
T E C H N O L O G Y I N A C T I O N ™

Arduino
Applied

Comprehensive Projects for
Everyday Electronics
—
Neil Cameron

Arduino Applied
Comprehensive Projects for

Everyday Electronics

Neil Cameron

Arduino Applied: Comprehensive Projects for Everyday Electronics

ISBN-13 (pbk): 978-1-4842-3959-9 ISBN-13 (electronic): 978-1-4842-3960-5
https://doi.org/10.1007/978-1-4842-3960-5

Library of Congress Control Number: 2018965611

Copyright © 2019 by Neil Cameron

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3959-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Neil Cameron
Edinburgh, UK

https://doi.org/10.1007/978-1-4842-3960-5

iii

About the Author ���xiii

About the Technical Reviewer ��xv

Preface ���xvii

Table of Contents

Chapter 1: Introduction���1

Arduino Uno ��1

Breadboards ��3

Arduino IDE Software ��4

Arduino IDE Sketch ���5

Run the Blink Sketch ���6

Electricity Explained ��7

Revise the Blink Sketch ��8

Pulse Width Modulation ��12

Opening and Saving Sketches ��14

Summary���15

Components List ���15

Chapter 2: Switches ���17

Tactile Switch ��17

Comparison Operators ��21

Debouncing a Switch ��22

Hardware Switch Debounce ��25

iv

Ball Switch ��27

Summary���29

Components List ���29

Chapter 3: Sensors ���31

Temperature Sensor ��31

Variables ���35

Humidity Sensor ��37

Library Installation ��39

Library Installation Method 1 ���39

Library Installation Method 2 ���39

Library Installation Method 3 ���40

Light Dependent Resistor ��42

Light Dependent Resistor and Several LEDs ���46

Voltage Divider ��48

Ultrasonic Distance Sensor ���50

Speed of Sound ���56

Hall Effect Sensor ���57

Sound Sensor ��61

Infrared Sensor ���64

Infrared Distance Module ��67

Passive Infrared Sensor ��69

Accelerometer and Gyroscope ��72

Summary���77

Components List ���78

Table of ConTenTsTable of ConTenTs

v

Chapter 4: Liquid Crystal Display ���79

Contrast Adjustment with PWM ��83

Scrolling Text ���85

LCD with I2C Bus ���87

I2C with Temperature and Pressure Sensor ��88

16×4 LCD Cursor Positioning ��93

Display Entered Values on LCD ���95

LCD Character Set ���96

Additional Characters ��98

Summary���100

Components List ���100

Chapter 5: 7-Segment LED Display ���101

Basic Schematic ���102

PWM and LED Brightness��105

Shift Register ��107

Shift Register, PWM, and LED Brightness��113

Alphanumeric Characters ���116

Summary���118

Components List ���118

Chapter 6: 4-Digit 7-Segment Display ��119

Functions ��123

One Shift Register ���126

Two Shift Registers ���131

Summary���135

Components List ���136

Table of ConTenTsTable of ConTenTs

vi

Chapter 7: 8×8 Dot Matrix Display ���137

One Shift Register ���143

Two Shift Registers ���146

Scrolling Text ���150

Summary���156

Components List ���156

Chapter 8: Servo and Stepper Motors ��157

Servo Motors ���157

Servo Motor and a Potentiometer ���161

Stepper Motor ���165

Stepper Motor and a Potentiometer ��172

Stepper Motor Gear Ratio��175

Summary���176

Components List ���176

Chapter 9: Rotary Encoder ��177

Rotary Encoder and Stepper Motor ���182

Summary���186

Components List ���187

Chapter 10: Infrared Sensor ���189

Infrared Emitter and Sensor ��195

Infrared Emitter and Receiver ���197

Summary���200

Components List ���201

Chapter 11: Radio Frequency Identification �������������������������������������203

Display Content of MIFARE Classic 1K and 4K ��205

Mimic RFID and Secure Site ���208

Table of ConTenTsTable of ConTenTs

vii

Master Card Validation ��211

Read and Write to Classic 1KB Card ���213

Summary���217

Components List ���217

Chapter 12: SD Card Module ���219

Temperature and Light Intensity Logging��220

Date and Time Logging ���226

Logging Weather Station Data ��228

Increment File Name for Data Logging ���232

Listing Files on an SD Card ���234

Summary���236

Components List ���236

Chapter 13: Screen Displays ���237

TFT LCD Screen ���237

Displaying Images from an SD Card ���242

Screen, Servo Motor, and Ultrasonic Distance Sensor ��������������������������������������243

