
	until—Opposite	of	the	while	statement;	executes	a	block	of	code	as	long	as
the	conditional	statement	returns	false.

	unless—Opposite	of	the	if	statement;	executes	a	block	of	code	if	the
conditional	statement	is	false.
	for—Designed	to	perform	a	specific	number	of	operations.	Example:
for	($i=1;	$i	<=10;	$i++)	{#code}

	foreach—Performs	a	block	of	code	for	each	item	of	a	list	(array).

What	about	Switch	or	Case	Statements?
Natively,	Perl	doesn’t	have	a	switch	or	case	statement.	You	might
see	older	Perl	code	make	use	of	multiple	if/elsif	statements	or
clever	use	of	other	conditional	statements	to	simulate	a	switch
statement.	However,	modern	Perl	provides	a	means	to	access	a
switch-like	statement	called	given:
use	feature	"switch";
				given	($setting)	{
								when	(/^Code/)	{	$code	=	1	}
								when	(/^Test/)	{	$test	=	1	}
								default							{	$neither	=	1	}
				}

The	^Code	and	^Test	are	regular	expressions	and	are	covered	later	in
this	chapter.

Many	languages	support	loop	control	statements	such	as	break	and	continue.
Perl	also	supports	loop	control	statements,	but	they	are	called	last	and	next
instead	of	break	and	continue.	You	can	use	these	loop	controls	statements	in
while,	until	for,	and	foreach	loops.

Conditions
Perl	supports	a	large	variety	of	conditional	expressions,	including	numeric
comparison,	string	comparison,	file	testing	operations,	and	regular	expressions.
You	can	also	use	the	outcome	of	a	Perl	statement,	but	be	aware	that	only	a
handful	of	built-in	Perl	statements	return	a	natural	true	or	false	value.
Numeric	comparisons	include	the	following:

	==	Determine	whether	two	numbers	are	equal	to	each	other.
Example:
if	($age	==	35)	{}

	!=	Determine	whether	two	numbers	are	not	equal	to	each	other.
Example:

if	($age	!=	35)	{}

	<	Determine	whether	one	number	is	less	than	another	number.
Example:
if	($age	<	35)	{}

	<=	Determine	whether	one	number	is	less	than	or	equal	to	another	number.
Example:
if	($age	<=	35)	{}

	>	Determine	whether	one	number	is	greater	than	another	number.
Example:
if	($age	>	35)	{}

	>=	Determine	whether	one	number	is	greater	than	or	equal	to	another
number.
Example:
if	($age	>=	35)	{}

String	comparisons	include:
	eq	Determine	whether	two	scalars	are	equal	to	each	other.
Example:
if	($name	eq	“Bob”)	{}

	ne	Determine	whether	two	scalars	are	not	equal	to	each	other.
Example:
if	($name	ne	“Bob”)	{}

	lt	Determine	whether	one	scalar	is	less	than	another	scalar.
Example:
if	($name	lt	“Bob”)	{}

	le	Determine	whether	one	scalar	is	less	than	or	equal	to	another	scalar.
Example:
if	($name	le	“Bob”)	{}

	gt	Determine	whether	one	scalar	is	greater	than	another	scalar.
Example:
if	($name	gt	“Bob”)	{}

	ge	Determine	whether	one	scalar	is	greater	than	or	equal	to	another	scalar.
Example:
if	($name	ge	“Bob”)	{}

File	test	operators	include:5

	-r	Determine	whether	a	file	is	readable.	Example:	if	(-r	“file”)	{}
	-w	Determine	whether	a	file	is	writable
	-x	Determine	whether	a	file	is	executable
	-T	Determine	whether	a	file	contains	text	data
	-e	Determine	whether	a	file	exists
	-f	Determine	whether	a	file	exists	and	is	a	plain	file
	-d	Determine	whether	a	file	exists	and	is	a	directory6

Regular	expressions	are	a	powerful	feature	in	the	Perl	programming	language.
For	example,	you	can	see	whether	a	pattern	exists	inside	of	a	scalar	variable	by
using	the	following	code:
$name=<STDIN>;
if	($name	=~	m/Bob/)
{
				print	"yes"
}

When	reading	Perl	code,	you	should	be	aware	of	a	few	regular	expression
features:

	You	can	also	perform	substitution	by	using	the	following	syntax:
$name	=~	s/Bob/Ted

	This	replaced	“Bob”	with	“Ted”	in	the	$name	variable.
	Because	matching	is	more	common	than	substitution,	you	can	drop	the	“m”
when	performing	a	match:
if	($name	=~	/Bob/)	{}

	The	$_variable	is	called	the	default	variable	and	is	often	used	by	default.	For
example:
if	($_	=~	/Bob/)	{}	is	the	same	as	if	(/Bob/)	{}

Additional	Features
In	addition	to	reading	from	the	keyboard	(STDIN),	you	can	open	files	and	read
directly	from	the	files.	This	is	referred	to	as	opening	a	filehandle:7

open	(DATA,	"<file.txt");
$line=<DATA>;
close	DATA;				#when	finished,	close	the	filehandle

You	can	also	open	a	file	and	write	to	the	file:
open	(DATA,	">file.txt");

print	DATA	"This	is	output";
close	DATA;		#when	finished,	close	the	filehandle

Another	important	feature	in	Perl	is	functions.	To	create	a	function,	use	the
following	syntax:
sub	welcome
{
print	"This	is	my	function";
}

You	can	call	a	function	by	using	the	following	syntax:
&welcome;

By	default,	any	variable	created	in	the	main	part	of	the	program	is	available	in	a
function.	Additionally,	any	variable	in	a	function	is	available	in	the	main	part	of
the	program:
sub	total
{
		$z=$x	+	$y;			#		$x	and	$y	from	main	program
}

$x=10;
$y=5;
&total;
print	$z;			#		$z	from	total	subroutine

To	make	variables	private,	use	the	my	statement:8

sub	total
{
		my	$z=$x	+	$y;			#		$x	and	$y	are	not	set	here
}

my	$x=10;
my	$y=5;
&total;
print	$z;			#		$z	is	not	set	here

To	reuse	code	in	other	programs,	Perl	has	a	feature	called	modules.	Modules	are
like	libraries	in	other	languages.	By	calling	a	module,	you	will	have	access	to
functions	that	are	shared	by	that	module	to	your	program.
For	example,	the	following	module	call	provides	a	function	called	cwd,	which
displays	the	current	directory:
[student@OCS	~]$	perl	-d	-e	"1;"

Loading	DB	routines	from	perl5db.pl	version	1.37

Editor	support	available.
Enter	h	or	'h	h'	for	help,	or	'man	perldebug'	for	more	help.

main::(-e:1):		1;
		DB<1>	use	Cwd;
		DB<2>	print	cwd;
/home/student

A	few	things	to	note	about	modules:
	By	convention,	module	names	begin	with	a	capital	letter.	If	you	see	a	use
statement	that	calls	something	that	is	in	all	lowercase	characters,	it	isn’t	a
module,	but	rather	another	Perl	feature	called	a	pragma.	Pragmas	are	used
to	change	the	default	behavior	of	Perl	and	are	well	documented	on
perldoc.perl.org	in	the	“Pragmas”	section.
	Perl	comes	with	literally	hundreds	of	built-in	modules	that	enhance	the
functionality	of	the	language	greatly.	These	are	all	well	documented	on
perldoc.perl.org	in	the	“Modules”	section.
	Which	functions	are	provided	by	the	module	depend	on	the	developer	who
created	the	module.	View	the	module	documentation	to	determine	which
functions	are	provided.
	You	can	create	your	own	modules,	but	that	topic	is	beyond	the	scope	of	this
book.	See	perldoc.perl.org	→	language	→	perlmodlib	for	details.

Perl	Humor
Larry	Wall	continues	to	oversee	further	development	of	Perl	and
serves	as	the	benevolent	dictator	for	life	of	the	Perl	project.	His	role
in	Perl	is	best	conveyed	by	the	so-called	2	Rules,	taken	from	the
official	Perl	documentation:
1.	Larry	is	always	by	definition	right	about	how	Perl	should	behave.
This	means	he	has	final	veto	power	on	the	core	functionality.

2.	Larry	is	allowed	to	change	his	mind	about	any	matter	at	a	later	date,
regardless	of	whether	he	previously	invoked	Rule	1.

Got	that?	Larry	is	always	right,	even	when	he	was	wrong.

Summary
As	a	robust	language,	Perl	has	many	additional	features	that	were	not	covered	in
this	chapter.	However,	the	goal	of	this	chapter	was	to	provide	you	with	enough
information	to	determine	whether	Perl	is	a	good	language	for	you.	If	you	liked

http://perldoc.perl.org
http://perldoc.perl.org
http://perldoc.perl.org

the	features	and	syntax	of	Perl,	considering	exploring	the	documentation	sources
provided	to	learn	more	about	this	flexible	language.

1	Just	because	it	could	be	written	this	way	doesn’t	mean	you	should	write	your
code	like	this.	As	with	all	languages,	you	should	try	to	write	Perl	code	that	is
easy	to	read.

2	This	method	also	provides	a	way	for	me	to	demonstrate	Perl	features	without
having	to	create	a	full	Perl	script.

3	Yes,	you	should	use	quotes	around	strings,	even	though	it	seems	like	you
don’t	need	them	in	Perl.	By	default,	Perl	tries	to	use	an	unquoted	value	as	a
function	and	replaces	the	function	call	with	the	return	value	of	the	function.
Placing	quotes	around	the	string	prevents	function	calls.

4	Note	the	formatting	of	this	code.	Perl	really	doesn’t	care	about	formatting,	but
someone	reading	your	code	will.	There	is	no	standard	convention	as	to	how
you	format	your	Perl	code,	but	I	suggest	that	you	at	least	be	consistent	within
the	program	that	you	are	writing	to	make	it	easier	to	read.

5	Note	that	when	you	look	at	Perl	documentation,	file	test	operators	are	not
listed	in	the	section	regarding	operators,	but	rather	under	the	“Functions”
section.	Look	for	–X	under	functions	to	learn	more	about	file	test	operators.

6	I	know	the	wording	of	this	seems	odd,	but	a	directory	is	technically	a	file	in
Linux.	It	is	a	file	that	contains	specific	data,	a	list	of	files	that	are	in	the
directory.

7	Several	techniques	actually	exist	for	reading	from	a	file.	This	is	just	one	of
them.

8	This	is	a	very	simplistic	view	of	variable	scope	in	Perl.	In	reality,	Perl
provides	you	with	the	capability	to	have	a	much	more	robust	(and	complex)
scoping	process.

10.	Python	Scripting
Python	is	a	robust	programming	language	that	provides	many	different	features
that	you	would	expect	from	a	modern	language.	One	of	its	many	benefits	is	the
fact	that	it	is	object-oriented	by	nature,	making	it	a	good	language	for	large	task
programs.
This	chapter’s	focus	is	to	give	you	a	firm	understanding	of	how	to	write	basic
Python	scripts	as	well	as	provide	you	with	an	understanding	of	some	of	Python’s
more	advanced	features.

Basics	of	Python	Scripting
Unlike	Perl	(discussed	in	Chapter	9,	“Perl	Scripting”),	Python	is	very	much	a
structured	language.	It	is	very	sensitive	to	white	space,	to	the	point	that	improper
white	space	usage	causes	a	program	to	crash	with	compile	errors.
When	you	create	a	block	of	code,	you	must	indent	the	entire	block	with	the	same
number	of	white	space	characters.	For	example,	consider	the	following	code
fragment,	focusing	on	how	the	code	is	indented:
x	=	25
if	x	>	15:

					print	x
					a	=	1
else:

print	x
						a	=	2

The	preceding	code	fragment	results	in	a	compile	time	error	message	because
the	second	print	statement	isn’t	properly	indented.	The	positive	thing	about
enforced	structure	is	that	it	makes	your	code	easier	to	read	(for	both	others	and
yourself	when	you	look	over	code	that	you	wrote	months	or	years	ago).	The
negative	thing	is	that	it	can	be	a	pain	when	you	miss	a	space	or	accidently	use	a
tab	instead	of	four	spaces.1

Use	an	Editor	to	Avoid	Indentation	Issues
To	avoid	issues	with	indentation,	use	an	editor	designed	to	perform
auto	indentation.	Many	such	editors	are	designed	specifically	for
Python,	but	you	can	also	use	a	generic	editor	such	as	vim.

To	enable	auto	indentation	in	vim,	start	the	editor	and	then	execute
the	command	:set	autoindent.	Bonus:	If	you	edit	a	file	that	ends
with	.py,	the	vim	editor	will	color	code	key	Python	statements.

Executing	Python	Code
Currently,	the	two	primary	versions	of	Python	are	2.x	and	3.x.	At	the	time	of	the
writing	of	this	book,	version	2.x	was	the	more	popular	of	the	two,	so	the	book
covers	2.x	syntax.	To	determine	which	version	of	Python	is	installed	on	your
Linux	distribution,	execute	the	python	command	with	the	-V	option	or	enter	the
Python	interactive	shell	by	executing	the	python	command	with	no	arguments:
[student@OCS	~]$	python
Python	2.7.5	(default,	Oct	11	2015,	17:47:16)
[GCC	4.8.3	20140911	(Red	Hat	4.8.3-9)]	on	linux2
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>	quit()
[student@OCS	~]$

Note	that	the	python	command	not	only	displays	the	version	of	Python,	but	it
also	places	you	into	an	interactive	Python	shell	where	you	can	test	Python	code
on	the	fly.	To	exit	this	Python	shell,	enter	the	quit()	statement	as	shown	in	the
previous	example.
To	execute	a	Python	script	that	is	stored	in	a	file,	use	the	following	syntax:
[student@OCS	~]$	python	script.py

Typing	the	python	command	before	each	execution	can	become	annoying.	To
avoid	that,	make	use	of	the	#!	line:
[student@OCS	~]$	more	hello.py
#!/bin/python

print	"hello"
[student@OCS	~]$	chmod	a+x	hello.py
[student@OCS	~]$./hello.py
hello

As	demonstrated	from	the	previous	example,	the	print	statement	in	Python	is
used	to	produce	output.	By	default,	this	output	goes	to	STDOUT.

A	Note	about	.pyc	and	.pyo	Files
Your	Python	script	names	should	end	with	.py.	You	will	sometimes
also	see	files	that	end	in	.pyc,	and	this	can	lead	to	some	confusion.

Not	touching	these	files	is	best	because	they	are	compiled	versions
of	Python	code	and	not	something	that	you	can	edit	directly.
These	files	are	created	when	a	Python	library	is	called.	The	idea	is
that	the	compile	process	takes	time	and	each	time	a	library	is	called,
its	code	would	have	to	be	compiled.	To	make	the	process	more
efficient,	Python	automatically	saves	this	code	into	files	that	end	in
.pyc.	So,	if	you	call	a	library	called	input.py,	you	should	expect	to
see	a	file	called	input.pyc	after	the	program	that	calls	the	library	is
executed.
When	Python	is	invoked	with	the	-O	option,	a	.pyo	file	is	generated.
Like	.pyc	files,	this	is	compiled	code,	but	it	is	optimized	complied
code.

Additional	Documentation
Initially	you	probably	want	to	look	at	the	man	page	for	python:	man	python.	This
provides	you	with	some	of	the	basics	of	the	python	executable,	but	there	isn’t
much	focus	on	how	to	write	code	in	Python.
However,	at	the	bottom	of	the	python	man	page	are	some	very	useful	links	to
additional	documentation,	as	shown	in	Figure	10.1.

Figure	10.1	Python	documentation

The	URL	http://docs.python.org/	will	likely	be	the	most	useful	resource	when
you	start	learning	Python,	but	the	other	links	will	also	prove	valuable	over	time.

Variables	and	Values
Python	has	several	data	structure	types,	including:

	Numeric	variables—A	single	data	type	that	is	used	to	store	numeric	values.
	String	variables—A	single	data	type	that	is	used	to	store	string	values.
	Lists—An	ordered	list	of	numeric	or	string	values.

http://docs.python.org/

	Dictionaries—A	collection	of	unordered	values	that	are	referenced	by	using
a	key.

Numbers	and	strings	are	different	in	that	you	can	perform	certain	operations	on
numbers	(addition,	subtraction,	and	so	on)	but	not	on	strings	as	demonstrated	in
Listing	10.1.

Listing	10.1	Numbers	versus	strings
Click	here	to	view	code	image

[student@localhost	Desktop]$	python
Python	2.7.5	(default,	Oct	11	2015,	17:47:16)
[GCC	4.8.3	20140911	(Red	Hat	4.8.3-9)]	on	linux2
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>	a=100
>>>	print	a
100
>>>	b=200
>>>	print	a	+	b
300
>>>	c="hello"
>>>	print	a	+	c
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
TypeError:	unsupported	operand	type(s)	for	+:	'int'	and	'str'

Note	the	error	that	occurred	in	the	last	statement	of	Listing	10.1	when	the	string
variable	was	used	in	a	numeric	operation.
Python	has	a	rich	set	of	operations	that	can	be	performed	on	strings.	For
example,	you	can	use	the	following	to	capitalize	a	string:
>>>	name="ted"
>>>	name=name.capitalize()
>>>	print	name
Ted

Python	is	an	object-oriented	language.	Variables	store	typed	objects	(numeric
type,	string	type,	and	so	on),	and	to	call	a	method	on	an	object,	you	use	the
notation	var.method().	So,	name.capitalize()	calls	the	capitalize	method	on
the	object	in	the	name	variable.
Note	that	Python	has	a	few	traditional	functions	as	well.	For	example,	consider
the	following	code:
>>>	name="ted"
>>>	print	len(name)

3

The	len	function	takes	an	object	as	an	argument	and	returns	the	length	of	the
object.	Granted,	using	both	method	calls	and	functions	can	sometimes	be
confusing,	but	keep	in	mind	that	most	of	Python	consists	of	method	calls,	and
functions	are	fairly	rare.
To	create	a	list,	use	the	following	syntax:
>>>	colors=["red",	"blue",	"yellow",	"green"]
>>>	print	colors
['red',	'blue',	'yellow',	'green']

Use	the	following	notation	to	access	elements	in	a	list:
>>>	colors=["red",	"blue",	"yellow",	"green"]
>>>	print	colors[1]
blue
>>>	print	colors[1:3]
['blue',	'yellow']

Important	methods	that	manipulate	lists	include	the	following:
	append—Adds	a	new	element	to	the	end	of	the	list.
	insert—Adds	a	new	element	to	a	specific	position	in	the	list.
	extend—Adds	the	elements	of	a	list	to	another	list.
	del—Removes	an	element	from	a	list	based	on	an	index	position.
	pop—Removes	the	last	element	from	a	list.
	remove—Removes	an	element	from	a	list	based	the	value	of	the	element.

The	Tuple
You	are	likely	to	come	across	another	data	structure	that	works
much	like	a	list	called	a	tuple.	Consider	a	tuple	to	be	a	list	that,
once	created,	can’t	be	modified.	Technically,	tuples	are	immutable,
a	fancy	way	of	saying	unchangeable.	They	are	a	clever	way	of
having	constant-like	data	structures.

To	create	a	dictionary	in	Python,	use	the	following	syntax:
>>>	age={'Sarah':	25,	"Julia":	18,	"Nick":	107}
>>>	print	age
{'Sarah':	25,	'Nick':	107,	'Julia':	18}
>>>	print	age['Sarah']
25

To	add	a	key-value	pair	to	a	dictionary,	use	the	following	syntax:
>>>	age['Bob']=42

Times	occur	when	you	will	want	to	get	a	list	of	all	the	keys	of	a	dictionary.	To
accomplish	this,	use	the	keys()	method:2

>>>	age={'Sarah':	25,	"Julia":	18,	"Nick":	107}
>>>	print	age.keys()
['Sarah',	'Nick',	'Julia']

Other	Data	Structures
Python	has	other	data	structures	that	you	should	consider	exploring.
For	example,	you	can	create	sets	of	data	within	Python.	This	is
useful	because	set	objects	have	methods	that	enable	you	to	find
items	that	appear	in	two	sets	or	items	that	only	appear	in	a	specific
set.

Flow	Control
Python	supports	many	traditional	flow	control	statements,	including	the	if
statement:
age=15
if	age	>=	16:
				print	"you	are	old	enough	to	drive"
elif	age	==	15:
				print	"you	are	old	enough	for	a	permit"
else:
				print	"sorry,	you	can't	drive	yet"

Another	common	conditional	statement	is	the	while	loop.	With	the	while	loop,	a
conditional	check	is	performed	and,	if	the	condition	is	true,	a	block	of	code	is
executed.	After	the	block	of	code	is	executed,	the	conditional	check	is	performed
again.	See	Listing	10.2	for	an	example.

Listing	10.2	The	while	loop
Click	here	to	view	code	image

#!/bin/python

age	=	int(raw_input('Please	enter	your	age:	'))

while	(age	<	0):

				print	"You	can't	be	that	young!";
				age	=	int(raw_input('Please	enter	your	age:	'))

print	"Thank	you!";

Note	that	in	Listing	10.2,	the	raw_input()	function	gets	data	from	the	user
(STDIN,	likely	the	keyboard)	and	the	int()	function	converts	this	data	into	an
integer	object.
To	perform	an	operation	on	each	item	of	a	list,	use	the	for	loop:
>>>	colors=["red",	"blue",	"yellow",	"green"]
>>>	for	hue	in	colors:
...				print	hue
...
red
blue
yellow
green

Many	languages	support	loop	control	statements	such	as	break	and	continue.
Python	has	these	statements,	which	you	can	use	in	while	loops	or	for	loops.	The
break	statement	exits	the	loop	prematurely	and	the	continue	statement	stops	the
current	iteration	of	the	loop	and	starts	the	next	iteration.	Python	also	supports	an
else	statement	that	you	can	use	to	execute	additional	code	if	the	loop	is
terminated	without	a	break	statement.

Conditions
Python	supports	a	large	variety	of	conditional	expressions,	which	enable	you	to
perform	comparison	operations	on	like	objects.	For	example,	you	can	compare
strings	to	strings,	dictionaries	to	dictionaries,	and	so	on.
Comparison	operators	include	the	following:

	==	Determine	whether	two	objects	are	equal	to	each	other.
	!=	Determine	whether	two	objects	are	not	equal	to	each	other.
	<	Determine	whether	one	object	is	less	than	another	object.
	<=	Determine	whether	one	object	is	less	than	or	equal	to	another	object.
	>	Determine	whether	one	object	is	greater	than	another	object.
	>=	Determine	whether	one	object	is	greater	than	or	equal	to	another	object.

Additional	Features
In	addition	to	reading	from	the	keyboard,	you	can	open	files	and	read	directly

from	the	files.	For	example:
>>>	data=open('test.py',	'r')
>>>	print	data
<open	file	'test.py',	mode	'r'	at	0x7f4db20ba1e0>

The	first	argument	to	the	open	statement	is	the	filename	to	open.	The	second
argument	is	how	to	open	it.	The	value	'r'	means	to	open	the	file	for	reading.
You	can	also	open	a	file	and	write	to	the	file	by	using	the	value	of	'w'.
You	can	use	several	methods	for	reading	from	and	writing	to	a	file	after	opening
it:

	read()—Reads	the	entire	file.	Example:	total	=	data.read().
	readline—Reads	one	line	from	the	file.
	write—Writes	data	to	a	file.	Example:	data.write("hello").

Another	important	feature	in	Python	is	functions.	To	create	a	function,	use	the
following	syntax:
def	welcome():
			print	"This	is	my	function"

You	can	call	a	function	by	using	the	following	syntax:
welcome()

To	reuse	code	in	other	programs,	Perl	has	a	feature	called	modules.	By	calling	a
module,	you	have	access	to	functions	that	are	shared	by	that	module	in	your
program.
For	example,	the	following	module	call	provides	a	function	called	path	that
displays	a	list	of	directories	where	Python	libraries	are	held:
>>>	import	sys
>>>	print	sys.path
['',	'/usr/lib64/python27.zip',	'/usr/lib64/python2.7',
'/usr/lib64/python2.7/plat-linux2',	'/usr/lib64/python2.7/lib-tk',
'/usr/lib64/python2.7/lib-old',	'/usr/lib64/python2.7/lib-dynload',
'/usr/lib64/python2.7/site-packages',	'/usr/lib64/python2.7/site-
packages/gtk-2.0',	'/usr/lib/python2.7/site-packages']	/home/student

Programming	Humor
Definition	of	recursion:
1.		Stop	when	you	understand	the	definition.
2.	See	definition	of	recursion.

Summary
This	chapter	serves	as	an	introduction	to	the	Python	language.	As	with	most
languages	discussed	in	this	book,	Python	offers	many	other	features.	The
purpose	of	this	chapter	was	to	introduce	you	to	the	language	to	determine
whether	it	might	meet	your	software	development	needs.

1	You	might	be	thinking,	“Why	did	he	say	four	spaces	and	not	five	or	eight?”
Python	Enhancement	Proposals	(PEPs)	are	a	major	component	of	Python
development.	PEP8	is	the	“Style	Guide	for	Python	Code,”	and	it	states	that	the
standard	for	indentation	is	four	spaces.

2	Note	that	the	return	value	of	the	keys	are	not	in	the	order	they	were	originally
created	in.	Remember	that	a	dictionary	is	an	unordered	collection	of	key-value
pairs.

11.	C,	C++,	and	Java
The	purpose	of	this	chapter	is	different	from	the	last	three	chapters.	Although	the
goals	of	Chapters	8–10	were	to	introduce	you	to	new	languages,	the	assumption
in	this	chapter	is	that	you	already	have	a	background	coding	C,	C++,	or	Java.
These	languages	are	popular	on	all	operating	systems,	including	Microsoft
Windows.
Instead	of	covering	the	basics	of	C,	C++,	and	Java,	the	focus	on	this	chapter	is
on	topics	that	are	related	to	these	languages.	Specifically,	the	goal	is	to	provide
you	with	information	regarding	the	Linux	operating	system’s	impact	on	how	you
create	programs	in	these	languages.

Understanding	System	Libraries
A	library	is	a	file	that	contains	compiled	code	(typically	C	or	C++)	that
developers	use	to	add	more	functionality	to	their	programs.	Normally	a	library
includes	functions	and	declarations	that	are	shared	with	the	calling	program.
Rarely	does	a	library	do	anything	on	its	own	because	the	goal	is	to	define	things
that	will	be	used	by	the	calling	program.
Another	program	calls	libraries	via	the	#include	statement	in	the	source	code.
For	example:
#include	<stdio.h>

The	two	types	of	library	calls	are
	Static:
	Code	that	is	included	in	the	program	at	compile	time
	Filename	typically	ends	in	.a
	Makes	binary	larger,	but	doesn’t	require	additional	run-time	files

	Shared:
	Code	is	included	at	run	time
	More	flexible	(can	change	library	at	any	time)
	Binary	code	is	smaller;	however,	missing	library	causes	program	not	to
execute

Managing	Shared	Library	Files

On	production	machines,	the	task	of	managing	shared	library	files	is	often	the
responsibility	of	the	system	administrator.	However,	on	your	own	system	you
may	take	on	this	responsibility.	Even	if	you	don’t,	understanding	the	basics	of
how	these	files	are	managed	can	make	you	a	better	developer.
Usually,	shared	library	files	are	stored	in	one	of	the	following	locations	on	Linux
distributions:

	/lib	or	/lib64
	/usr/lib	or	/usr/lib64
	/usr/local/lib	or	/usr/local/lib64

If	your	operating	system	is	a	32-bit	distribution,	expect	to	see	the	libraries	under
/lib,	/usr/lib,	and	/usr/local/lib.	On	64-bit	platforms,	the	/lib64,
/usr/lib/64,	and	/usr/local/lib64	directories	are	where	you	can	expect	to	file
libraries.	You	may	also	see	file	libraries	under	the	32-bit	directories	because
some	applications	may	run	as	32-bit	even	under	a	64-bit	operating	system.	See
Figure	11.1	for	an	example	of	the	/lib64	directory.

Figure	11.1	Shared	libraries.

These	shared	libraries	follow	the	naming	convention	of	libname.so.ver.	In	this
case,	the	name	is	a	unique	name	for	the	library	and	ver	is	used	to	indicate	the
version	number	of	this	library—for	example,	libkpathsea.so.6.1.1.
The	idea	of	managing	shared	libraries	on	the	system	is	to	add	or	remove	libraries
as	needed.	This	requires	access	to	the	system	as	the	root	user	because	only	the
root	user	can	modify	the	configuration	files.
The	primary	configuration	file	for	shared	libraries	is	the	/etc/ld.so.conf	file.
However,	typically	only	a	single	line	is	in	this	file:

[root@localhost	~]#	more	/etc/ld.so.conf
include	ld.so.conf.d/*.conf

The	include	line	in	this	file	tells	the	system	to	also	use	all	the	configuration	files
in	the	specified	directory.	In	the	case	of	the	preceding	example,	that	would	be	all
the	files	that	end	in	.conf	in	the	/etc/ld.so.conf.d	directory:
[root@localhost	~]#	ls	/etc/ld.so.conf.d
dyninst-x86_64.conf																libiscsi-x86_64.conf
kernel-3.10.0-327.el7.x86_64.conf	mariadb-x86_64.conf

A	big	advantage	exists	for	using	this	include	method.	Suppose	you	create	some
software	that	requires	some	shared	libraries.	To	install	that	software	on	a	system,
you	need	to	tell	the	system	where	these	new	libraries	are.	Instead	of	having	to
create	an	installation	program	that	modifies	the	primary	configuration	file
(/etc/ld.so.conf),	your	installation	program	can	simply	copy	a	configuration
file	into	the	/etc/ld.so.conf.d	directory.	Conversely,	the	uninstall	program	that
you	create	to	remove	the	software	could	simply	delete	this	file	from	the
/etc/ld.so.conf.d	directory.
The	configuration	file	itself	is	simple.	It	just	contains	a	directory	in	which	the
shared	libraries	are	stored:
[root@localhost	~]#	more	/etc/ld.so.conf.d/libiscsi-x86_64.conf
/usr/lib64/iscsi
[root@localhost	~]#	ls	/usr/lib64/iscsi/
libiscsi.so.2	libiscsi.so.2.0.10900

To	add	new	shared	libraries	to	the	system,	you	first	download	the	libraries	to	the
system	and	place	them	into	a	directory.	After	adding	new	libraries,	you	create	a
configuration	file	in	the	/etc/ld.so.conf.d	directory	and	then	execute	the
ldconfig	command.1	You	should	perform	all	of	these	tasks	as	the	root	user:
[root@localhost	~]#	ls	/usr/lib64/test
mylib.so.1
[root@localhost	~]#	cat	/etc/ld.so.conf.d/libtest.conf
/usr/lib64/test
[root@localhost	~]#	ldconfig

Regular	users	can’t	successfully	execute	the	ldconfig	command.	However,	if	a
regular	user	wants	to	use	a	custom	shared	library,	then	the	user	can	download
this	file	into	her	home	directory	and	make	use	of	the	LD_LIBRARY_PATH	to	indicate
the	location	of	custom	library	files:
[student@localhost	~]$	ls	lib
mylib.so.1
[student@localhost	~]$	export	LD_LIBRARY_PATH=/home/student/lib

Viewing	Shared	Library	Files
You	can	see	what	shared	libraries	a	specific	command	uses	by	using	the	ldd
command	as	demonstrated	in	Listing	11.1.

Listing	11.1	The	ldd	command
Click	here	to	view	code	image

[root@localhost	~]#	ldd	/bin/cp
linux-vdso.so.1	=>	(0x00007ffc35df9000)
libselinux.so.1	=>	/lib64/libselinux.so.1	(0x00007f93faa09000)
libacl.so.1	=>	/lib64/libacl.so.1	(0x00007f93fa800000)
libattr.so.1	=>	/lib64/libattr.so.1	(0x00007f93fa5fa000)
libc.so.6	=>	/lib64/libc.so.6	(0x00007f93fa239000)
libpcre.so.1	=>	/lib64/libpcre.so.1	(0x00007f93f9fd8000)
liblzma.so.5	=>	/lib64/liblzma.so.5	(0x00007f93f9db2000)
libdl.so.2	=>	/lib64/libdl.so.2	(0x00007f93f9bae000)
/lib64/ld-linux-x86-64.so.2	(0x00007f93fac42000)
libpthread.so.0	=>	/lib64/libpthread.so.0	(0x00007f93f9992000)

The	purpose	of	using	the	ldd	command	is	to	troubleshoot	problems	with	code
that	you	are	writing.	This	command	tells	you	not	only	what	libraries	are	being
called,	but	specifically	which	directory	each	library	is	being	called	from.	This
can	be	extremely	useful	when	a	library	is	not	behaving	as	you	would	expect	it	to
behave.

Building	Packages
You	have	successfully	completed	creating	your	software	and	are	ready	to
package	the	software	so	it	can	be	installed.	The	two	common	techniques	for
packaging	software	are	by	using	RPM	and	Debian.2	Typically,	you	use	RPM	to
build	packages	on	Red	Hat–based	distributions	(RHEL,	Fedora,	CentOS,	and	so
on)	and	Debian	on	Debian-based	systems	(Debian,	Ubuntu,	Mint,	and	so	on).

Note
Creating	a	software	package	with	RPM	or	Debian	can	be	very
complex.	The	examples	provided	in	this	chapter	are	very	general
and	designed	to	provide	an	overview	of	how	to	build	packages.

Building	RPM	Packages
To	build	an	RPM,	first	install	the	rpm-build	software	package	as	demonstrated	in
Listing	11.2.	(Note	that	some	output	of	the	yum	command	was	removed.)