OLED Display ���249

Touch Screen ��252

Summary���258

Components List ���259

Chapter 14: Sensing Colors ��261

Red Green Blue (RGB) LED ��262

565 Color Format ��264

Color-Recognition Sensor ���267

Summary���275

Components List ���275

Table of ConTenTsTable of ConTenTs

viii

Chapter 15: Camera ��277

Camera Image Capture Setup ���281

Capturing Camera Images ��285

Summary���288

Components List ���288

Chapter 16: Bluetooth Communication ���289

Bluetooth Terminal HC-05 App ��292

ArduDroid App ���295

Message Scrolling with MAX7219 Dot Matrix Module ��������������������������������������300

MAX7219 and Bluetooth Terminal HC-05 App ���302

Message Speed and Potentiometer ��306

MAX7219 and ArduDroid App ��307

Summary���310

Components List ���310

Chapter 17: Wireless Communication ��311

Transmit or Receive ��315

Transmit and Receive ��317

Summary���322

Components List ���323

Chapter 18: Build Arduino ��325

ATmega328P Pin Layout ���326

Building an Arduino ���328

Installing the Bootloader ���332

Summary���336

Components List ���337

Table of ConTenTsTable of ConTenTs

ix

Chapter 19: Global Navigation Satellite System �������������������������������339

GNSS Messages on Serial Monitor ���339

u-blox u-center ���341

Arduino and GNSS ���343

GNSS Data Logging to SD Card ���357

GNSS and ST7735 Screen ���360

Displaying GNSS Data ���368

Summary���369

Components List ���369

Chapter 20: Interrupts and Timed Events ���371

Interrupts ��371

Types of Interrupt ��376

Additional Interrupt Pins ���379

Interrupts and Rotary Encoder ��380

Timed Events: delay() ���384

Timed Events: millis() ���384

Timed Events: Timer1 ��387

Timer Register Manipulation ���390

Summary���395

Components List ���395

Chapter 21: Power Saving ��397

avr/sleep Module ��402

LowPower Library ���405

Power Down and an Infrared Sensor ��406

Summary���410

Components List ���410

Table of ConTenTsTable of ConTenTs

x

Chapter 22: Sound and Square Waves ��411

Piezo Transducer and Buzzer ��416

Musical Notes ���416

Sensor and Sound ���420

Generating Square Waves ���425

Square Wave and Servo Motor ��431

Summary���432

Components List ���432

Chapter 23: DC Motors ��433

Motor Control Set in the Sketch ��438

Motor Speed ��441

Motor Control with Infrared Remote Control ���444

Motor Control with Wireless Communication ��445

Motor Control with Accelerometer ��452

Motor Control with Photoelectric Encoder ��457

Summary���465

Components List ���465

Chapter 24: Robot Car ��467

PID Controller ��475

Balancing Robot ��481

Determining PID Coefficients ��483

Circular Buffer ���485

Quaternion Measurements ��489

Summary���496

Components List ���497

Table of ConTenTsTable of ConTenTs

xi

Chapter 25: Wi-Fi Communication ��499

NodeMCU ESP8266 ���499

WeMos D1 Mini ���502

Wi-Fi and Web Server ���504

Wi-Fi and HTML ���510

Wi-Fi and Internet Access ���519

Summary���530

Components List ���531

Appendix: Resistor Banding ���533

Libraries ��534

Quaternion Measurements ��537

Who’s Who in Electronics ��541

Sources of Electronic Components ���542

Index ���545

Table of ConTenTsTable of ConTenTs

xiii

About the Author

Neil Cameron was a research scientist in quantitative genetics at Roslin

Institute (of “Dolly the sheep” fame) with expertise in data analysis and

computer programming. Neil has taught at the University of Edinburgh

and Cornell University. He has a deep interest in electronics and “how

things work,” with a focus on programming the Arduino and its application

on a range of comprehensive projects for everyday electronics, which

inspired him to write this book.

xv

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/

developer using Microsoft technologies. He works at BluArancio S.p.A

(www.bluarancio.com) as senior analyst/developer and Microsoft

Dynamics CRM Specialist. He is a Microsoft Certified Solution Developer

for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft

Certified Professional, and a prolific author and technical reviewer.