Listing	11.2	Install	rpm-build
Click	here	to	view	code	image

[root@localhost	~]#	yum	-y	install	rpm-build
Resolving	Dependencies
-->	Running	transaction	check
--->	Package	rpm-build.x86_64	0:4.11.3-17.el7	will	be	installed
-->	Processing	Dependency:	patch	>=	2.5	for	package:	rpm-build-4.11.3-
17.el7.x86_64
-->	Processing	Dependency:	system-rpm-config	for	package:	rpm-build-
4.11.3-17.el7.x86_64
-->	Processing	Dependency:	perl(Thread::Queue)	for	package:	rpm-build-
4.11.3-17.el7.x86_64
-->	Running	transaction	check
--->	Package	patch.x86_64	0:2.7.1-8.el7	will	be	installed
--->	Package	perl-Thread-Queue.noarch	0:3.02-2.el7	will	be	installed
--->	Package	redhat-rpm-config.noarch	0:9.1.0-68.el7.centos	will	be
installed
-->	Processing	Dependency:	dwz	>=	0.4	for	package:	redhat-rpm-config-
9.1.0-68.el7.centos.noarch
-->	Processing	Dependency:	perl-srpm-macros	for	package:	redhat-rpm-
config-9.1.0-68.el7.centos.noarch
-->	Running	transaction	check
--->	Package	dwz.x86_64	0:0.11-3.el7	will	be	installed
--->	Package	perl-srpm-macros.noarch	0:1-8.el7	will	be	installed
-->	Finished	Dependency	Resolution

Dependencies	Resolved

Transaction	Summary
==
Install	1	Package	(+5	Dependent	packages)

Total	download	size:	451	k
Installed	size:	944	k
Downloading	packages:
Running	transaction
		Installing	:	patch-2.7.1-8.el7.x86_64
1/6
		Installing	:	dwz-0.11-3.el7.x86_64
2/6
		Installing	:	perl-Thread-Queue-3.02-2.el7.noarch
3/6
		Installing	:	perl-srpm-macros-1-8.el7.noarch
4/6
		Installing	:	redhat-rpm-config-9.1.0-68.el7.centos.noarch
5/6
		Installing	:	rpm-build-4.11.3-17.el7.x86_64
6/6
		Verifying	:	redhat-rpm-config-9.1.0-68.el7.centos.noarch
1/6

		Verifying	:	perl-srpm-macros-1-8.el7.noarch
2/6
		Verifying	:	perl-Thread-Queue-3.02-2.el7.noarch
3/6
		Verifying	:	rpm-build-4.11.3-17.el7.x86_64
4/6
		Verifying	:	dwz-0.11-3.el7.x86_64
5/6
		Verifying	:	patch-2.7.1-8.el7.x86_64
6/6
	
Installed:
		rpm-build.x86_64	0:4.11.3-17.el7

Dependency	Installed:
		dwz.x86_64	0:0.11-3.el7												patch.x86_64	0:2.7.1-8.el7
perl-Thread-Queue.noarch	0:3.02-2.el7
perl-srpm-macros.noarch	0:1-8.el7		redhat-rpm-config.noarch	0:9.1.0-
68.el7.centos

Complete!

The	next	step	is	a	bit	tricky	because	you	need	to	create	a	directory	structure	that
contains	various	files,	including	your	software	and	instructions	on	how	to	install
the	software.	I	recommend	downloading	the	source	code	of	a	sample	project	and
using	that	as	a	template.	For	example,	after	downloading	the	source	code	for	the
dovecot	package,	you	can	expand	the	source	code	by	using	the	rpm	command	as
demonstrated	in	Listing	11.3.3

Listing	11.3	Install	source	RPM
Click	here	to	view	code	image

root@localhost	~]#	rpm	-ivh	/tmp/dovecot-2.2.10-5.el7.src.rpm
Updating	/			Installing...
				1:dovecot-1:2.2.10-5.el7											#################################
[100%]
[root@localhost	~]#	ls	rpmbuild/
SOURCES		SPECS
[root@localhost	~]#	ls	rpmbuild/SOURCES
dovecot-1.0.beta2-mkcert-permissions.patch		dovecot-2.2.9-
nodevrand.patch
dovecot-1.0.rc7-mkcert-paths.patch										dovecot-2.2-pigeonhole-
0.4.2.tar.gz
dovecot-2.0-defaultconfig.patch													dovecot.conf.5
dovecot-2.1.10-reload.patch																	dovecot.init
dovecot-2.1.10-waitonline.patch													dovecot.pam
dovecot-2.1-privatetmp.patch																dovecot.sysconfig
dovecot-2.2.10-CVE_2014_3430.patch										dovecot.tmpfilesd

dovecot-2.2.10.tar.gz																							prestartscript
[root@localhost	~]#	ls	rpmbuild/SPECS
dovecot.spec

Your	source	code	is	stored	in	the	SOURCES	directory.	The	spec	file	is	used	to
define	how	to	install	the	software.	As	you	can	tell	from	the	following	output,	this
file	can	be	quite	large:
[root@localhost	~]#	wc	-l	rpmbuild/SPECS/dovecot.spec
1849	rpmbuild/SPECS/dovecot.spec

Yes,	the	spec	file	for	the	dovecot	package	is	1,849	lines	long.	Not	all	spec	files
will	be	this	large	(although	some	will	be	larger).	Spec	files	are	a	large	topic	by
themselves.	However,	they	are	much	like	BASH	shell	scripts,	so	if	you	read	a
few	existing	spec	files,	you	should	be	able	to	figure	out	how	to	create	your	own
(or	modify	an	existing	spec	file).
After	your	source	files	are	in	the	correct	directory	and	you	have	created	a	spec
file,	you	can	build	your	package	using	the	following	command:
rpmbuild	-ba	~/rpmbuild/SPECS/name.spec

This	command	creates	two	new	subdirectories:	RPMS	and	SRPMS.	In	those
directories	will	be	your	package’s	RPM	files.

Building	Debian	Packages
The	process	of	building	a	Debian	package	is	very	similar	to	building	a	RPM
package.	The	following	are	the	general	steps:

1.	Download	source	code	file	(typically	a	tar	file).
2.	Edit	configuration	files:

	debian/changelog
	debian/rules
	debian/control

3.	Use	dpkg-buildpackage	to	build	the	package.

Exploring	Java	Installation	and	Basics
In	older	Linux	distributions,	it	was	rare	that	Java	came	installed	by	default.
However,	almost	all	distributions	have	Java	installed	as	part	of	the	typical
installation	process.	You	can	see	whether	it	is	installed	by	using	the	which
command	and,	if	it	is	installed,	use	the	java	command	to	determine	which
version	is	installed:

[root@localhost	~]#	which	java
/bin/java
[root@localhost	~]#	java	-version
openjdk	version	"1.8.0_91"
OpenJDK	Runtime	Environment	(build	1.8.0_91-b14)
OpenJDK	64-Bit	Server	VM	(build	25.91-b14,	mixed	mode)

If	Java	isn’t	installed,	you	can	use	the	apt-get	command	on	Debian-based
systems	to	install	it.	The	package	name	for	Java	on	Debian-based	systems	is
openjdk-X.X.X.jdk	(X.X.X	represents	the	version	number).
If	Java	isn’t	installed	on	a	Red	Hat–based	system,	you	can	use	the	yum	command
to	install	it.	The	package	name	for	Java	on	Debian-based	systems	is	java-X.X.X-
openjdk.

Programming	Humor
Real	programmers	count	from	0!

Summary
This	chapter	introduced	some	key	concepts	and	features	of	Linux	that	are	related
to	programming	in	C,	C++,	and	Java.	You	learned	how	library	files	are	managed
and	how	to	package	software	for	distribution.	You	should	also	now	know	how	to
determine	whether	Java	is	installed	and,	if	not,	how	to	install	a	version	of	Java.

1	No	news	is	good	news	for	the	ldconfig	command.	No	output	means	the
command	worked	successfully.

2	Other	methods	you	might	want	to	consider	include	APK,	TGZ,	and	PET.	For
example,	TGZ	is	when	you	use	the	tar	command	to	merge	all	files	into	a
single	file	and	then	the	gzip	command	to	compress	the	tar	file.

3	For	this	example,	I	actually	break	a	best	practice	policy:	don’t	build	packages
while	logged	in	as	root.	However,	I	am	just	reviewing	the	basics	of	package
building.	Consider	exploring	the	use	of	mock,	a	system	that	can	be	used	to
build	RPMs	using	a	regular	user	account	rather	than	the	root	account.

IV.	Using	Git
One	of	the	biggest	headaches	that	developers	must	deal	with	is	different	versions
of	source	code.	Sometimes	you	just	need	to	“go	back”	to	a	previous	version	of
code.	Maintaining	these	versions	manually	can	be	cumbersome	and	time
consuming.
Compounding	the	problem	is	when	multiple	programmers	work	together	on	a
single	piece	of	source	code.	A	large	program	can	be	tens	of	thousands	of	lines	of
code	with	different	programmers	responsible	for	different	portions	of	the	code.
Version	control	software	like	Git	can	handle	the	complicated	task	of	maintaining
different	versions	of	source	code.

12.	Git	Essentials
This	chapter	introduces	you	to	Git,	including	how	to	install	the	necessary
software	to	access	Git	servers	where	your	software	project	will	be	stored.

Version	Control	Concepts
To	understand	Git	and	the	concept	of	version	control,	looking	at	version	control
from	an	historical	perspective	is	helpful.	There	have	been	three	generations	of
version	control	software.

The	First	Generation
The	first	generation	was	very	simple.	Developers	worked	on	the	same	physical
system	and	“checked	out”	one	file	at	a	time.
This	generation	of	version	control	software	made	use	of	a	technique	called	file
locking.	When	a	developer	checked	out	a	file,	it	was	locked	and	no	other
developer	could	edit	the	file.	Figure	12.1	illustrates	the	concept	of	this	type	of
version	control.
Examples	of	first-generation	version	control	software	include	Revision	Control
System	(RCS)	and	Source	Code	Control	System	(SCCS).

The	Second	Generation
The	problems	with	the	first	generation	included	the	following:

	Only	one	developer	can	work	on	a	file	at	a	time.	This	results	in	a	bottleneck
in	the	development	process.
	Developers	have	to	log	in	directly	to	the	system	that	contains	the	version
control	software.

These	problems	were	solved	in	the	second	generation	of	version	control
software.	In	the	second	generation,	files	are	stored	on	a	centralized	server	in	a
repository.	Developers	can	check	out	separate	copies	of	a	file.	When	the
developer	completes	work	on	a	file,	the	file	is	checked	in	to	the	repository.
Figure	12.2	illustrates	the	concept	of	this	type	of	version	control.

Figure	12.1	First-generation	version	control	software

Figure	12.2	Second-generation	version	control	software

If	two	developers	check	out	the	same	version	of	a	file,	then	the	potential	for
issues	exists.	This	is	handled	by	a	process	called	a	merge.

What	Is	a	Merge?
Suppose	two	developers,	Bob	and	Sue,	check	out	version	5	of	a	file
named	abc.txt.	After	Bob	completes	his	work,	he	checks	the	file
back	in.	Typically,	this	results	in	a	new	version	of	the	file,	version	6.

Sometime	later,	Sue	checks	in	her	file.	This	new	file	must
incorporate	her	changes	and	Bob’s	changes.	This	is	accomplished
through	the	process	of	a	merge.
Depending	on	the	version	control	software	that	you	use,	there	could
be	different	ways	to	handle	this	merge.	In	some	cases,	such	as	when
Bob	and	Sue	have	worked	on	completely	different	parts	of	the	file,
the	merge	process	is	very	simple.	However,	in	cases	in	which	Sue
and	Bob	worked	on	the	same	lines	of	code	in	the	file,	the	merge
process	can	be	more	complex.	In	those	cases,	Sue	will	have	to	make
decisions,	such	as	whether	Bob’s	code	or	her	code	will	be	in	the
new	version	of	the	file.
After	the	merge	process	completes,	the	process	of	committing	the
file	to	the	repository	takes	place.	To	commit	a	file	essentially	means
to	create	a	new	version	in	the	repository;	in	this	case,	version	7	of
the	file.

Examples	of	second-generation	version	control	software	include	Concurrent
Versions	System	(CVS)	and	Subversion.

The	Third	Generation
The	third	generation	is	referred	to	as	Distributed	Version	Control	Systems
(DVCSs).	As	with	the	second	generation,	a	central	repository	server	contains	all
the	files	for	the	project.	However,	developers	don’t	check	out	individual	files
from	the	repository.	Instead,	the	entire	project	is	checked	out,	allowing	the
developer	to	work	on	the	complete	set	of	files	rather	than	just	individual	files.
Figure	12.3	illustrates	the	concept	of	this	type	of	version	control.

Figure	12.3	Third-generation	version	control	software

Another	(very	big)	difference	between	the	second	and	third	generation	of	version
control	software	has	to	do	with	how	the	merge	and	commit	process	works.	As
previously	mentioned,	the	steps	in	the	second	generation	are	to	perform	a	merge
and	then	commit	the	new	version	to	the	repository.
With	third-generation	version	control	software,	files	are	checked	in	and	then	they
are	merged.	To	understand	the	difference	between	these	two	techniques,	first
look	at	Figure	12.4.

Figure	12.4	Second-generation	merge	and	commit

In	phase	1	of	Figure	12.4,	two	developers	check	out	a	file	that	is	based	on	the
third	version.	In	phase	2,	one	developer	checks	that	file	in,	resulting	in	a	version
4	of	the	file.
In	phase	3	the	second	developer	must	first	merge	the	changes	from	his	checked-
out	copy	with	the	changes	of	version	4	(and,	potentially,	other	versions).	After
the	merge	is	complete,	the	new	version	can	be	committed	to	the	repository	as
version	5.
If	you	focus	on	what	is	in	the	repository	(the	center	part	of	each	phase),	you	will
see	that	there	is	a	very	straight	line	of	development	(ver1,	ver2,	ver3,	ver4,	ver5,
and	so	on).	This	simple	approach	to	software	development	poses	some	potential
problems:

	Requiring	a	developer	to	merge	before	committing	often	results	in
developers’	not	wanting	to	commit	their	changes	on	a	regular	basis.	The
merge	process	can	be	a	pain	and	developers	might	decide	to	just	wait	until
later	and	do	one	merge	rather	than	a	bunch	of	regular	merges.	This	has	a

negative	impact	on	software	development	as	suddenly	huge	chunks	of	code
are	added	to	a	file.	Additionally,	you	want	to	encourage	developers	to
commit	changes	to	the	repository,	just	like	you	want	to	encourage	someone
who	is	writing	a	document	to	save	on	a	regular	basis.
	Very	important:	Version	5	in	this	example	is	not	necessarily	the	work	that
the	developer	originally	completed.	During	the	merging	process,	the
developer	might	discard	some	of	his	work	to	complete	the	merge	process.
This	isn’t	ideal	because	it	results	in	the	loss	of	potentially	good	code.

A	better,	although	arguably	more	complex,	technique	can	be	employed.	It	is
called	Directed	Acyclic	Graph	(DAG),	and	you	can	see	an	example	of	how	it
works	in	Figure	12.5.

Figure	12.5	Third-generation	commit	and	merge

Phases	1	and	2	are	the	same	as	shown	in	Figure	12.4.	However,	note	that	in
phase	3	the	second	“check	in”	process	results	in	a	version	5	file	that	is	not	based
on	version	4,	but	rather	independent	of	version	4.	In	phase	4	of	the	process,

versions	4	and	5	of	the	file	have	been	merged	to	create	a	version	6.
Although	this	process	is	more	complex	(and,	potentially,	much	more	complex	if
you	have	a	large	number	of	developers),	it	does	provide	some	advantages	over	a
“single	line”	of	development:

	Developers	can	commit	their	changes	on	a	regular	basis	and	not	have	to
worry	about	merging	until	a	later	time.
	The	merging	process	could	be	delegated	to	a	specific	developer	who	has	a
better	idea	of	the	entire	project	or	code	than	the	other	developers	have.
	At	any	time,	the	project	manager	can	go	back	and	see	exactly	what	work
each	individual	developer	created.

Certainly	an	argument	exists	for	both	methods.	However,	keep	in	mind	that	this
book	focuses	on	Git,	which	uses	the	Directed	Acyclic	Graph	method	of	third-
generation	version	control	systems.

Installing	Git
You	might	already	have	Git1	on	your	system	because	it	is	sometimes	installed	by
default	(or	another	administrator	might	have	installed	it).	If	you	have	access	to
the	system	as	a	regular	user,	you	can	execute	the	following	command	to
determine	whether	you	have	Git	installed:
ocs@ubuntu:~$	which	git
/usr/bin/git

If	Git	is	installed,	then	the	path	to	the	git	command	is	provided,	as	shown	in	the
preceding	command.	If	it	isn’t	installed,	then	you	either	get	no	output	or	an	error
like	the	following:
[ocs@centos	~]#	which	git
/usr/bin/which:	no	git	in	(/usr/lib64/qt-
3.3/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin:/root/bin)

As	an	administrator	on	a	Debian-based	system,	you	could	use	the	dpkg	command
to	determine	whether	the	git	package	has	been	installed:
root@ubuntu:~#	dpkg	-l	git
Desired=Unknown/Install/Remove/Purge/Hold
|	Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/
➥Trig-pend
|/	Err?=(none)/Reinst-required	(Status,Err:	uppercase=bad)
||/	Name					Version							Architecture		Description
+++-========-=============-=============-
==

ii		git						1:1.9.1-1ubun	amd64									fast,	scalable,	distributed
➥revision	con

As	an	administrator	on	a	Red	Hat–based	system,	you	could	use	the	rpm
command	to	determine	whether	the	git	package	has	been	installed:
[root@centos	~]#	rpm	-q	git
git-1.8.3.1-6.el7_2.1.x86_64

If	Git	isn’t	installed	on	your	system,	you	must	either	log	in	as	the	root	user	or	use
sudo	or	su	to	install	the	software.	If	you	are	logged	in	as	the	root	user	on	a
Debian-based	system,	you	can	use	the	following	command	to	install	Git:
apt-get	install	git

If	you	are	logged	in	as	the	root	user	on	a	Red	Hat–based	system,	you	can	use	the
following	command	to	install	Git:
yum	install	git

Get	More	Than	Git!2

Consider	installing	the	software	package	named	git-all.	This
package	includes	some	additional	dependency	packages	that	add
more	power	to	Git.	Although	you	might	not	make	use	of	these
features	in	this	introductory	book,	having	them	available	when	you
are	ready	to	perform	more	advanced	Git	functions	will	be	good.

Git	Concepts	and	Features
One	of	the	challenges	to	using	Git	is	just	understanding	the	concepts	behind	it.	If
you	don’t	understand	the	concepts,	then	all	the	commands	just	seem	like	some
sort	of	black	magic.	This	section	focuses	on	the	critical	Git	concepts	as	well	as
introduces	you	to	some	of	the	basic	commands.

Git	Stages
It	is	very	important	to	remember	that	you	“check	out”3	an	entire	project	and	that
most	of	the	work	you	do	will	be	local	to	the	system	that	you	are	working	on.	The
files	that	you	check	out	will	be	placed	in	a	directory	under	your	home	directory.
To	get	a	copy	of	a	project	from	a	Git	repository,	you	use	a	process	called
cloning.	Cloning	doesn’t	just	create	a	copy	of	all	the	files	from	the	repository;	it
actually	performs	three	primary	functions:

	Creates	a	local	repository	of	the	project	under	the	project_name/.git
directory	in	your	home	directory.	The	files	of	the	project	in	this	location	are
considered	to	be	“checked	out”	from	the	central	repository.
	Creates	a	directory	where	you	can	directly	see	the	files.	This	is	called	the
working	area.	Changes	made	in	the	working	area	are	not	immediately
version	controlled.
	Creates	a	staging	area.	The	staging	area	is	designed	to	store	changes	to	files
before	you	commit	them	to	the	local	repository.

This	means	that	if	you	were	to	clone	a	project	called	Jacumba,	the	entire	project
would	be	stored	in	the	Jacumba/.git	directory	under	your	home	directory.	You
should	not	attempt	to	modify	these	directly.	Instead,	look	directly	in	the
~/Jacumba	directory	and	you	will	see	the	files	from	the	project.	These	are	the
files	that	you	should	change.
Suppose	you	made	a	change	to	a	file,	but	you	have	to	work	on	some	other	files
before	you	were	ready	to	commit	changes	to	the	local	repository.	In	that	case,
you	would	stage	the	file	that	you	have	finished	working	on.	This	would	prepare
it	to	be	committed	to	the	local	repository.
After	you	make	all	changes	and	stage	all	files,	then	you	commit	them	to	the	local
repository.	See	Figure	12.6	for	a	visual	demonstration	of	this	process.

Figure	12.6	Git	stages

Realize	that	committing	the	staged	files	only	sends	them	to	the	local	repository.
This	means	that	only	you	have	access	to	the	changes	that	have	been	made.	The
process	of	“checking	in”	the	new	versions	to	the	central	repository	is	called	a
push.

I	explain	each	of	these	steps	in	greater	detail	later.	Consider	this	to	be	an
introduction	to	the	concepts	that	will	help	you	understand	the	process	better
when	I	introduce	the	Git	commands.

Choosing	Your	Git	Repository	Host
First,	the	good	news:	Many	organizations	provide	Git	hosting—at	the	time	of
this	writing,	more	than	two	dozen	choices.	This	means	you	have	many	options	to
choose	from.	That’s	the	good	news…and	the	bad	news.
It	is	only	bad	news	because	it	means	you	really	need	to	spend	some	time
researching	the	pros	and	cons	of	the	different	hosting	organizations.	For
example,	most	don’t	charge	for	basic	hosting	but	do	charge	for	large-scale
projects.	Some	only	provide	public	repositories	(anyone	can	see	your	repository)
whereas	others	allow	you	to	create	private	repositories.	There	are	many	other
features	to	consider.
One	of	the	features	that	might	be	high	on	your	list	is	a	web	interface.	Although
you	can	do	just	about	all	repository	operations	locally	on	your	system,	being	able
to	perform	some	operations	via	a	web	interface	can	be	very	useful.	Explore	the
interface	that	is	provided	before	making	your	choice.

Consider	This
I	am	not	going	to	make	a	suggestion	regarding	which	Git	host	you
should	use	because	it	really	does	vary	based	on	what	your	needs	are.
Many	websites	provide	up-to-date	comparisons	between	the	various
Git	hosts,	and	I	strongly	recommend	you	do	your	homework	before
deciding	on	one.
At	the	very	least,	I	recommend	considering	the	following:

	https://bitbucket.org
	http://www.cloudforge.com
	http://www.codebasehq.com
	https://github.com
	http://gitlab.com

Note	that	I	chose	gitlab.com	for	the	examples	in	the	book.	Any	of
the	hosts	in	the	preceding	list	would	have	been	just	fine	for	the
book;	I	just	chose	gitlab.com	because	it	happened	to	be	the	one	I
used	on	my	last	Git	project.

https://bitbucket.org
http://www.cloudforge.com
http://www.codebasehq.com
https://github.com
http://gitlab.com
http://gitlab.com
http://gitlab.com

Configuring	Git
Now	that	you	have	gotten	through	all	the	theory,4	it	is	time	to	actually	do
something	with	Git.	This	next	section	assumes	the	following:

	You	have	installed	the	git	or	git-all	software	package	on	your	system.
	You	have	created	an	account	on	a	Git	hosting	service.

The	first	thing	you	want	to	do	is	perform	some	basic	setup.	Whenever	you
perform	a	commit	operation,	your	name	and	email	address	will	be	included	in
the	metadata.	To	set	this	information,	execute	the	following	commands:
ocs@ubuntu:~$	git	config	--global	user.name	"Bo	Rothwell"
ocs@ubuntu:~$	git	config	--global	user.email	"bo@onecoursesource.com"

Obviously	you	will	replace	"Bo	Rothwell"	with	your	name	and
"bo@OneCourseSource.com"	with	your	email	address.	The	next	step	is	to	clone
your	project	from	the	Git	hosting	service.	Note	that	before	cloning,	only	one	file
is	in	the	user's	home	directory:
ocs@ubuntu:~$	ls
first.sh

The	following	cloned	a	project	named	ocs:
ocs@ubuntu:~$	git	clone	https://gitlab.com/borothwell/ocs.git
Cloning	into	'ocs'...
Username	for	'https://gitlab.com':	borothwell
Password	for	'https://borothwell@gitlab.com':
remote:	Counting	objects:	3,	done.
remote:	Total	3	(delta	0),	reused	0	(delta	0)
Unpacking	objects:	100%	(3/3),	done.
Checking	connectivity...	done.

After	successful	execution,	notice	a	new	directory	in	the	user’s	home	directory:
ocs@ubuntu:~$	ls
first.sh	ocs

If	you	switch	to	the	new	directory,	you	can	see	what	was	cloned	from	the
repository	(only	one	file	so	far	exists	in	the	repository):
ocs@ubuntu:~$	cd	ocs
ocs@ubuntu:~/ocs$	ls
README.md

Next,	create	a	new	file	in	the	repository	directory.	You	can	either	create	one	from
scratch	or	copy	a	file	from	another	location:

https://gitlab.com/borothwell/ocs.gi

ocs@ubuntu:~/ocs$	cp	../first.sh

Remember,	anything	placed	in	this	directory	is	not	version	controlled	because
this	is	the	working	directory.	To	put	it	in	the	local	repository,	you	first	have	to
add	it	to	the	staging	area	and	then	you	need	to	commit	it	to	the	repository:
ocs@ubuntu:~/ocs$	git	add	first.sh
ocs@ubuntu:~/ocs$	git	commit	-m	"added	first.sh"
[master	3b36054]	added	first.sh
1	file	changed,	5	insertions(+)
create	mode	100644	first.sh

The	git	add	command	places	the	file	in	the	staging	area.	The	git	commit
command	takes	all	the	new	files	in	the	staging	area	and	commits	them	to	the
local	repository.	You	use	the	-m	option	to	add	a	message;	in	this	case	the	reason
for	the	commit	was	given.
It	is	important	to	highlight	that	no	changes	have	been	made	to	the	repository	on
the	server.	The	git	commit	command	only	updates	the	local	repository.	You	can
see	that	the	server	repository	has	not	been	modified	by	looking	at	Figure	12.7,
which	shows	a	screenshot	of	the	web-based	interface	of	the	current	project.
Notice	that	the	original	file,	README.md,	was	pushed	to	the	server	several	days
ago,	but	the	new	file,	first.sh,	does	not	have	an	entry.

Figure	12.7	Server	repository	is	unchanged	after	executing	the	git	commit
command

Most	likely	you	would	make	additional	changes	to	your	local	project	and	then
"check	in"	(push)	the	changes	to	the	server’s	repository:
ocs@ubuntu:~/ocs$	git	push	-u	origin	master
Username	for	'https://gitlab.com':	borothwell
Password	for	'https://borothwell@gitlab.com':

Counting	objects:	4,	done.
Compressing	objects:	100%	(3/3),	done.
Writing	objects:	100%	(3/3),	370	bytes	|	0	bytes/s,	done.
Total	3	(delta	0),	reused	0	(delta	0)
To	https://gitlab.com/borothwell/ocs.git
			12424f5..3b36054	master	->	master
Branch	master	set	up	to	track	remote	branch	master	from	origin.

See	Figure	12.8	to	verify	the	push	was	successful.

Figure	12.8	Server	repository	is	changed	after	executing	the	git	push
command

At	this	point	all	changes	of	the	files	from	the	staging	area	have	been	updated	to
the	local	repository	and	the	central	server	repository.

Git	Humor
Wiser	words	may	have	never	been	spoken:	“Commit	early,	commit
often.	A	tip	for	version	controlling—not	for	relationships.”
—Anonymous

Summary
This	chapter	focused	on	the	key	concepts	of	Git.	You	should	now	understand	the
concepts	of	version	control	in	addition	to	specifics	about	how	to	perform	version
control	with	Git.

1	When	I	refer	to	Git	with	a	capital	I,	I	am	referring	to	the	software	project.
When	I	refer	to	git	with	a	lowercase	g	and	in	code	font,	I	am	referring	to

https://gitlab.com/borothwell/ocs.git

either	the	command	or	the	software	package	(most	often	the	command).
2	It	appears	that	all	those	Linux	“jokes”	have	rubbed	off	on	me.
3	I	use	parentheses	around	“check	out”	because	in	Git	the	process	is	really
called	cloning.	However,	some	developers	who	are	used	to	second-generation
version	control	software	are	more	comfortable	with	the	term	“check	out.”	I
tend	to	use	the	terms	interchangeably	when	initially	explaining	the	Git
process.

4	Trust	me,	the	theory	will	help	a	lot!

13.	Manage	Files	with	Git
Git	provides	a	rich	collection	of	features,	but	the	core	set	of	features	are	the	ones
that	you	are	going	to	use	the	most	often.	This	includes	commands	that	enable
you	to	stage	files	and	commit	files	to	the	local	repository,	as	well	as	create
branches.	This	chapter	focuses	on	these	topics	as	well	as	a	few	related	ones.

Basic	Configuration
You	might	want	to	perform	several	configuration	operations.	For	example,	you
can	set	your	default	editor	by	executing	the	following	command:
ocs@ubuntu:~/ocs$	git	config	--global	core.editor	vi

You	can	view	current	configuration	settings	by	executing	the	git	config	--list
command:
ocs@ubuntu:~/ocs$	git	config	--list
user.name=Bo	Rothwell
user.email=bo@onecoursesource.com
core.editor=editor_name
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
remote.origin.url=https://gitlab.com/borothwell/ocs.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.master.merge=refs/heads/master

You	can	store	configuration	information	in	multiple	locations.	One	location	is	in
your	own	home	directory:
ocs@ubuntu:~/ocs$	more	~/.gitconfig
[user]
				name	=	Bo	Rothwell
				email	=	bo@onecoursesource.com
[core]
				editor	=	vi

An	administrator	can	also	store	configuration	information	for	all	users	in	the
/etc/gitconfig	file.	The	additional	settings	that	you	see	when	you	execute	the
git	config	--list	command	are	either	default	settings	or	are	derived	from	the
information	in	the	local	repository.

Getting	Help
Besides	looking	at	man	pages	for	information	about	git	commands,
you	might	consider	the	git	help	command.	When	run	with	no
additional	arguments,	the	git	help	command	provides	a	synopsis	of
how	the	command	should	be	executed	followed	by	a	summary	of
git	commands	(config,	add,	clone,	commit,	push,	and	so	on).
To	see	information	about	a	specific	command,	execute	git	help
command.	For	example:	git	help	config.	This	automatically	puts
you	in	the	man	page	for	that	command.

git	status
In	Chapter	12,	“Git	Essentials,”	you	learned	how	to	clone	an	existing	repository
from	a	central	repository	server.	You	also	learned	the	lifecycle	of	how	local	files
are	committed	to	the	local	repository	and	then	pushed	to	the	central	repository
server:

1.	Create	the	file	in	the	repository	directory.
2.	Add	the	file	to	the	staging	area	with	the	git	add	command.
3.	Commit	the	file	to	the	repository	with	the	git	commit	command.
4.	Push	the	file	to	the	central	server	with	the	git	push	command.

Note
You	can	combine	the	git	add	and	git	commit	commands	into	a
single	operation	by	using	the	-a	option	to	the	git	commit	command.

Imagine	you	are	working	on	some	files	one	day	and	it’s	getting	late.	It	is	Friday
afternoon	and	you	just	can’t	wait	for	the	weekend	to	start.	On	the	following
Monday	you	arrive	at	work	and	realize	you	have	no	idea	in	what	area	you	left
your	file.	Were	they	added	to	the	staging	area?	All	of	them	or	just	some?	Did
you	commit	any	of	them	to	the	local	repository?
This	is	when	you	want	to	run	the	git	status	command:
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	directory	clean

Note
It	makes	a	difference	which	directory	you	are	in	when	you	execute
the	git	status	command.	For	example,	if	you	are	in	your	home
directory,	all	the	files	in	this	directory	will	be	checked	to	see
whether	they	are	in	the	repository:
ocs@ubuntu:~$	git	status
On	branch	master
Initial	commit
Untracked	files:
		(use	"git	add	<file>..."	to	include	in	what	will	be
committed)

		
		.bash_history
		.bash_logout
		.bashrc
		.gitconfig
		.lesshst
		.profile
		.viminfo
		ocs/
		
nothing	added	to	commit	but	untracked	files	present	(use
"git	add"

	➥to	track)
Make	sure	you	are	in	the	repository	directory	before	running	this
command!

If	you	make	changes	to	a	file	and	don’t	add	it	to	the	staging	area,	then	the	output
of	the	git	status	command	will	look	like	the	following:
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

Changes	not	staged	for	commit:
		(use	"git	add	<file>..."	to	update	what	will	be	committed)
		(use	"git	checkout	--	<file>..."	to	discard	changes	in	working
directory)

						modified:				first.sh

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

Notice	in	the	previous	output	the	Changes	not	staged	for	commit	section.	The
command	output	also	is	helpful	in	showing	you	how	you	can	stage	the	command
with	the	git	add	command	or	stage	and	commit	with	the	git	commit	-a
command.
If	a	file	has	been	added	to	the	staging	area,	but	not	committed	to	the	local
repository,	then	the	output	of	the	git	status	command	will	look	like	the
following:
ocs@ubuntu:~/ocs$	git	add	first.sh
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

Changes	to	be	committed:
		(use	"git	reset	HEAD	<file>..."	to	unstage)

						modified:			first.sh

Changes	to	be	committed	means	the	modified	file	is	in	the	staging	area	but	not
in	the	local	repository.	If	a	file	has	been	committed	to	local	repository,	but	not
committed	to	the	central	repository	server,	then	the	output	of	the	git	status
command	will	look	like	the	following:
ocs@ubuntu:~/ocs$	git	commit	-m	"demostrating	status"
[master	9eb721e]	demostrating	status
1	file	changed,	2	insertions(+),	1	deletion(-)
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	ahead	of	'origin/master'	by	1	commit.
(use	"git	push"	to	publish	your	local	commits)
	
nothing	to	commit,	working	directory	clean

Note	that	nothing	to	commit,	working	directory	clean	means	the	staging	area
no	longer	contains	any	files	and	the	working	directory	reflects	the	current
contents	of	the	local	repository.	Also	note	the	message	that	states	Your	branch
is	ahead	of	'origin/master'	by	1	commit.	This	makes	it	clear	that	you	need	to
execute	git	push	to	push	the	contents	of	the	local	repository	to	the	central
repository	server.
Executing	the	git	status	command	after	successfully	executing	the	git	push
command	results	in	the	output	demonstrated	in	the	original	example	of	this
chapter	as	shown	in	Listing	13.1.

Listing	13.1	All	files	up	to	date
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	push	-u	origin	master
Username	for	'https://gitlab.com':	borothwell
Password	for	'https://borothwell@gitlab.com':
Counting	objects:	5,	done.
Compressing	objects:	100%	(3/3),	done.
Writing	objects:	100%	(3/3),	381	bytes	|	0	bytes/s,	done.
Total	3	(delta	0),	reused	0	(delta	0)
To	https://gitlab.com/borothwell/ocs.git
			3b36054..9eb721e	master	->	master
Branch	master	set	up	to	track	remote	branch	master	from	origin.
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	directory	clean

Handling	a	Multiple	Location	Situation
Because	of	the	staging	area,	the	possibility	exists	to	have	one	version	of	the	file
in	the	local	repository,	a	second	version	in	the	staging	area,	and	a	third	in	the
working	directory.	This	can	happen	after	you	edit	a	file,	add	it	to	the	staging
area,	and	then	edit	the	file	again.	When	this	happens,	the	output	of	the	git
status	command	will	look	like	that	shown	in	Listing	13.2.