Over the past ten years, he’s written articles for Italian and international

magazines, and co-authored more than ten books on a variety of

computer topics.

http://www.bluarancio.com/

xvii

Preface

Microcontrollers are incorporated in car control systems, domestic

appliances, office machines, mobile phones, medical implants, remote

controls, and the list goes on. The Arduino Uno is a microcontroller board

that can be easily programmed and used to build projects. The objective

of this book is to provide information to use the Arduino Uno in a range

of applications, from blinking an LED to a motion sensor alarm, to route

mapping with a mobile GPS system, to uploading information to the

Internet. Prior knowledge of electronics is not required, as each topic is

described and illustrated with examples using the Arduino Uno.

The book covers a comprehensive range of topics. In Chapters 1–3,

the Arduino Uno and the Arduino programming environment are set

up, and several sensors are described with practical examples to provide

the basis for subsequent projects. Information display with the Arduino

Uno using liquid crystal, LED, and dot matrix displays are described in

Chapters 4–7. Several projects are developed with servo and stepper

motors, infrared control, RFID, and SD card data logging in Chapters 8–12.

Sensing and displaying color is outlined in Chapters 13–14, and recording

images in Chapter 15. Bluetooth, wireless, and Wi-Fi communication

systems are described in Chapters 16, 17 and 25, with practical examples

of message scrolling, servo motor control, and web-based information

display projects, respectively. The Arduino Uno is deconstructed to the

microcontroller for use in a mobile GPS system, with timed events and

power-saving methods in Chapters 18–21. Electronic sound projects are

outlined in Chapter 22. An obstacle-avoiding robot car and a balancing

robot are described in Chapters 23 and 24, with the robot car controlled by

systems described in earlier chapters.

xviii

Projects covered in the book include and extend those in Arduino

Uno starter kits to increase knowledge of microcontrollers in electronic

applications. Many of the projects are practically orientated, such as

information displays, GPS tracking, RFID entry systems, motion detector

alarms, and robots. Building projects helps you understand how many

electronic applications function in everyday life. Examples include flashing

numbers on a screen, a scrolling message in the train station, electronic

tags on items in a shop or books in the library, a desktop weather station,

Bluetooth communication with a mobile phone, digital sound systems,

and an obstacle-avoiding robot vacuum cleaner.

Each example in the book is accompanied by code and a description

of that code, which helps you learn how to program a microcontroller and

a computer, which is a highly valuable skill. The Arduino programming

language is C, which is widely used. Learning to program an Arduino

provides the framework for other computer programming languages.

Throughout the book, schematic diagrams were produced with Fritzing

software (www.fritzing.org), with an emphasis on maximizing the clarity

of component layout and minimizing overlapping connections. The

authors of the libraries used in the book are identified in each chapter,

with library details covered in the appendix. There are several approaches

to structuring sketches, and the approach taken in the book is to declare

variables at the start of the sketch, rather than throughout the sketch.

All the code used in the book is available to download from github.

com/Apress/arduino-applied. The Arduino programming environment

and libraries are constantly being updated, so information on the

consequences of those updates on the content of the book is also available

at github.com/Apress/arduino-applied.

Many chapters of the book are stand-alone, so that you can delve

into a section of the book rather than having to start from the beginning,

while several chapters utilize information from earlier chapters to build

a project. You learn how to break down a complex project into smaller

PrefaCePrefaCe

http://www.fritzing.org/
http://www.github.com/Apress/arduino-applied
http://www.github.com/Apress/arduino-applied
http://www.github.com/Apress/arduino-applied

xix

projects, just as each chapter addresses a different topic, to then be able to

build and enhance the initial project.

If you bought, or are thinking about buying, an Arduino Uno starter

kit that contains a few LEDs, a variety of sensors, with some switches and

resistors, then this book is for you. If you want to build electronics projects

with a microcontroller, then the comprehensive range of topics covered in

the book provides the detailed instructions to get started.

PrefaCePrefaCe

1© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_1

CHAPTER 1

Introduction
The Arduino Uno provides the framework to learn about electronics, and to

understand and build electronic devices. The Arduino Uno can monitor an

environment with sensors, drive LED message boards, generate sound and

light patterns, take and display digital photos, communicate by Bluetooth

or wirelessly with other electronic devices, communicate by Wi- Fi to the

Internet, and record data on the route, speed, and altitude of a trip with GPS.

 Arduino Uno
The Arduino Uno R3 (see Figure 1-1) contains the ATmega328P

microcontroller to carry out programmed instructions and memory

to store data. The Arduino is powered through a DC input or a USB

connection, which is also used to upload instructions and communicate

with a computer or laptop. An ATmega16U2 chip manages USB (Universal

Serial Bus) to serial communication.