Listing	13.2	Three	versions	of	a	file
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

Changes	to	be	committed:
		(use	"git	reset	HEAD	<file>..."	to	unstage)

						modified:		first.sh

Changes	not	staged	for	commit:
		(use	"git	add	<file>..."	to	update	what	will	be	committed)
		(use	"git	checkout	--	<file>..."	to	discard	changes	in	working
➥directory)

						modified:		first.sh

In	the	output	of	Listing	13.2,	you	can	see	that	the	first.sh	file	is	listed	both	as

https://gitlab.com/borothwell/ocs.git

Changes	to	be	committed	and	Changes	not	staged	for	commit.	Now	you	must
make	a	choice:

	Commit	both	versions	of	the	file—First	execute	the	git	commit	command,
then	execute	git	add,	and	then	execute	git	commit	again.
	Commit	the	last	version	of	the	file—First	execute	git	add	and	then
execute	git	commit.1

A	useful	option	to	the	git	status	command	is	the	-s	option,	which	shows	a
much	more	condensed	output:
ocs@ubuntu:~/ocs$	git	status	-s
M	first.sh
A	showmine.sh
??	hidden.sh

Each	file	is	preceded	by	up	to	two	characters.	The	first	character	indicates	the
status	in	the	staging	area	and	the	second	character	indicates	the	status	in	the
working	directory.	The	first.sh	file	has	been	modified	in	the	working	directory,
but	you	can	tell	that	it	has	not	been	staged	yet	because	of	the	space	character	in
front	of	the	"M"	character.	Note	the	difference	if	the	file	is	staged:
ocs@ubuntu:~/ocs$	git	add	first.sh
ocs@ubuntu:~/ocs$	git	status	-s
M	first.sh
A	showmine.sh
??	hidden.sh

The	A	for	the	showmine.sh	file	means	this	is	a	new	file	that	has	been	staged
(because	the	A	is	in	the	first	column),	but	it	hasn’t	been	committed	to	the
repository	yet.	The	??	means	that	hidden.sh	is	new	and	hasn’t	been	staged	or
committed	yet.	Any	file	that	is	up	to	date	in	the	local	repository	is	not	listed
when	you	execute	the	git	status	-s	command.

Telling	Git	to	Ignore	a	File
In	some	cases,	you	want	to	have	a	file	in	the	working	directory	but	not	have	it
ever	staged	or	placed	in	the	repository.	For	example,	maybe	you	want	to	keep
track	of	some	notes	about	the	project,	but	only	for	your	own	purposes.	Of
course,	you	could	just	never	add	this	file	to	the	staging	area,	but	this	would	mean
that	git	status	will	never	return	nothing	to	commit,	working	directory
clean.
To	have	git	commands	ignore	a	file,	create	a	file	named	.gitignore	in	the
working	directory	and	place	the	filename	to	ignore	inside	of	this	file:

ocs@ubuntu:~/ocs$	touch	notes
ocs@ubuntu:~/ocs$	git	status	-s
??	notes
ocs@ubuntu:~/ocs$	vi	.gitignore					#added	notes	as	shown	below:
ocs@ubuntu:~/ocs$	cat	.gitignore
notes
ocs@ubuntu:~/ocs$	git	status	-s
??	.gitignore

Notice	that	you	must	also	place	the	.gitignore	file	itself	in	the	.gitignore	file:
ocs@ubuntu:~/ocs$	git	status	-s
??	.gitignore
ocs@ubuntu:~/ocs$	vi	.gitignore					#added	.gitignore	as	shown	below:
ocs@ubuntu:~/ocs$	cat	.gitignore
notes
.gitignore
ocs@ubuntu:~/ocs$	git	status	-s

Note
You	can	also	use	wildcard	characters	(*,	?,	and	[range])	in	the
.gitignore	file	to	match	a	collection	of	files.	For	example,	I	like	to
name	my	own	files	with	a	.me	extension.	In	the	.gitignore	file	I
include	the	pattern	*.me	to	have	the	git	commands	ignore	all	of	my
files.
You	can	use	a	pattern	that	ends	with	a	/	to	indicate	an	entire
directory.

If	You	Are	Following	Along…
I’ve	tried	to	make	this	process	as	transparent	as	possible,	but	there
are	some	cases	in	which	I	am	going	to	be	executing	some
commands	that	don’t	show	up	in	the	body	of	the	text.	For	example,
at	this	point	I	have	added	several	versions	of	the	first.sh	file	(as
well	as	two	new	files:	the	showmine.sh	and	hidden.sh	files)	to	the
local	repository.	I	want	to	use	these	in	later	examples,	so	I	decided
to	push	them	to	the	central	repository	server:
ocs@ubuntu:~/ocs$	git	push	-u	origin	master
Username	for	'https://gitlab.com':	borothwell
Password	for	'https://borothwell@gitlab.com':
Counting	objects:	10,	done.
Compressing	objects:	100%	(7/7),	done.
Writing	objects:	100%	(8/8),	865	bytes	|	0	bytes/s,	done.

Total	8	(delta	1),	reused	0	(delta	0)
To	https://gitlab.com/borothwell/ocs.git
			9eb721e..07bb91c		master	->	master
Branch	master	set	up	to	track	remote	branch	master	from
origin.

However,	this	isn't	critical	to	the	topic	at	hand,	so	I	opted	not	to
show	this	in	the	main	text.	In	the	future,	if	I	do	some	"behind	the
scenes"	commands,	I	will	mention	the	commands	that	I	executed	in
a	footnote.	That	way	if	you	are	following	along,	you	should	end	up
with	the	same	results	that	I	do.

Removing	Files
Suppose	one	day	you	create	a	file	purely	for	testing	purposes	and	then,	without
really	thinking	about	it,	you	commit	it	to	the	local	repository:2

ocs@ubuntu:~/ocs$	git	add	test.sh
ocs@ubuntu:~/ocs$	git	commit	"update	27"

Later,	you	realize	your	mistake	and	want	to	remove	the	file.	Simply	removing	it
from	the	working	directory	isn’t	enough,	as	demonstrated	in	Listing	13.3.3

Listing	13.3	Deleting	file	from	working	directory
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	rm	test.sh
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	ahead	of	'origin/master'	by	1	commit.
		(use	"git	push"	to	publish	your	local	commits)

Changes	not	staged	for	commit:
		(use	"git	add/rm	<file>..."	to	update	what	will	be	committed)
		(use	"git	checkout	--	<file>..."	to	discard	changes	in	working
directory)

						deleted:				test.sh

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

Notice	the	suggestion	to	execute	the	git	rm	command,	which	will	stage	the	file
for	removal	from	the	repository.	See	Listing	13.4	for	an	example	of	the	git	rm
command.

https://gitlab.com/borothwell/ocs.git

Listing	13.4	Staging	a	file	to	be	deleted
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	rm	test.sh
rm	'test.sh'
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	ahead	of	'origin/master'	by	1	commit.
		(use	"git	push"	to	publish	your	local	commits)

Changes	to	be	committed:
		(use	"git	reset	HEAD	<file>..."	to	unstage)

						deleted:				test.sh

Lastly,	perform	a	git	commit	command	to	remove	the	file	from	the	repository:
ocs@ubuntu:~/ocs$	git	commit	-m	"deleting	test.sh	file"
[master	2b44792]	deleting	test.sh	file
1	file	changed,	1	deletions(-)
delete	mode	100644	test.sh

Handling	Branches
You	decide	that	you	want	to	test	some	new	features	of	the	project	that	you	are
working	on,	but	you	don’t	want	this	to	impact	the	current	development	process.
This	is	an	ideal	time	to	create	a	branch.
When	you	first	create	a	project,	the	code	is	associated	with	a	branch	called
master.	If	you	want	to	create	a	new	branch,	execute	the	git	branch	command:
ocs@ubuntu:~/ocs$	git	branch	test

This	doesn’t	mean	you	are	suddenly	working	in	the	new	branch.	As	you	can	see
from	the	output	of	the	git	status	command,	the	git	branch	command	doesn’t
change	your	current	branch:
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	ahead	of	'origin/master'	by	2	commits.
		(use	"git	push"	to	publish	your	local	commits)

nothing	to	commit,	working	directory	clean

The	first	line	of	the	output	of	the	previous	command,	On	branch	master	denotes
that	you	are	still	working	in	the	master	branch.	To	switch	to	the	new	branch,
execute	the	git	checkout	command:4

ocs@ubuntu:~/ocs$	git	checkout	test
Switched	to	branch	'test'

Switching	actually	does	two	things:
	Makes	it	so	any	future	commits	occur	on	the	test	branch
	Makes	it	so	the	working	directory	reflects	the	test	branch

The	second	item	makes	more	sense	with	a	demonstration.	First,	observe	the
following	commands,	which	will	end	up	with	a	new	version	of	the	hidden.sh	file
being	placed	in	the	test	branch	repository:
ocs@ubuntu:~/ocs$	git	add	hidden.sh
ocs@ubuntu:~/ocs$	git	commit	-m	"changed	hidden.sh"
[test	ef2d7d5]	changed	hidden.sh
1	file	changed,	1	insertion(+)

Note	what	the	file	looks	like	in	the	current	working	directory:
ocs@ubuntu:~/ocs$	more	hidden.sh
#!/bin/bash
#hidden.sh

echo	"Listing	only	hidden	files:"
ls	-ld	.*	$1

If	we	switch	the	project	back	to	the	master	branch,	you	can	see	how	the
hidden.sh	file	in	the	working	directory	is	different	(note	the	missing	echo	line,
which	was	added	for	the	test	branch	only):
ocs@ubuntu:~/ocs$	git	checkout	master
Switched	to	branch	'master'
Your	branch	is	ahead	of	'origin/master'	by	2	commits.
		(use	"git	push"	to	publish	your	local	commits)
ocs@ubuntu:~/ocs$	more	hidden.sh
#!/bin/bash
#hidden.sh
ls	-ld	.*	$1

You	can	see	the	changes	that	are	made	on	different	branches,	along	with	the
comments	you	provided	for	each	change,	by	using	the	git	log	command:
ocs@ubuntu:~/ocs$	git	log	--oneline	--decorate	--all
ef2d7d5	(test)	changed	hidden.sh
2b44792	(HEAD,	master)	deleting	test.sh	file
19198d7	update	27
07bb91c	(origin/master,	origin/HEAD)	adding	showmine.sh	and	hidden.sh
75d717b	added	first.sh

9eb721e	demostrating	status5

3b36054	added	first.sh

12424f5	add	README

The--online	option	has	the	git	log	command	provide	a	one-line	summary	of
each	change.	The--decorate	option	requests	additional	information	such	as	the
branch	name.	The--all	option	asks	to	see	the	log	for	all	branches,	not	just	the
current	branch.

Pushing	Branches
Recall	the	command	to	push	changes	to	the	central	repository	server:
git	push	-u	origin	master

Did	you	wonder	at	the	time	what	the	word	master	meant?	You	can	probably
guess	now	that	it	was	the	branch	that	you	were	pushing	to	the	central	repository.
If	you	wanted	to	push	the	test	branch,	then	you	would	have	to	execute	the
following	command	as	well:6

git	push	-u	origin	test

There	is	more	to	the	story	of	branching	besides	just	creating	a	branch	and
switching	back	and	forth	between	branches.	For	example,	at	some	point	you
might	want	to	merge	files	from	branches	together.	You	might	also	want	to	see
how	versions	of	files	are	different	between	different	branches.	Chapter	14,
“Manage	Differences	in	Files”	covers	these	topics.

Git	Humor
“Be	careful	not	to	remove	the	branch	you're	standing	on.”
—Anonymous

Summary
After	reading	this	chapter,	you	should	have	a	firm	understanding	of	how	the
working	directory,	staging	area,	and	local	repository	work.	You	should	also
know	how	to	determine	which	of	these	locations	a	file	is	currently	"in"	as	well	as
how	to	specify	files	that	the	git	commands	should	ignore.	You	should
understand	the	basics	of	branching,	including	how	to	create	branches,	switch
between	branches,	add/commit	in	different	branches,	and	push	different	branches
to	the	central	repository	server.

1	The	resulting	output	of	this	git	commit	command	tends	to	cause	confusion:	1
file	changed,	2	insertions(+),	1	deletion(-).	Because	two	versions	of

the	file	were	staged	(two	insertions),	one	had	to	be	deleted	before	the	other
was	committed	to	the	repository.

2	This	potential	mistake	might	be	the	reason	why	you	must	execute	git	add	and
then	git	commit	for	new	files	(you	can't	just	execute	git	commit	-a	to	add	a
new	file).

3	However,	nothing	is	wrong	with	executing	a	regular	rm	command	because	you
probably	want	to	delete	this	file	from	the	working	directory.	This	just	isn't
going	to	end	up	removing	it	from	the	repository.

4	You	can	create	a	branch	and	switch	to	it	by	using	the	-b	option	to	the	git
checkout	command:	git	checkout	-b	test

5	Just	a	side	note	for	those	of	you	paying	close	attention:	the	spelling	error
(demostrating,	when	it	should	be	demonstrating)	is	actually	how	the	output	of
the	command	was	displayed.

6	If	are	following	along,	you	should	know	that	I	did	execute	both	git	push
commands	to	update	the	master	and	test	branch.	I	use	this	data	in	Chapter	14
examples.

14.	Manage	Differences	in	Files
Typically,	developers	love	writing	code.	Unfortunately,	writing	code	is	not	the
only	responsibility	of	software	developers.	Searching	for	differences	between
two	versions	of	source	code	files	and	merging	them	into	a	new	version	is	a	major
part	of	writing	code.
The	Git	software	tries	to	make	this	process	easier	by	providing	you	with	tools
that	display	the	difference	between	files	and	help	you	merge	files	together.	These
tools	are	the	focus	of	this	chapter.

Executing	Diffs
You	arrive	at	work	Monday	morning,	ready	to	start	on	your	project.	Executing
the	git	status	command	when	you	haven't	worked	on	the	project	for	a	while	is
always	a	good	habit,	so	you	execute	the	command	and	discover	that	you	have	a
file	in	the	working	area	that	hasn't	been	staged:
ocs@ubuntu:~/ocs$	git	status
On	branch	master
Your	branch	is	up-to-date	with	'origin/master'.

Changes	not	staged	for	commit:
		(use	"git	add	<file>..."	to	update	what	will	be	committed)
		(use	"git	checkout	--	<file>..."	to	discard	changes	in	working
directory)

							modified:			hidden.sh

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

You	could	just	stage	and	commit	the	file,	but	you	wonder	what	changes	were
made	to	this	file.	Maybe	you	didn't	finish	making	the	changes	last	Friday.	This
might	pose	problems,	so	comparing	the	version	of	the	file	in	the	working
directory	with	the	version	that	has	most	recently	been	committed	to	the	local
repository	is	best.	You	can	do	this	by	executing	the	git	diff	command:
ocs@ubuntu:~/ocs$	git	diff	hidden.sh	|	cat	-n
					1		diff	--git	a/hidden.sh	b/hidden.sh
					2		index	05151ce..714482b	100644
					3		---	a/hidden.sh
					4		+++	b/hidden.sh
					5		@@	-1,4	+1,5	@@
					6			#!/bin/bash
					7			#hidden.sh

					8
					9		+echo	"Hidden	files:"
				10			ls	-ld	.*	$1

The	output	of	this	command	requires	a	bit	of	explaining.1	Ignore	the	first	two
lines	of	output	because	they	aren't	important	at	this	point.
Lines	3	and	4	refer	to	the	two	versions	of	the	file.	Each	version	is	assigned	a
letter	(a	or	b)	to	distinguish	between	the	two.	Line	3	refers	to	the	version	that	has
been	committed,	whereas	line	4	refers	to	the	version	in	the	working	directory.
Line	5	gives	“directions”	on	how	to	make	the	two	files	look	the	same.	In	this
case,	it	is	simply	saying	“at	line	4	of	the	'a'	file	add	line	5	of	the	'b'	file.”
Following	these	directions	would	make	the	files	look	the	same	by	making	the
committed	version	look	like	the	version	in	the	working	directory.
Lines	6–10	visually	show	what	changes	would	have	to	take	place	in	the
committed	version	to	make	it	look	like	the	version	in	the	working	directory.	A	+
before	a	line	means	"add	this"	and	a	–	before	a	line	means	"remove	this."

Note
The	output	of	the	git	diff	command	is	referred	to	as	patch	output.
You	can	use	this	output	to	patch	a	file	(essentially,	upgrade	the	file
to	the	most	current	version).	Chapter	15,	“Advanced	Git	Features”
covers	this	process.

Understanding	that	this	comparison	is	performed	on	a	line-by-line	basis	is
important.	A	single	change	on	one	line	would	mean	the	lines	are	completely
different	to	the	git	diff	command.	For	example,	look	at	Listing	14.1	and	notice
that	the	only	difference	between	lines	9	and	11	is	a	single	character.

Listing	14.1	A	single	difference
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	diff	hidden.sh	|	cat	-n
					1		diff	--git	a/hidden.sh	b/hidden.sh
					2		index	05151ce..6de92ae	100644
					3		---	a/hidden.sh
					4		+++	b/hidden.sh
					5		@@	-1,4	+1,5	@@
					6			#!/bin/bash
					7			#hidden.sh
					8
					9		-ls	-ld	.*	$1

				10		+echo	"Hidden	files:"
				11		+ls	-ldh	.*	$1

By	default,	the	git	diff	command	compares	versions	in	the	following	two
situations:

	If	the	working	directory	version	is	different	than	the	committed	version,	but
only	if	the	working	version	hasn't	been	staged
	If	the	working	directory	version	is	different	than	the	staged	version

That	means	if	you	stage	a	file,	the	git	diff	command	won't	compare	the	staged
version	to	the	committed	version,	at	least	not	by	default.	As	you	can	see,	there	is
no	output	for	the	following	git	diff	command:
ocs@ubuntu:~/ocs$	git	add	hidden.sh
ocs@ubuntu:~/ocs$	git	diff	|	cat	-n

To	compare	a	staged	version	to	a	committed	version,	use	the	--staged	option	as
shown	in	Listing	14.2.

Listing	14.2	Staged	versus	committed	difference
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	diff	--staged	hidden.sh	|	cat	-n
					1		diff	--git	a/hidden.sh	b/hidden.sh
					2		index	05151ce..6de92ae	100644
					3		---	a/hidden.sh
					4		+++	b/hidden.sh
					5		@@	-1,4	+1,5	@@
					6			#!/bin/bash
					7			#hidden.sh
					8
					9		-ls	-ld	.*	$1
				10		+echo	"Hidden	files:"
				11		+ls	-ldh	.*	$1

Dealing	with	White	Space
A	useful	option	to	the	git	diff	command	is	the	--check	option,	which	looks	for
white	spaces.	To	understand	the	importance	of	this,	first	look	at	the	output	of
Listing	14.3.

Listing	14.3	White	space	mystery
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	diff	--staged	hidden.sh	|	cat	-n
					1		diff	--git	a/hidden.sh	b/hidden.sh
					2		index	6de92ae..519eb3c	100644
					3		---	a/hidden.sh
					4		+++	b/hidden.sh
					5		@@	-1,5	+1,5	@@
					6			#!/bin/bash
					7		-#hidden.sh
					8		+#hidden.sh
					9
				10			echo	"Hidden	files:"
				11			ls	-ldh	.*	$1

Based	on	the	output	of	Listing	14.3,	lines	7	and	8	are	different.	However,	they
look	exactly	the	same.	To	see	why	they	are	different	use	the	--check	option:
ocs@ubuntu:~/ocs$	git	diff	--staged	--check	|	cat	-n
					1		hidden.sh:2:	trailing	whitespace.
					2		+#hidden.sh

The	message	trailing	whitespace	means	some	sort	of	white	space	characters
(spaces,	tabs,	and	so	on)	are	at	the	end	of	the	line.2

Comparing	Branches
You	can	also	use	the	git	diff	command	to	compare	files	in	different	branches.
For	example,	to	see	a	list	of	files	that	are	different	between	two	branches,	use	the
following	command:
ocs@ubuntu:~/ocs$	git	diff	--name-status	master..test
M							hidden.sh

In	the	previous	git	diff	command,	the	--name-status	option	provides	a
summary	of	the	files	that	are	different	in	the	two	branches.	The	two	branches,
master	and	test,	are	listed,	separated	by	..	characters.
To	see	the	differences	between	the	versions	in	the	two	branches,	use	the	syntax
shown	in	Listing	14.4.

Listing	14.4	git	diff	between	branches
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	git	diff	master:hidden.sh	test:hidden.sh
diff	--git	a/master:hidden.sh	b/test:hidden.sh
index	519eb3c..804fcf7	100644
---	a/master:hidden.sh
+++	b/test:hidden.sh
@@	-1,5	+1,5	@@

#!/bin/bash
-#hidden.sh
+#hidden.sh

-echo	"Hidden	files:"
-ls	-ldh	.*	$1
+echo	"Listing	only	hidden	files:"
+ls	-ld	.*	$1

If	you	find	the	output	of	the	git	diff	command	to	be	confusing,	consider	using
the	git	difftool	command:3

ocs@ubuntu:~/ocs$	git	difftool	hidden.sh

This	message	is	displayed	because	'diff.tool'	is	not	configured.
See	'git	difftool	--tool-help'	or	'git	help	config'	for	more	details.
'git	difftool'	will	now	attempt	to	use	one	of	the	following	tools:
opendiff	kdiff3	tkdiff	xxdiff	meld	kompare	gvimdiff	diffuse	diffmerge
ecmerge	p4merge	araxis	bc3	codecompare	emerge	vimdiff

Viewing	(1/1):	'hidden.sh'
Launch	'vimdiff'	[Y/n]:	y
2	files	to	edit

Note	how	it	prompts	you	for	the	tool	to	use	to	display	the	differences.	It	also	lists
the	tools	that	could	be	available.4	If	you	want	to	use	a	different	tool	than	the	one
it	chooses,	then	execute	the	command	as	shown	in	the	following:
git	difftool	--tool=<tool>	file

The	output	of	git	difftool	appears	in	a	more	readable	format.	For	example,	see
Figure	14.1	for	the	output	of	git	difftool	when	you	use	the	vimdiff	command
as	the	display	tool.5

Figure	14.1	git	difftool	using	vimdiff

Merging	Files
Suppose	you	create	a	new	branch	to	add	a	new	feature	to	a	file	as	demonstrated
in	Listing	14.5.

Listing	14.5	Features	branch
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	more	showmine.sh
#!/bin/bash
#showmine.sh

echo	"Your	processes:"
ps	-fe	|	grep	$USER	|	more
ocs@ubuntu:~/ocs$	git	checkout	-b	feature127
Switched	to	a	new	branch	'feature127'
ocs@ubuntu:~/ocs$	vi	showmine.sh
ocs@ubuntu:~/ocs$	more	showmine.sh
#!/bin/bash
#showmine.sh

echo	-n	"Enter	name	username	or	press	enter:	"
read	person

echo	"${person:-$USER}	processes:"
ps	-fe	|	grep	"^${person:-$USER}"	|	more

After	testing	out	this	new	feature	(look	at	the	last	two	lines	of	the	output	of
Listing	14.5	to	see	the	new	feature),	you	are	ready	to	implement	it	in	the	master
branch.	To	do	this,	you	will	need	to	merge	the	content	from	the	feature127
branch	into	the	master	branch.	Start	by	committing	all	changes	in	the	feature127
branch	and	then	switch	back	to	the	master	branch:
ocs@ubuntu:~/ocs$	git	commit	-a	-m	"feature	added	to	showmine.sh"
[feature127	2e5defa]	feature	added	to	showmine.sh
	1	file	changed,	5	insertions(+),	2	deletions(-)
ocs@ubuntu:~/ocs$	git	checkout	master
Switched	to	branch	'master'
Your	branch	is	ahead	of	'origin/master'	by	3	commits.
		(use	"git	push"	to	publish	your	local	commits)

You	must	be	in	the	branch	that	you	want	to	merge	into	in	order	to	correctly	run
the	next	command.	The	following	git	merge	command	merges	the	changes	from
the	feature127	branch	into	the	master	branch:
ocs@ubuntu:~/ocs$	git	merge	feature127
Updating	4810ca8..2e5defa
Fast-forward
	showmine.sh	|	7	+++++--
	1	file	changed,	5	insertions(+),	2	deletions(-)

After	the	feature	has	been	implemented,	you	may	decide	that	the	feature127
branch	is	no	longer	necessary.	To	remove	this	branch,	execute	the	following
command:
ocs@ubuntu:~/ocs$	git	branch	-d	feature127
Deleted	branch	feature127	(was	2e5defa).

This	merge	process	can	be	more	complex.	For	example,	there	was	a	separate
branch	named	test	that	was	branched	off	an	earlier	version	of	the	master	branch.
In	the	test	branch,	the	most	recent	showmine.sh	script	looks	like	the	following:
ocs@ubuntu:~/ocs$	git	checkout	test
ocs@ubuntu:~/ocs$	more	showmine.sh
#!/bin/bash
#showmine.sh

echo	"Your	programs:"
ps	-fe	|	grep	$USER	|	more

echo	-n	"Enter	a	PID	to	stop:	"

read	proc
kill	$proc

The	current	version	of	showmine.sh	that	has	been	committed	to	the	master
branch	looks	like	the	following:
ocs@ubuntu:~/ocs$	git	checkout	master
Switched	to	branch	'master'
Your	branch	is	ahead	of	'origin/master'	by	4	commits.
		(use	"git	push"	to	publish	your	local	commits)
ocs@ubuntu:~/ocs$	more	showmine.sh
#!/bin/bash
#showmine.sh

echo	-n	"Enter	name	username	or	press	enter:	"
read	person

echo	"${person:-$USER}	processes:"
ps	-fe	|	grep	"^${person:-$USER}"	|	more

Should	you	merge	the	changes	from	the	master	into	the	test	branch?	Or	should
you	merge	the	changes	from	the	test	branch	into	the	master	branch?	Typically,
if	you	have	more	work	to	do	in	the	test	branch,	merge	the	changes	from	the
master	into	the	test	branch.	Otherwise,	merge	the	changes	from	the	test	branch
into	the	master	branch.
The	following	example	merges	the	changes	from	the	master	branch	into	the	test
branch:
ocs@ubuntu:~/ocs$	git	checkout	test
Switched	to	branch	'test'
Your	branch	is	ahead	of	'origin/test'	by	1	commit.
		(use	"git	push"	to	publish	your	local	commits)
ocs@ubuntu:~/ocs$	git	merge	master
Auto-merging	showmine.sh
CONFLICT	(content):	Merge	conflict	in	showmine.sh
Auto-merging	hidden.sh
CONFLICT	(content):	Merge	conflict	in	hidden.sh
Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

You	can	see	that	the	merge	was	not	completed	because	the	automated	merge
process	ran	into	some	conflicts.	You	can	also	see	these	conflicts	by	executing	the
git	status	command:
ocs@ubuntu:~/ocs$	git	status
On	branch	test
Your	branch	is	ahead	of	'origin/test'	by	1	commit.
		(use	"git	push"	to	publish	your	local	commits)

You	have	unmerged	paths.

		(fix	conflicts	and	run	"git	commit")

Unmerged	paths:
		(use	"git	add	<file>..."	to	mark	resolution)

								both	modified:						hidden.sh
								both	modified:						showmine.sh

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

This	makes	it	clearer	that	two	files	have	conflicts,	not	just	one.	If	you	look	at	the
new	showmine.sh	file	in	the	working	directory,	it	will	look	something	like	Listing
14.6.

Listing	14.6	Merged	file
Click	here	to	view	code	image

ocs@ubuntu:~/ocs$	cat	-n	showmine.sh
					1		#!/bin/bash
					2		#showmine.sh
					3
					4		<<<<<<<	HEAD
					5		echo	"Your	programs:"
					6		ps	-fe	|	grep	$USER	|	more
					7
					8		echo	-n	"Enter	a	PID	to	stop:	"
					9		read	proc
				10		kill	$proc
				11
				12		=======
				13		echo	-n	"Enter	name	username	or	press	enter:	"
				14		read	person
				15
				16		echo	"${person:-$USER}	processes:"
				17		ps	-fe	|	grep	"^${person:-$USER}"	|	more
				18		>>>>>>>	master

Essentially,	the	file	contains	the	contents	of	each	file.	Rather	than	try	to	edit	this
file	directly,	one	way	to	handle	these	conflicts	is	to	use	the	git	mergetool
command:6

ocs@ubuntu:~/ocs$	git	mergetool	showmine.sh

This	message	is	displayed	because	'merge.tool'	is	not	configured.
See	'git	mergetool	--tool-help'	or	'git	help	config'	for	more	details.
'git	mergetool'	will	now	attempt	to	use	one	of	the	following	tools:
opendiff	kdiff3	tkdiff	xxdiff	meld	tortoisemerge	gvimdiff	diffuse
diffmerge	ecmerge	p4merge	araxis	bc3	codecompare	emerge	vimdiff
Merging:

showmine.sh

Normal	merge	conflict	for	'showmine.sh':
		{local}:	modified	file
		{remote}:	modified	file
Hit	return	to	start	merge	resolution	tool	(vimdiff):

The	git	mergetool	command	displays	the	files	using	one	of	the	diff	tools.	For
example,	using	the	vimdiff	tool	displays	as	shown	in	Figure	14.2.7

Figure	14.2	git	mergetool	using	vimdiff

The	first	time	you	see	this	output,	you	might	be	a	bit	overwhelmed.	It	isn't	as	bad
as	you	might	think.	To	see	how	this	works,	look	at	Figure	14.3.

Figure	14.3	Understanding	vimdiff

BASE	is	what	the	file	looked	like	when	the	two	branches	were	last	in	sync.
LOCAL	represents	how	the	file	looks	in	the	current	branch	(the	test	branch	in

this	example).	REMOTE	represents	how	the	file	looks	like	in	the	branch	that	is
being	merged	into	this	branch	(the	master	branch	in	this	example).	The	file	at	the
bottom	is	the	file	that	you	are	creating/merging.
As	you	can	see	from	Figure	14.2,	the	first	three	lines	of	all	versions	of	the	file
are	identical.	If	you	go	to	the	first	line	that	differs	between	the	LOCAL	and
REMOTE,	you	can	execute	the	:diffget	RE	command	to	grab	the	code	from	the
REMOTE	file.	This	would	grab	the	echo,	read,	echo,	and	ps	commands	in	this
example.
Suppose	you	want	to	input	specific	lines	from	one	of	the	three	files?	For
example,	you	want	to	copy	the	last	four	lines	of	the	LOCAL	version	into	the
merged	area.	In	this	case	you	essentially	do	a	copy	and	paste	operation.
To	switch	to	the	LOCAL	window,	hold	down	the	Ctrl	button	and	then	press	the
W	key	twice	(Ctrl+W+W).	Then	copy	the	four	lines	(go	to	the	first	line	that	you
want	to	copy	then	type	4yy).	Use	Ctrl+W+W	to	move	forward	until	the	cursor
returns	to	the	merged	copy.	Then	move	to	where	you	want	to	make	the	change
and	press	the	P	key.
After	making	all	of	your	changes,	you	need	to	save	and	quit	all	four	versions.
The	easiest	way	to	do	this	is	the	:wqa	vim	command.

Merge	all	files	and	then	stage/commit	them	with	the	git	commit	-a	command.8

Git	Humor
"Git	knows	what	you	did	last	summer!"
—Anonymous

Summary
At	this	point	you	should	now	know	how	to	create	branches,	see	the	difference	in
versions	of	files,	and	merge	files	from	one	branch	to	another.

1	If	you	run	this	on	your	own	system	and	don't	pipe	the	output	to	the	cat
command,	you	should	see	some	color	highlight	that	helps	you	understand	the
data.

2	Note	that	I	executed	git	commit	at	this	point.
3	Note	that	you	need	to	install	the	git-all	package	if	you	want	to	use	the	git
difftool	command.

4	Most	likely	not	all	of	these	tools	are	installed	on	your	system.
5	Note	that	I	executed	git	commit	at	this	point.
6	Note	that	you	need	to	install	the	git-all	package	if	you	want	to	use	the	git
mergetool	command.

7	The	vimdiff	utility	highlights	differences	using	colors	that	are	sure	to	give
you	a	headache	if	you	look	at	them	too	long.	I	highly	suggest	executing	the
:diffoff!	command	immediately	to	avoid	visual	problems	and	dizziness.
However,	when	you	want	to	make	changes	to	the	file,	you	need	to	turn	this
feature	back	on	by	executing	the	:window	diffthis	command.

8	If	you	are	following	along,	be	aware	that	at	the	end	of	this	chapter	I
completed	the	merge	of	all	files	(including	the	hidden.sh	file),	committed	all
changes	to	the	test	branch,	and	pushed	all	changes	for	both	the	test	and
master	branch	to	the	central	repository	server.

15.	Advanced	Git	Features
At	the	heart	of	Git	are	the	repositories.	Chapters	13	and	14	introduced	you	to
tools	that	enabled	you	to	work	with	the	local	repository.	In	this	chapter	you	learn
how	to	interact	with	the	central	repository	server.

Managing	Repositories
From	your	perspective,	the	central	repository	server	is	also	considered	the
remote	repository	as	opposed	to	the	repository	that	is	on	your	system	(the	local
repository).

To	see	the	location	of	your	remote	repository,	execute	the	git	remote	-v
command:
ocs@ubuntu:~/ocs$	git	remote	-v
origin	https://gitlab.com/borothwell/ocs.git	(fetch)
origin	https://gitlab.com/borothwell/ocs.git	(push)

Both	lines	point	to	the	same	location.	The	first	line	refers	to	the	process	of
downloading	content	from	the	remote	repository	and	the	second	line	refers	to	the
process	of	uploading	content	to	the	remote	repository.
Very	likely	you	will	be	working	on	separate	projects,	each	with	its	own	remote
repository.	To	access	another	project,	execute	the	git	remote	add	command:1

ocs@ubuntu:~/ocs$	git	remote	add	docs
➥	https://gitlab.com/borothwell/docs.git
ocs@ubuntu:~/ocs$	git	remote	-v
docs				https://gitlab.com/borothwell/docs.git	(fetch)
docs				https://gitlab.com/borothwell/docs.git	(push)
origin		https://gitlab.com/borothwell/ocs.git	(fetch)
origin		https://gitlab.com/borothwell/ocs.git	(push)

The	docs	argument	is	how	you	want	to	refer	to	this	remote	repository	locally.
The	last	argument	is	the	URL	path	to	the	remote	repository.
Of	course,	after	you	have	added	the	remote	repository,	you	should	also	clone	it
using	the	git	clone	command:
ocs@ubuntu:~/ocs$	cd	..
ocs@ubuntu:~$	git	clone	https://gitlab.com/borothwell/docs.git
Cloning	into	'docs'...
Username	for	'https://gitlab.com':	borothwell
Password	for	'https://borothwell@gitlab.com':
warning:	You	appear	to	have	cloned	an	empty	repository.

https://gitlab.com/borothwell/ocs.git
https://gitlab.com/borothwell/ocs.git
https://gitlab.com/borothwell/docs.git

Checking	connectivity...	done.
ocs@ubuntu:~$	ls
docs	ocs
ocs@ubuntu:~$	ls	-a	docs
.	..	.git

Even	though	this	is	an	empty	repository,	you	can	see	that	it	has	been	cloned	by
the	fact	it	created	a	~/docs	directory	and	a	docs/.git	directory.	To	perform
work	in	this	project,	simply	create	files	in	the	~/docs	directory	and	execute	the
git	commands	while	in	this	directory.

Getting	Content	from	the	Remote	Server
The	process	of	getting	the	content	from	the	remote	server	to	the	local	repository
and	working	directory	is	fairly	simple.	In	this	situation,	you	execute	the	git	clone
command	to	duplicate	everything	in	the	project	from	the	remote	server	to	the
local	system.
However,	this	process	can	become	much	more	complex	later	in	the	development
cycle	when	you	want	to	include	changes	from	the	remote	server	(likely	from
other	developers)	to	your	local	repository	and	working	directory.	You	can	use
several	different	methods,	each	with	a	different	intended	result.
Before	getting	into	the	process	of	getting	content	from	the	remote	server,
visualizing	how	content	is	sent	from	the	working	directory	to	other	locations
might	be	helpful.	Look	at	Figure	15.1	for	a	demonstration.