The power pins allow 5V (5 volts) or 3.3V and ground (GND) to

connect other devices. Pins 0 and 1 are for transmitting and receiving

serial data from other devices. Pins 2 to 13 are digital input and output,

which input or output 5V for a digital one or 0V for a digital zero. Several

output pins vary the time that a pin state is 5V to emulate voltages between

0V and 5V. The analog pins, A0 to A5, measure voltages between 0V and

5V and convert analog signals to digital values (ADC). Pins A4 and A5

2

can also communicate with other devices, as can pins 10 to 13, but using

different communication systems, I2C and SPI respectively, than the

USB connection. Three LEDs (light-emitting diode) indicate power (ON),

transmitting (TX), and receiving (RX), with a fourth LED connected to pin 13.

The Reset button is used to restart the microcontroller.

The functionality of the Arduino Uno enables a comprehensive range

of projects to be developed, which are described throughout the book.

Several of the terms—such as ADC, I2C, and SPI—may mean little to you

just now, but they are explained in the relevant chapters.

Figure 1-1. Arduino Uno

Chapter 1 IntroduCtIon

3

 Breadboards
The solderless breadboard contains columns of connected sockets for

positioning electronic components to create a circuit and for connecting to

the Arduino (see Figure 1-2). The two rows along the length (left to right)

of the breadboard are used to connect to power (red) or ground (blue)

lines in a circuit. Holes in each short column (green) of the breadboard

are connected together, but the columns are not connected, so that two

components each with one “leg” in the same green column are connected

together. The middle area in the breadboard separates the breadboard into

two unconnected halves. Breadboards come in a variety of sizes.

Figure 1-2. Breadboard

The term breadboard originates from radio amateurs attaching

fixing points to a wooden breadboard and then connecting electronic

components to the fixing points.

For example, Figure 1-3 shows a circuit with an LED, a 100Ω resistor,

and a 3V battery. The positive or red terminal of the 3V battery is

connected to the long leg of the LED, as the relevant component legs are

in the same short column. Likewise, the short leg of the LED is connected

to the “top” end of the 100Ω resistor, but not to the “bottom” end of the

Chapter 1 IntroduCtIon

4

 Arduino IDE Software
The Arduino IDE (interactive development environment) software

is downloaded from www.arduino.cc/en/Main/Software, with the

downloaded arduino-version number-windows.exe file saved to the

desktop. The .exe file is double-clicked to start the installation.

The Arduino IDE program files are stored in C: ➤ Program Files (x86)

➤ Arduino, which includes example sketches located in C: ➤ Program

Files (x86) ➤ Arduino ➤ examples. Each example sketch is accompanied

by a text file outlining the objective of the sketch, the breadboard layout of

the components, and a circuit diagram.

The Arduino IDE is used to write, compile, and upload files to the

microcontroller. A file containing Arduino code is called a sketch. Within the

Arduino IDE, clicking one of the five IDE symbols

provides quick access to compile a sketch, to compile and upload a sketch,

to open a blank sketch, to open an existing sketch from a list of all sketches,

Figure 1-3. LED and resistor circuit

resistor due to the separating middle area of the breadboard. To complete

the circuit, a black wire connects the negative or black terminal of the 3V

battery to the “bottom” end of the resistor.

Chapter 1 IntroduCtIon

http://www.arduino.cc/en/Main/Software

5

and to save the current sketch. The Open an existing sketch option

does not scroll the complete list of sketches, so use File ➤ Sketchbook

instead. Some useful options from the drop-down menu are given in

Table 1-1.

Table 1-1. Drop-down Menu Options of the Arduino IDE

Options Description

File ➤ Open Recent a list of recently accessed sketches

File ➤ Examples arduino Ide built-in sketches

Edit ➤ Find Find and replace text in a sketch

Sketch ➤ Include Library arduino and contributed libraries

Tools ➤ Serial Monitor displays serial data to serial monitor

Tools ➤ Serial Plotter Graphic display of serial data

Tools ➤ Board description of the microcontroller

 for example arduino/Genuino uno

Tools ➤ Port detail of serial port,

 for example CoM3 arduino/Genuino uno

File ➤ Open Recent List of recently accessed sketches

 Arduino IDE Sketch
An Arduino IDE sketch consists of three parts: variable definition, the

void setup(), and the void loop() functions. The first part includes

defining which Arduino pins are connected to sensors, LEDs, or devices,

and declaring the values of variables. For example, the int LEDpin = 9

instruction defines a variable, named LEDpin, with the integer value of 9.