Figure	15.1	Git	commands	to	send	changes	from	the	working	directory

In	Figure	15.1	you	can	see	the	flow	of	version	changes.	The	git	add	command
sends	the	working	version	to	the	staged	area.	The	git	commit	command	sends
the	staged	version	to	the	local	repository.	The	git	commit	-a	command	can	send
a	version	from	the	working	directory	to	the	staged	area	and	then	to	the	local
repository.	Lastly,	the	git	push	command	sends	the	changed	versions	of	the	files
to	the	remote	repository.2

When	to	Commit	versus	When	to	Push
I	am	often	asked	when	to	use	git	commit	versus	git	push.	Some
organizations	provide	rules	or	guidelines	for	when	a	developer
should	use	commit	versus	push.	If	your	organization	doesn’t	have
any	guidelines,	I	suggest	using	the	following	guidelines
	Commit	often!	It	is	the	means	by	which	you	can	undo	a	mistake	or
go	back	to	an	older	version.	Think	of	it	like	a	“save	as”	of	a
document.
	Push	when	you	have	something	to	share	to	other	developers.
Pushing	multiple	times	a	day	for	subtle	file	changes	makes	the
process	of	merging	and	applying	changes	much	more	difficult.

File	versions	cannot	only	be	sent	from	the	working	directory	up	to	the	remote
repository,	but	they	can	also	be	propagated	from	the	remote	repository	to	the
local	repository	and	the	working	directory.	See	Figure	15.2	for	a	visual
description	of	the	commands	that	can	perform	these	actions.3

Figure	15.2	Git	commands	to	retrieve	changes	from	the	remote	repository

Details	regarding	these	commands:
	The	git	fetch	command	downloads	the	latest	version	history	of	files	from
the	remote	repository	to	the	local	repository.	This	command	does	not	change
your	working	directory,	but	you	can	use	the	git	checkout	command	to	make
the	working	directory	contain	the	latest	versions	of	the	files	of	the	branch.

Important
The	git	fetch	command	only	downloads	the	file	versions.	It	does
not	perform	any	merging.
	The	git	pull	command	downloads	the	latest	version	history	of	files

from	the	remote	repository	to	the	local	repository,	but	this	command
also	performs	a	merge	operation	and	updates	the	content	of	your
working	directory.	The	merging	process	is	the	same	as	that	described
in	Chapter	14.
	The	git	rebase	command	takes	all	the	changes	from	a	branch	and
applies	them	to	the	current	branch.	This	is	a	process	called	patching,
which	is	described	in	more	detail	later	in	this	chapter.

Connecting	via	SSH
The	default	(and	recommended)	method	of	communication	with	the	remote
repository	is	HTTPS.	Another	method	that	can	be	used	is	SSH.	Both	methods
should	provide	a	secure	(and	encrypted)	communication	method.	Typically,
HTTPS	is	recommended	for	a	few	reasons:

	No	additional	setup	is	required	when	you	use	HTTPS.	If	you	choose	to	use
SSH,	then	you	must	generate	a	SSH	key	and	upload	it	to	the	remote
repository.
	When	using	HTTPS,	Git	makes	use	of	a	feature	called	credential	helper
automatically	to	cache	your	password.	This	means	when	you	connect	to	the
remote	repository,	you	won’t	have	to	provide	your	password	each	time.	This
could	also	be	configured	for	SSH,	but	it	isn’t	done	so	automatically	(you
need	to	configure	this	using	a	SSH	feature	called	ssh-agent).
	The	third	possible	reason	is	related	to	firewalls.	In	networks	that	are	highly
secured	with	strict	firewalls,	the	HTTPS	network	port	is	more	likely	to	be
“open”	than	the	SSH	network	port.

This	doesn’t	mean	you	shouldn’t	use	SSH,	just	that	the	developers	of	Git
recommend	HTTPS.	If	you	do	want	to	use	SSH,	then	you	first	need	to	execute
the	following	command:
ocs@ubuntu:~/ocs$	ssh-keygen	-t	rsa

This	creates	an	SSH	key	in	the	~/.ssh/id_rsa.pub	file.	You	must	upload	this	file
to	the	SSH	server,	which	you	normally	do	via	the	web	interface.	See	Figure	15.3
for	an	example	of	this	interface	on	gitlab.com.

Figure	15.3	Uploading	SSH	keys	on	gitlab.com

After	uploading	the	SSH	keys	to	the	remote	repository	server,	you	can	have	the
git	command	use	SSH	instead	of	HTTP	by	using	the	following	syntax:
git	clone	ssh://user@server/project.git

Another	method	that	is	popular	is	to	use	the	following	syntax:
git	clone	user@server:project.git

Patching
The	idea	of	patching	is	that	you	will	discover	situations	in	which	it	won’t	be	easy
to	perform	a	simple	merge	between	two	different	branches.	Several	reasons	exist
as	to	why	this	might	be,	including	the	following:

	When	you	want	to	implement	changes	from	a	branch	that	hasn’t	been	made
available	on	the	central	repository
	When	you	want	to	implement	changes	from	a	specific	version	of	a	file

Actually	several	different	techniques	can	be	utilized	to	perform	patching.	The
most	basic	(and	common)	method	is	to	use	the	git	diff	command	that	was
discussed	in	Chapter	14	to	generate	a	diff	file.	You	do	this	by	executing	the	git
diff	command	and	redirecting	the	output	to	a	file.	For	example:
git	diff	A	B	>	file.patch

This	patch	file	will	be	used	to	modify	an	existing	checked-out	file	to	include	the
differences.	This	is	performed	by	using	the	git	apply	command.	For	example:
git	apply	file.patch

Often	the	patch	file	is	generated	on	one	system	and	then	copied	to	another
system	before	applying.	It	is	also	typically	a	good	idea	to	use	the	--check	option

to	test	the	patch	before	actually	applying	it:
git	apply	--check	file.patch
git	apply	file.patch

Git	Humor
“Nurture	your	git-twigs	and	they	will	grow	into	a	full	branch.”
—Anonymous

Summary
In	this	chapter	you	learned	how	to	manage	repositories.	You	also	learned	how	to
change	the	method	of	connecting	to	a	remote	repository	from	HTTPS	to	SSH.
Last,	you	were	introduced	to	the	concept	of	patching	in	Git.

1	I	created	this	new	project	by	using	the	web	interface	provided	by	gitlab.com.
2	None	of	these	commands	are	new	because	they	were	covered	in	previous
chapters.	However,	visualizing	this	process	can	help	you	understand	the	next
topic	better.

3	Note	that	the	git	clone	command	is	not	included	in	Figure	15.2.	This	is
because	typically	you	only	run	this	command	once	when	you	first	download
the	remote	repository.

http://gitlab.com

Index

Symbols
“	(double	quotes),	124
‘	(single	quotes),	124
-	option	(su	command),	84–85
/	(forward	slash)
command,	75
in	paths,	29

/bin	directory,	30
/home	directory,	30
/media	directory,	30
/root	directory,	30
/sbin	directory,	30
/tmp	directory,	30
/usr/bin	directory,	30
/usr/sbin	directory,	30
/usr/share/doc	directory,	27
:	(colon)	command,	76
;	(semicolon)	in	Perl	statements,	119
|	(pipe)	in	redirection,	44–45
#!	(sha-bang)
in	bash	shell	scripting,	111
in	Perl,	120
in	Python,	132

$	(dollar	sign)	command,	71
((left	parenthesis)	command,	72
)	(right	parenthesis)	command,	71
*	(asterisk)	as	wildcard,	38
?	(question	mark)
command,	75
as	wildcard,	39

[[(double	left	square	brackets)	command,	72

[]	(square	brackets)	as	wildcard,	39
]]	(double	right	square	brackets)	command,	72
{	(left	curly	brace)	command,	72
}	(right	curly	brace)	command,	72
<	(left	arrow)	in	redirection,	43
>	(right	arrow)	in	redirection,	41–42
>>	(double	right	arrow)	in	redirection,	41
0	(zero)	command,	71
2>	(two	right	arrow)	in	stderr	redirection,	42–43

A
A	command,	69
a	command,	69
absolute	paths,	31–33
adding	user	accounts,	91–92
aliases,	56
append	method,	135
apt-get	command,	88
apt-get	install	command,	91
arguments	(in	command	line),	22
arrays,	122–124
asterisk	(*)	as	wildcard,	38
auto	indentation	in	vim,	132
awk	utility,	105–107

B
B	command,	71
b	command,	71
bash	shell.	See	shell
/bin	directory,	30
bluefish	editor,	82
branches	(Git),	169–171
comparing	files,	176–177
creating,	169
merging	files,	178–182

pushing,	171
removing,	179
switching,	169–170

break	command,	116,	137
bzip2	command,	60–61

C
C	programming	language,	107–108
packages,	142–145
system	libraries,	139–142

C++	programming	language,	108
packages,	142–145
system	libraries,	139–142

capitalize	method,	134
case	statements
in	bash	shell	scripting,	115,	117
in	Perl,	126

cat	command,	49–50
cd	command,	32–33
change	directory	process,	31
changing	permissions,	58–59
chmod	command,	58–59
choosing
Linux	distribution,	14–15
repository	host,	156–157

cloning,	155
closed	source,	4–5
cmp	command,	54
colon	(:)	command,	76
command	line
aliases,	56
benefits	of,	47–48
comparing	files,	54–55
cmp	command,	54
diff	command,	54–55

components	of,	22
compressing	files,	59–62
bzip2	command,	60–61
gzip	command,	60
tar	command,	61–62

documentation,	22–27
/usr/share/doc	directory,	27
help	command,	22–23
info	command,	26–27
man	pages,	23–26

finding	files,	52–54
find	command,	52–54
locate	command,	52

grep	command,	62–66
finding	files,	65–66
origin	of	name,	62
regular	expressions,	63–65

history,	56–57
logging	in	via,	16–17
number	of	commands,	48
permissions,	57–59
changing,	58–59
files	versus	directories,	58
viewing,	57

redirection,	41–45
shell,	21
terminal	windows,	21
variables,	55–56
vi	editor.	See	vi	editor
viewing	files,	48–52
cat	command,	49–50
file	command,	48–49
head	command,	51
less	command,	50–51
more	command,	50–51

tail	command,	51
wc	command,	51–52

wildcards,	38–40
comments
in	bash	shell	scripting,	111
in	Perl,	119

commercial	software,	4–5
comparing	files,	54–55
branches,	176–177
cmp	command,	54
diff	command,	54–55
git	diff	command,	173–177
staged	versus	committed	files,	175
white	space,	175–176

comparison	operators	in	Python,	137
compiled	languages,	107
C	programming	language,	107–108
C++	programming	language,	108
Java,	108,	145–146
packages,	142–145
Debian,	145
RPM,	142–145

scripting	languages	versus,	97
system	libraries,	139–142
managing,	140–141
viewing,	142

compressing	files,	59–62
bzip2	command,	60–61
gzip	command,	60
tar	command,	61–62

conditional	expressions
in	bash	shell	scripting,	113–115
in	Perl,	126–128
in	Python,	137

configuring	Git,	157–162

connecting	to	repositories,	186–187
continue	command,	116,	137
copying
files,	37–38
in	vi	editor,	73

copyleft,	8
cp	command,	37–38
credential	helper,	186

D
d$	command,	74
DAG	(Directed	Acyclic	Graph),	153
data	structures.	See	variables
dd	command,	74
Debian,	14,	145
debugger	(Perl),	120–121
del	method,	135
deleting
directories,	36–37
user	accounts,	93
in	vi	editor,	74

desktops,	18–21
df	command,	87
dG	command,	74
dictionaries,	133,	135.	See	also	hashes
diff	command,	54–55
Directed	Acyclic	Graph	(DAG),	153
directories
creating,	36
-d	option	(ls	command),	40
deleting,	36–37
listing	files	in,	33–35
managing,	36–37
most	used,	30
naming	conventions,	30–31

permissions,	58
root,	29
wildcards,	38–40
working,	31

disk	usage,	displaying,	86–88
display	manager,	15–16
Distributed	Version	Control	Systems	(DVCSs),	151
distribution.	See	Linux	distribution
distro.	See	Linux	distribution
documentation,	22–27.	See	also	resources	for	information
/usr/share/doc	directory,	27
help	command,	22–23
info	command,	26–27
man	pages,	23–26
vi	editor,	77–79

dollar	sign	($)	command,	71
double	left	square	brackets	([[)	command,	72
double	quotes	(“),	124
double	right	arrow	(>>)	in	redirection,	41
double	right	square	brackets	(]])	command,	72
dpkg	command,	88
dpkg	-l	command,	90
DVCSs	(Distributed	Version	Control	Systems),	151
dw	command,	74

E
E	command,	71
e	command,	71
echo	command,	55,	112
ed	editor,	67–68
editors
bluefish,	82
ed,	67–68
Emacs,	79–80
gedit,	81

joe,	81
kwrite,	81
lime,	82
nano,	81
vi.	See	vi	editor
vim,	68–69

egrep	command,	116
else	statement,	137
elsif	statement,	125
Emacs	editor,	79–80
environment	variables,	56
executables,	23
executing
bash	shell	scripts,	112
Perl	code,	120–121
Python	code,	132–133

exit	command,	17,	85
extend	method,	135

F
file	command,	48–49
file	locking,	149
file	test	comparisons
in	bash	shell	scripting,	115
in	Perl,	127–128

files
comparing,	54–55
branches,	176–177
cmp	command,	54
diff	command,	54–55
git	diff	command,	173–177
staged	versus	committed	files,	175
white	space,	175–176

compressing,	59–62
bzip2	command,	60–61

gzip	command,	60
tar	command,	61–62

copying,	37–38
finding,	52–54
find	command,	52–54
grep	command,	65–66
locate	command,	52

hidden,	34
ignoring	in	Git,	166–167
listing,	33–35
managing,	37–45
merging,	178–182
multiple	locations	in	Git,	165–166
naming	conventions,	30–31
permissions,	58
reading
in	Perl,	128–129
in	Python,	137

redirection,	41–45
removing	in	Git,	168–169
retrieving	from	remote	repository,	184–186
viewing,	48–52
cat	command,	49–50
file	command,	48–49
head	command,	51
less	command,	50–51
more	command,	50–51
tail	command,	51
wc	command,	51–52

wildcards,	38–40
filesystem.	See	also	directories;	files
defined,	29
listing	files	in,	33–35
most	used	directories,	30
naming	conventions,	30–31

navigating,	31–33
find	command,	52–54,	94
finding
files,	52–54
find	command,	52–54
grep	command,	65–66
locate	command,	52

software,	89–90
text	in	vi	editor,	75

first	generation	version	control	software,	149
flags	(in	command	line),	22
flow	control	statements
in	bash	shell	scripting,	115–117
in	Perl,	124–126
in	Python,	136–137

foreach	statement,	123,	125
for	loops
in	bash	shell	scripting,	115,	116
in	Perl,	125
in	Python,	136

forward	slash	(/)
command,	75
in	paths,	29

FOSS	(Free	and	Open	Source	Software),	6
Four	Freedoms,	6
free	software,	5–7
Free	Software	Foundation	(FSF),	6
functions
in	Perl,	129
in	Python,	138

G
G	command,	72
gedit	editor,	81
Git

branches,	169–171
choosing	repository	host,	156–157
comparing	files,	173–177
branches,	176–177
staged	versus	committed	files,	175
white	space,	175–176

configuring,	157–160,	161–162
connecting	to	repositories,	186–187
git	status	command,	162–165
ignoring	files,	166–167
installing,	154–155
managing	repositories,	183–184
merging	files,	178–182
multiple	file	locations,	165–166
patching,	187
removing	files,	168–169
resources	for	information,	162
retrieving	content	from	remote	repository,	184–186
stages,	155–156

git	add	command,	158,	162
git	apply	command,	187
git	branch	command,	169
git	checkout	command,	169
git	clone	command,	184
git	commit	command,	158,	162,	185
git	config	command,	161–162
git	diff	command,	173–177,	187
branches,	176–177
staged	versus	committed	files,	175
white	space,	175–176

git	difftool	command,	177
git	help	command,	162
git	log	command,	170
git	merge	command,	178
git	mergetool	command,	181

git	push	command,	159,	185
git	remote	add	command,	183
git	remote	command,	183
git	rm	command,	168–169
git	status	command,	162–166
git-all	package,	155
given	statement,	126
grep	command,	62–66,	89
finding	files,	65–66
origin	of	name,	62
regular	expressions,	63–65

groupadd	command,	93
groupdel	command,	94
groups
explained,	93
managing,	93–94

GUI
desktops,	18–21
logging	in	via,	15–16
man	page	viewer,	26
vim	editors	in,	81

gzip	command,	60

H
H	command,	72
h	command,	71
hashes,	122,	124.	See	also	dictionaries
head	command,	51
help	command,	22–23
help	documentation.	See	documentation
hidden	files,	listing,	34
history	command,	56–57
/home	directory,	30
HTTPS,	connecting	to	repositories,	186–187

I
I	command,	69
i	command,	69
id	command,	84
IDEs	(Integrated	Development	Environments),	108–109
if	statements
in	bash	shell	scripting,	113
in	Perl,	124–125
in	Python,	136

ignoring	files	in	Git,	166–167
immutable,	135
info	command,	26–27
insert	method,	135
insert	mode	(vi	editor),	69–70
installing
Git,	154–155
Java,	145–146
Linux	distribution,	13–14
software,	90–91

integer	comparisons	in	bash	shell	scripting,	115
Integrated	Development	Environments	(IDEs),	108–109
international	licenses,	8
interpreted	languages.	See	scripting	languages

J
j	command,	71
Java,	108
installing,	145–146
packages,	142–145
system	libraries,	139–142

JavaScript,	103–104
joe	editor,	81

K
k	command,	71

kernel,	13
keys	command,	124
kwrite	editor,	81

L
L	command,	72
l	command,	71
last	line	mode,	76
last	statement,	126
ldd	command,	142
left	arrow	(<)	in	redirection,	43
left	curly	brace	({)	command,	72
left	parenthesis	(()	command,	72
len	function,	134
less	command,	50–51
libraries.	See	system	libraries
licensing,	open	source
benefits	of,	7
categories	of,	8
examples,	8–9
resources	for	information,	9
terminology,	8

lime	editor,	82
links.	See	resources	for	information
Linux	distribution
choosing,	14–15
defined,	13
installing,	13–14

Linux	systems,	logging	in,	15–18
via	command	line,	16–17
via	GUI,	15–16
via	network,	17–18

listing
files,	33–35
software,	89–90

listings
all	files	up	to	date,	164–165
case	statement	example,	117
cat	-n	command,	49–50
deleting	file	from	working	directory,	168
features	branch,	178
git	diff	between	branches,	176
head	command,	51
if	statement	example,	113
install	rpm-build,	143–144
install	source	RPM,	144–145
ldd	command,	142
matching	with	grep,	63
merged	file,	180
numbers	versus	strings,	134
the	-	option	of	su	command,	85
read	statement	example,	118
scalar	statements,	122–123
searching	with	grep,	65–66
set	command,	55
single	difference,	174–175
staged	versus	committed	difference,	175
staging	file	to	be	deleted,	168–168
testing	user	input,	114–115
three	versions	of	file,	165
while	loop,	125
white	space	mystery,	175–176
yum	install	command,	90

lists,	133,	134–135
locate	command,	52
logging	into	Linux	systems,	15–18
via	command	line,	16–17
via	GUI,	15–16
via	network,	17–18

loops

in	bash	shell	scripting,	115–117
in	Perl,	124–126
in	Python,	136–137

ls	command,	33–35
-d	option,	40
-l	option,	57

M
M	command,	72
man	5	passwd	command,	91
man	command,	23–26
man	pages,	23–26
managing
directories,	36–37
files,	37–45
filesystem,	33–35
groups,	93–94
software,	88

/media	directory,	30
merge	process,	150–151
merging	files,	178–182
mkdir	command,	36
modifiers	(vi	editor),	72
modifying	user	accounts,	92
modules
in	Perl,	129–130
in	Python,	138

more	command,	50–51
movement	commands	(vi	editor),	71–72
multiple	file	locations	in	Git,	165–166
mv	command,	38
my	statement,	129

N
N	command,	75

n	command,	75
naming	conventions	for	files	and	directories,	30–31
nano	editor,	81
navigating	filesystem,	31–33
network,	logging	in	via,	17–18
newline	characters,	119
next	statement,	126
nonreusable	licenses,	8
numeric	comparisons	in	Perl,	126–127
numeric	variables,	133–134

O
O	command,	69
o	command,	69
octal	method	(changing	permissions),	58–59
open	source
defined,	5
free	software,	5–7
licensing
benefits	of,	7
categories	of,	8
examples,	8–9
resources	for	information,	9
terminology,	8

open	statement,	137
options	(in	command	line),	22

P
P	command,	74
p	command,	74
packages,	142–145
Debian,	145
RPM,	142–145

paging,	44
passwd	command,	92

passwords,	complexity	of,	92
pasting	in	vi	editor,	74
patch	output,	174
patching,	186,	187
paths,	29
for	bash	shell	scripts,	112
types	of,	31–33

Perl,	99–100,	119–130
comments,	119
conditional	expressions,	126–128
executing	code,	120–121
flow	control	statements,	124–126
functions,	129
modules,	129–130
print	statements,	119
reading	files,	128–129
resources	for	information,	121–122
as	unstructured,	119
variables,	122–124

perl	command,	120
perldoc	command,	121–122
permissions,	57–59
changing,	58–59
files	versus	directories,	58
viewing,	57

permissive	permissiveness,	8
permissiveness,	8
PHP,	102–103
pipe	(|)	in	redirection,	44–45
piping,	44–45
pop	method,	135
pop	statement,	123
positional	parameter	variables,	112
pragmas	in	Perl,	130
print	statements,	119,	132

private	variables,	129
programming	languages
compiled	languages,	107
C	programming	language,	107–108
C++	programming	language,	108
Java,	108,	145–146
packages,	142–145
system	libraries,	139–142

IDEs,	108–109
scripting	languages
awk	utility,	105–107
bash	shell,	98–99,	111–118
comparing,	99
compiled	languages	versus,	97
JavaScript,	103–104
Perl,	99–100,	119–130
PHP,	102–103
Python,	100–101,	131–138
Ruby,	102
sed	utility,	105–107
Tcl/Tk,	104–105

proprietary	software,	4–5
push	(Git),	156,	159
push	statement,	123
pushing	branches	(Git),	171
pwd	command,	32
.pyc	files,	132–133
.pyo	files,	132–133
Python,	100–101,	131–138
conditional	expressions,	137
executing	code,	132–133
flow	control	statements,	136–137
functions,	138
modules,	138
reading	files,	137

resources	for	information,	133
as	structured	language,	131–132
variables,	133–136

python	command,	132

Q
qq	statement,	124
question	mark	(?)
command,	75
as	wildcard,	39

quitting	vi	editor
and	saving,	76–77
without	saving,	73,	77

quoting	variables,	114
qw	statement,	124

R
read()	method,	137
read	statements,	117–118
reading	files
in	Perl,	128–129
in	Python,	137

readline	method,	137
Red	Hat,	14
redirection,	41–45
regular	expressions
in	bash	shell	scripting,	63–65
in	Perl,	128

relative	paths,	31–33
remote	repository.	See	repositories
remove	method,	135
removing.	See	also	deleting
branches	in	Git,	179
files	in	Git,	168–169
software,	91

repeater	modifiers	(vi	editor),	72
replacing	text	in	vi	editor,	75–76
repositories
connecting	via	SSH,	186–187
managing,	183–184
retrieving	content	from,	184–186

repository	host,	choosing,	156–157
resources	for	information.	See	also	documentation
bash	shell	scripts,	118
Git,	162
open	source	licensing,	9
Perl,	121–122
Python,	133

right	arrow	(>)	in	redirection,	41–42
right	curly	brace	(})	command,	72
right	parenthesis	())	command,	71
rm	command,	36–37,	38
rmdir	command,	36
/root	directory,	30
root	directory,	29
root	user,	accessing,	84–86
logging	in	directly,	83
with	su	command,	84–85
with	sudo	command,	85–86

rpm	command,	88
RPM	packages,	142–145
rpm	-qa	command,	90
Ruby,	102
running.	See	executing

S
s	command,	69
saving	in	vi	editor,	76–77
/sbin	directory,	30
scalars,	122–123

scripting	languages
awk	utility,	105–107
bash	shell,	98–99,	111–118
comments,	111
conditional	expressions,	113–115
echo	command,	112
executing	code,	112
file	test	comparisons,	115
flow	control	statements,	115–117
integer	comparisons,	115
positional	parameter	variables,	112
resources	for	information,	118
sha-bang	(#!),	111
user	interaction,	117–118

comparing,	99
compiled	languages	versus,	97
JavaScript,	103–104
Perl,	99–100,	119–130
comments,	119
conditional	expressions,	126–128
executing	code,	120–121
flow	control	statements,	124–126
functions,	129
modules,	129–130
print	statements,	119
reading	files,	128–129
resources	for	information,	121–122
as	unstructured,	119
variables,	122–124

PHP,	102–103
Python,	100–101,	131–138
conditional	expressions,	137
executing	code,	132–133
flow	control	statements,	136–137
functions,	138

modules,	138
reading	files,	137
resources	for	information,	133
as	structured	language,	131–132
variables,	133–136

Ruby,	102
sed	utility,	105–107
Tcl/Tk,	104–105

searching.	See	finding
second	generation	version	control	software,	149–151
sed	utility,	105–107
selecting.	See	choosing
semicolon	(;)	in	Perl	statements,	119
set	command,	55
sets,	136
sha-bang	(#!)
in	bash	shell	scripting,	111
in	Perl,	120
in	Python,	132

shared	library	calls,	139
shell
defined,	21
scripting,	98–99,	111–118
comments,	111
conditional	expressions,	113–115
echo	command,	112
executing	code,	112
file	test	comparisons,	115
flow	control	statements,	115–117
integer	comparisons,	115
positional	parameter	variables,	112
resources	for	information,	118
sha-bang	(#!),	111
user	interaction,	117–118

variables,	55–56

shift	statement,	123
single	quotes	(‘),	124
sl	package,	94
Slackware/SUSE,	14
software
installing,	90–91
listing	and	finding,	89–90
managing,	88
removing,	91

sort	statement,	123
source	code
closed	source,	4–5
defined,	3–4
open	source
benefits	of,	7
defined,	5
free	software,	5–7
licensing	categories,	8
licensing	examples,	8–9
resources	for	information,	9
terminology,	8

version	control,	147
choosing	Git	repository	host,	156–157
comparing	files,	173–177
configuring	Git,	157–160,	161–162
connecting	to	repositories,	186–187
first	generation	software,	149
Git	branches,	169–171
Git	stages,	155–156
git	status	command,	162–165
ignoring	files,	166–167
installing	Git,	154–155
managing	repositories,	183–184
merging	files,	178–182
multiple	file	locations,	165–166

patching,	187
removing	files,	168–169
resources	for	information,	162
retrieving	content	from	remote	repository,	184–186
second	generation	software,	149–151
third	generation	software,	151–154

special	purpose	licenses,	8
special	variables	in	Perl,	124
splice	statement,	123
square	brackets	([])	as	wildcard,	39
SSH,	connecting	to	repositories,	186–187
ssh-agent,	186
stages	(Git),	155–156
staging	area	(Git),	156
Stallman,	Richard,	6
standard	licenses,	8
static	library	calls,	139
stderr	(standard	error),	41
redirecting,	42–43

stdin	(standard	input),	41
redirecting,	43–44

stdout	(standard	output),	41
redirecting,	41–42

strict	permissiveness,	8
string	comparisons	in	Perl,	127
string	variables,	133–134
strong	copyleft,	8
structured	languages,	Python	as,	131–132.	See	also	compiled	languages
su	command,	84–85
sudo	command,	84,	85–86
switch	statements	in	Perl,	126
switching	branches	(Git),	169–170
symbolic	method	(changing	permissions),	58–59
system	administration
disk	usage,	displaying,	86–88

groups
explained,	93
managing,	93–94

root	user
accessing,	84–86
logging	in	directly,	83

software
installing,	90–91
listing	and	finding,	89–90
managing,	88
removing,	91

user	accounts,	91
adding,	91–92
deleting,	93
modifying,	92

system	libraries,	139–142
managing,	140–141
viewing,	142

T
tail	command,	51
tar	command,	61–62
Tcl/Tk,	104–105
terminal	windows,	21
test	command,	113–115
text
finding	in	vi	editor,	75
replacing	in	vi	editor,	75–76

text	editors.	See	editors
third	generation	version	control	software,	151–154
/tmp	directory,	30
touch	command,	38
tuples,	135
two	right	arrow	(2>)	in	stderr	redirection,	42–43

U
u	command,	73
undoing	actions	(vi	editor),	73
unless	statement	in	Perl,	125
unshift	statement,	123
unstructured	languages,	Perl	as,	119
until	loops
in	bash	shell	scripting,	115
in	Perl,	125

user	accounts,	91
adding,	91–92
deleting,	93
modifying,	92

user	interaction	in	bash	shell	scripting,	117–118
useradd	command,	91
userdel	command,	93
usermod	command,	92,	93
/usr/bin	directory,	30
/usr/sbin	directory,	30
/usr/share/doc	directory,	27

V
variables
environment,	56
in	Perl,	122–124
positional	parameters,	112
private,	129
in	Python,	133–136
quoting,	114
shell,	55–56

version	control,	147
first	generation	software,	149
Git
branches,	169–171

choosing	repository	host,	156–157
comparing	files,	173–177
configuring,	157–160,	161–162
connecting	to	repositories,	186–187
git	status	command,	162–165
ignoring	files,	166–167
installing,	154–155
managing	repositories,	183–184
merging	files,	178–182
multiple	file	locations,	165–166
patching,	187
removing	files,	168–169
resources	for	information,	162
retrieving	content	from	remote	repository,	184–186
stages,	155–156

second	generation	software,	149–151
third	generation	software,	151–154

vi	editor
benefits	of,	68
copying	in,	73
deleting	in,	74
documentation,	77–79
finding	text,	75
history	of,	67–68
insert	mode,	69–70
movement	commands,	71–72
pasting	in,	74
quitting
and	saving,	76–77
without	saving,	73,	77

repeater	modifiers,	72
replacing	text,	75–76
undoing	actions,	73

viewing
files,	48–52

cat	command,	49–50
file	command,	48–49
head	command,	51
less	command,	50–51
more	command,	50–51
tail	command,	51
wc	command,	51–52

permissions,	57
system	libraries,	142

vim	editor,	68–69
auto	indentation,	132

vimdiff	tool,	181–182
vimtutor	command,	79
visudo	command,	86

W
W	command,	71
w	command,	71
Wall,	Larry,	130
wc	command,	51–52
weak	copyleft,	8
websites.	See	resources	for	information
while	loops
in	bash	shell	scripting,	115,	116
in	Perl,	125
in	Python,	136

white	space,	comparing	files,	175–176
wildcards,	38–40
working	area	(Git),	156
working	directory,	31
write	method,	137

X
X	command,	74
x	command,	74

xG	command,	72
xman	command,	26

Y
y$	command,	73
yanking,	73
yG	command,	73
yum	command,	88
yum	install	command,	90
yum	list	installed	command,	89
yum	search	command,	89
yw	command,	73
yy	command,	73

Z
zero	(0)	command,	71
zypper	command,	88
zypper	install	command,	91

Code	Snippets
Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Preface
	I: Open Source Software
	1 Introduction to Open Source Software
	Defining Source Code
	Closed Source
	Open Source
	“Free” Software

	Choosing Open Source Licensing
	Options
	Key Terms
	Examples
	Useful Links

	Summary

	II: Linux Essentials
	2 Introduction to Linux
	Accessing a Linux System
	Choosing the Right Distribution
	Logging In

	Using the GUI
	Basic Command-Line Execution
	Command-Line Structure
	Getting Help

	Summary

	3 The Filesystem
	Understanding the Filesystem
	Learning the Most Used Directories
	Naming Considerations

	Navigating the Filesystem
	Managing the Filesystem
	Managing Directories
	Managing Files

	Summary

	4 Essential Commands
	Command-Line Tools
	Viewing Files
	Finding Files
	Comparing Files
	Shell Features
	Permissions

	Developer Tools
	File Compression Commands
	The grep Command

	Summary

	5 Text Editors
	The vi Editor
	Why Learn vi?
	What Is vim?
	Essential vi Commands

	Additional Editors
	Emacs
	gedit and kwrite
	nano and joe
	lime and bluefish

	Summary

	6 System Administration
	Essential Tasks
	Gaining Access to the Root Account
	Displaying Disk Usage

	Managing Software
	Listing and Finding Software
	Installing Software

	User Accounts
	Adding User Accounts
	Modifying User Accounts
	Deleting User Accounts
	Understanding Groups
	Managing Groups

	Summary

	III: Linux Programming Languages
	7 Overview of Linux Programming Languages
	Scripting Languages
	BASH Shell Scripting
	Perl Scripting
	Python Scripting
	Additional Scripting Languages

	Compiled Languages
	C Programming Basics
	C++ Programming Basics
	Java Programming Basics

	IDEs
	Summary

	8 BASH Shell Scripting
	Basics of BASH Scripting
	Conditional Expressions
	Integer Comparisons
	File Test Comparisons

	Flow Control Statements
	The while loop
	The for Loop
	The case Statement

	User Interaction
	Additional Information
	Summary

	9 Perl Scripting
	Basics of Perl Scripting
	Executing Perl Code
	Additional Perl Documentation
	Variables and Values

	Flow Control
	Conditions
	Additional Features
	Summary

	10 Python Scripting
	Basics of Python Scripting
	Executing Python Code
	Additional Documentation
	Variables and Values

	Flow Control
	Conditions
	Additional Features
	Summary

	11 C, C++, and Java
	Understanding System Libraries
	Managing Shared Library Files
	Viewing Shared Library Files

	Building Packages
	Building RPM Packages
	Building Debian Packages

	Exploring Java Installation and Basics
	Summary

	IV: Using Git
	12 Git Essentials
	Version Control Concepts
	The First Generation
	The Second Generation
	The Third Generation

	Installing Git
	Git Concepts and Features
	Git Stages
	Choosing Your Git Repository Host
	Configuring Git

	Summary

	13 Manage Files with Git
	Basic Configuration
	git status
	Handling a Multiple Location Situation
	Telling Git to Ignore a File

	Removing Files
	Handling Branches
	Pushing Branches
	Summary

	14 Manage Differences in Files
	Executing Diffs
	Dealing with White Space
	Comparing Branches

	Merging Files
	Summary

	15 Advanced Git Features
	Managing Repositories
	Getting Content from the Remote Server
	Connecting via SSH

	Patching
	Summary

	Index
	Code Snippets