The void setup() function implements definitions in the first part of the

Chapter 1 IntroduCtIon

6

sketch and only runs once. For example, the pinMode(LEDpin, OUTPUT)

instruction defines the Arduino pin 9 as an output pin, rather than an

input pin by default, since LEDpin has the value 9.

The void loop() function runs continuously and implements the

sketch instructions. For example, a sketch may turn on and off an LED at

given times.

Declaring variables in the first part of the sketch makes it easier to

update the variable once at the start of the sketch, rather than having to

check through the sketch and update variables throughout the sketch.

Comments are prefaced by //, such as // Set LED to pin 9, and are

not implemented by the microcontroller. With a couple of exceptions, all

instruction lines end with a semicolon.

 Run the Blink Sketch
Follow these steps to run the blink sketch.

 1. Connect the Arduino to a computer or laptop with

the USB-to-serial cable.

 2. In Arduino IDE, select File ➤ Examples ➤ 01. Basics ➤ Blink.

 3. Click the Compile and Upload, , button.

The built-in LED on the Arduino will now flash every second. Welcome

to Arduino !

The error message indicates that the serial

port should be updated. Select Tools ➤ Port and choose the appropriate

port (for example, COM3 or COM4) for the Arduino. Go to step 3.

The error message indicates

that the description of the microcontroller should be updated. Select

Tools ➤ Board and choose the relevant board (for example, Arduino/

Genuino Uno). Go to step 3.

Chapter 1 IntroduCtIon

7

 Electricity Explained
An understanding of electricity is helpful before progressing further.

All materials are made of atoms, which consist of protons, neutrons,

and electrons. Electrons have a negative charge and can move from one

atom to another. Electricity is the movement of electrons between atoms,

or rather the flow of an electrical charge.

A simple example of an electrical charge is rubbing a cloth over an

inflated balloon. Electrons are rubbed off the cloth and onto the balloon,

making the balloon negatively charged. If the balloon is now placed near

an object, then the balloon “sticks” to the object. The negative charge of

the balloon repels the negatively charged electrons of the object, leaving

an excess of positive charge next to the balloon. Since positive and

negative charges attract, then the balloon is attracted to the object.

The effect of moving an electric charge from one object to another has

been known for centuries. More than two-and-a-half-thousand years ago,

the Greeks knew that rubbed amber, which is fossilized tree resin, could

attract light objects, such as hair. The word electric derives from the Greek

word for amber, elektron.

A discharging battery is a source of electrons, and the electrons

move from the negative terminal, the anode, to the positive terminal, the

cathode. The words anode and cathode are derived from the Greek words

anodos and kathodos, so cathode is abbreviated as K. Although electrons

flow from anode to cathode, the conventional current flows from cathode

to anode, or from positive to negative.

Describing electricity uses the terms charge, voltage, current, and

resistance. The analogy of water flowing from a reservoir through a pipe

can be used to envisage some of the electrical terms (see Table 1-2).

Chapter 1 IntroduCtIon

8

The relationship between voltage (V), current (I), and resistance (R) is

V = I × R, which is Ohm’s law.

Charge is measured in amp-hours (Ah), which is the charge

transferred by a current of one amp for one hour. The length of time that a

battery, such as a nickel metal hydride (NiMH) AA battery with a charge of

2400mAh, can supply a given current depends on the size of the current.

For example, with discharge rates of 2400, 4800, or 7200mAh, the battery

would last 60, 30, or 20 minutes.

Electrical power, measured in watts (W), is the rate that energy is

transferred in unit time, equal to the product of voltage and current.

 Revise the Blink Sketch
The blink sketch can be changed to make a separate

LED blink rather than the LED on the Arduino. The

Arduino supplies a regulated 5V output from the pin

marked 5V, but a resistor is required to ensure that the

current does not exceed the LED’s maximum permitted

current of 20mA. Without the resistor, the high current

would damage the LED.

Using Ohm’s law, which states voltage equals the product of current

and resistance, or V = I × R, the value of the resistor (R) can be determined,

Table 1-2. Electrical Parameter and Water Analogy

Electrical Parameter Water Analogy

Electrical charge (coulombs, C) amount of water in the reservoir

Voltage (volts, V) Water pressure at the reservoir end of the pipe

Current (amperes or amps, A) rate of water flow

Resistance (ohms, Ω) Inverse of pipe width

(narrow pipe ⇒ high resistance)

Chapter 1 IntroduCtIon

9

given the known voltage (V) and current (I). The forward voltage drop

across the LED is 2V, which is the minimum voltage required to turn on the

LED. With a 5V output from the Arduino, there is 3V = 5V – 2V across the

resistor (see Figure 1-4). If the current through the resistor and the LED is

to be at most 20mA, then from Ohm’s law, the resistor value (R = V/I) =

3/0.02 = 150Ω, which is equal to the voltage across the resistor divided

by the current through the resistor. A resistor of at least 150Ω would

protect the LED from an excessively high current and the widely available

220Ω resistor can be used. Resistors are color-coded (see Appendix) to

identify the resistance, but checking the resistance with a multimeter is

straightforward. Resistors are connected either way around in a circuit.

The power through the resistor should be checked to ensure that it

is not greater than the maximum value for the resistor. In the example,

the maximum power rating of the resistor is 250mW. With 3V across the

resistor and 20mA maximum current, then power = V × I = 60mW, which is

well below the maximum value.

An LED is a diode, which allows current to pass in one direction only.

The long leg of the LED is the anode and the flat side of the LED is on the

cathode side. LEDs contain semiconductor material, which determines

the wavelength of light emitted: red, green, blue, or yellow. The forward

voltage drop of red, yellow, and green LEDs is lower than for blue and

white LEDs: 2.0V and 2.9V, respectively.

If an LED and resistor were connected as in the left-hand side of

Figure 1-4, then the LED would stay on continuously. If the LED was

connected to an Arduino pin, then changing the pin status from 5V (HIGH)

to 0V (LOW) to HIGH repeatedly would turn on and off the LED. The

revised circuit in the right-hand side of Figure 1-4 has the LED anode

connected to pin 11 of the Arduino. Switching the LED on and off is a

digital or binary operation, 0 or 1, requiring a digitalWrite instruction to

pin 11 to enable or disable a power supply to the LED. Connections for the

two examples in Figure 1-4 are given in Table 1-3.

Chapter 1 IntroduCtIon

10

Figure 1-4. Blink an LED

Table 1-3. Connections for LED

Component Figure 1-4 left-hand side Figure 1-4 right-hand side

Connect to and to Connect to and to

LED long leg arduino 5V arduino pin 11

LED short leg 220Ω resistor arduino Gnd 220Ω resistor arduino Gnd

The revised blink sketch is shown in Listing 1-1. The LED is connected

to Arduino pin 11. In the void setup() function, the Arduino pin defined

by the LEDpin variable is defined as an OUTPUT pin, rather than an INPUT

pin that would be used for input, such as measuring a voltage. In the

void loop() function, the state of Arduino pin 11 is repeatedly changed

from HIGH to LOW and LOW to HIGH at one-second intervals, which

corresponds to changing the output voltage on the pin from 5V to 0V, and

so the LED turns on and off.

Chapter 1 IntroduCtIon

11

Listing 1-1. Sketch to Blink an LED

int LEDpin = 11; // define LEDpin with integer value 11

void setup() // setup function runs once

{

 pinMode(LEDpin, OUTPUT); // define LEDpin as output

}

void loop() // loop function runs continuously

{

 digitalWrite(LEDpin, HIGH); // set pin state HIGH to turn LED on

 delay(1000); // wait for a second = 1000ms

 digitalWrite(LEDpin, LOW); // set pin state LOW to turn LED off

 delay(1000);

}

Instructions within the void setup() and void loop() functions are

included in curly brackets, indicating the start and end of the function,

with the instructions indented to make the sketch easier to interpret.

Sketches must include both the void setup() and void loop() functions,

even if a function contains no instructions.

Comments are useful to interpret a sketch. A comment is text after the

// characters. Several lines of comments can be included when bracketed

by /* and */, such as

/* this is the first line of comment

this is the second line of comment

this is the last line of comment */

The schematic format has red and black wires for VCC (positive

voltage) and GND (ground), with yellow, blue, or green wires connecting

electronic components to Arduino pins. In general, green is used for an

input signal and yellow for an Arduino output signal.

Chapter 1 IntroduCtIon

12

 Pulse Width Modulation
Several Arduino pins, those marked with ~ support Pulse Width

Modulation (PWM), which replaces a constant HIGH signal with a square

wave, pulsing HIGH and LOW, and the pulse width can be modified (see

Figure 1-5). The impact of PWM on an LED is to change the perceived

continuous brightness of an LED, even though the LED is being turned on

and off repeatedly.

PWM is also used to control the speed of motors and to generate

sound. The PWM frequency on Arduino pins 5 and 6 is 976 cycles per

second (Hertz or Hz), so the interval between pulses, indicated by the

green dotted lines in Figure 1-5, is 1.024ms. Most people cannot detect

flicker between images displayed above 400Hz, so an LED turned on and

off at 976Hz appears to be constantly on.

The square wave is generated by the analogWrite(pin, value)

instruction with a duty cycle of (value/255), so a 0% or 100% duty cycle

corresponds to a value of 0 or 255. For example, in Figure 1-5, with a 5V

supply, the PWM duty cycles of 0%, 25%, 50%, 75%, and 100% can be

broadly thought of as supplying average voltages of 0V, 1.25V, 2.5V, 3.75V,

and 5V, respectively. PWM is one mechanism for supplying “analog”

signals from a “digital” 0V or 5V signal, and it is used in many projects

throughout the book.

Chapter 1 IntroduCtIon

13

The sketch (see Listing 1-2) uses PWM to change the brightness of an

LED with the rate of change controlled by the increm and time variables.

Listing 1-2. LED Brightness and PWM

int LEDpin = 11; // define LED pin

int bright = 0; // initial value for LED brightness

int increm = 5; // incremental change in PWM frequency

int time = 25; // define time period between changes

void setup() // setup function runs once

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

Figure 1-5. Pulse width modulation

Chapter 1 IntroduCtIon

14

void loop() // loop function runs continuously

{

 analogWrite(LEDpin, bright); // set LED brightness with PWM

 delay(time); // wait for the time period

 bright = bright + increm; // increment LED brightness

 if(bright <=0 || bright >= 255) increm = - increm;

} // reverse increment when brightness = 0 or 255

The symbols || denote OR, so the if(bright <= 0 || bright >= 255)

increm = -increm instruction is equivalent to “if the bright variable is

less than or equal to zero, or greater than or equal to 255, then change the

sign of the increm variable.” The OR instruction reverses the increasing

brightness to decreasing brightness, and vice versa.

 Opening and Saving Sketches
To open a saved sketch, within the Arduino IDE, select File ➤ Open.

Choose the folder name containing the sketch, click Open, select the

sketch, and click Open. Alternatively, select File ➤ Open Recent. A list of

recently opened sketches is displayed, then click the required sketch.

The default location for saving sketches is determined by selecting

File ➤ Preferences in the Arduino IDE. To save a sketch, select File ➤ Save As,

which opens the default sketches folder, then choose a file name for the

sketch and click Save. The file name must not contain spaces, so use an

underscore instead, such as in file_name. When a sketch is saved, a folder

is automatically generated to contain the sketch.

When a sketch has been edited in the Arduino IDE, a § symbol follows

the sketch name to indicate that changes have been made since the sketch

was last saved. To save an existing sketch, select File ➤ Save. If changes

have been made to a sketch, then after saving the sketch, the § symbol

disappears.

Chapter 1 IntroduCtIon

15

 Summary
The Arduino Uno and the Arduino IDE programming environment were

described. An introduction to programming the Arduino enabled a sketch

to control an LED turning on and off. The blink sketch was changed to

vary the brightness of the LED using Pulse Width Modulation. A summary

of electricity, including Ohm’s Law, helped you understand how an LED

functions and that an LED requires a resistor to reduce the current.

 Components List
• Arduino Uno and breadboard

• LED

• Resistor: 220Ω

Chapter 1 IntroduCtIon

17© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_2

CHAPTER 2

Switches
Switches are used to turn devices on or off, such as a room light or an

electrical appliance, and when sending a signal, such as pressing a

particular key on a keyboard. Switches can also be used to control devices;

a device is on when the switch is initially pressed or while the switch is

pressed. The metal contacts of switches can bounce when the switch is

pressed, which could repeatedly turn a device on and off again. Switch

bouncing can be controlled using software or by hardware, which is called

debouncing a switch.

 Tactile Switch
A switch can be connected to an Arduino pin to turn an LED

on or off. When the switch is closed, the digital pin is

connected to 5V and the pin state is HIGH. When the switch

is open, the 10kΩ pull-down resistor permits a small current

to flow between the digital pin and GND, so the pin state is

pulled down to LOW (see Figure 2-1).

18

If the switch and resistor are reversed, relative to the digital pin, then

when the switch is open, the digital pin is connected to 5V, through the 10kΩ

pull-up resistor, and the pin state is HIGH. Use of a pull-down or a pull-up

resistor depends on whether the pin state is to be LOW or HIGH when the

switch is open. If a pull-down or pull-up resistor was not included, then

when the switch is open the digital pin would not be connected to GND or to

5V, so the pin state would be undefined. Incorporation of a switch with the

pull-down resistor is shown in Figure 2- 2.

Figure 2-1. Pull-down resistor

Chapter 2 SwitCheS

19

Figure 2-2. LED switch with pull-down resistor

Table 2-1. Connections for LED Switch with Pull-Down Resistor

Component Connect to and to

Switch left arduino 5V

Switch right arduino pin 8

Switch right 10kΩ resistor arduino GND

LED long leg arduino pin 4

LED short leg 220Ω resistor arduino GND

The switch module consists of two pairs of connected pins, with the

switch pins close together on the underside of the switch. Connections for

Figure 2-2 are given in Table 2-1.

Chapter 2 SwitCheS

20

Listing 2-1 turns an LED on while the switch is pressed and off while

the switch is not pressed. The digitalRead(pin number) instruction reads

the state of the pin, HIGH or LOW.

Listing 2-1. LED Switch

int switchPin = 8; // define switch pin

int LEDpin = 4; // define LED pin

int reading; // define reading as integer

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = digitalRead(switchPin); // read switch pin

 digitalWrite(LEDpin, reading); // turn LED on if switch is HIGH

} // turn LED off if switch is LOW

It would be more useful to turn the LED on or off only when the switch

is pressed (see Listing 2-2). The states of the switch and LED are stored

as variables, switchState and LEDState, respectively. When the switch is

initially pressed, the switch state changes from LOW to HIGH and the

state of the LED is updated from either LOW (off) to HIGH (on) or from

HIGH to LOW. The switchState variable is also updated when the switch is

initially pressed, but if the switch is continuously pressed, then the switch

state does not change. Releasing the switch changes the switch state from

HIGH to LOW and the switchState variable is updated, but there is no

change in the LED state. The void loop() function continues to read the

switch pin.

Chapter 2 SwitCheS

21

Listing 2-2. LED Switch Only When Pressed

int switchPin = 8; // define switch pin

int LEDpin = 4; // define LED pin

int reading; // define reading as an integer

int switchState = LOW; // set switch state to LOW

int LEDState = LOW; // set LED state to LOW

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = digitalRead(switchPin); // read switch pin

 if(reading != switchState) // if switch state has changed

 { // if switch pressed, change LED state

 if(reading == HIGH && switchState == LOW) LEDState = !LEDState;

 digitalWrite(LEDpin, LEDState); // turn LED on or off

 switchState = reading; // update switch state

 }

}

 Comparison Operators
A logical AND is indicated with the && symbol, such as if(X>Y && A==HIGH),

which indicates that if X is greater than Y and A is equal to HIGH, then the

outcome is true.

A logical OR is indicated with the || symbol, such as if(X>Y || A==HIGH),

which indicates that if X is greater than Y or A is equal to HIGH, then the

outcome is true.

Chapter 2 SwitCheS

22

The double equals sign (==) denotes “is equal to” in a comparison, as

in if(reading == HIGH), which means “if reading is equal to HIGH”.

!= denotes “is not equal to” in a comparison as in if(reading !=

switchState), which means “if reading is not equal to switchState”.

The exclamation mark ! denotes “the opposite value”, as in LEDState =

!LEDState, which means “change LEDstate to its opposite value”, which is

from HIGH to LOW or LOW to HIGH.

The equivalent of X = X + 1 is X++ and similarly, X-- is equivalent to

X = X - 1.

The calculation y%x is y modulus x, or the remainder when integer y is

divided by integer x.

 Debouncing a Switch
When a switch is pressed, the springy nature of the metal used in the

contact points can cause the contact points to touch several times; in

other words, to bounce, before making a permanent contact. The Arduino

clock speed of 16MHz equates to 16 million operations per second, so a

bouncing switch contact appears to the microcontroller as having closed

and opened several times when the switch is pressed. For example, when

an LED is controlled by a switch, sometimes the LED does not turn on

or off when the switch is pressed. The switch can be debounced by two

software methods or by a hardware solution.

One software method initiates a delay, following a change in the switch

state, and then rereads the switch state after the delay, defined by the

delay(milliseconds) instruction. If the delay is too short, then the switch

may still be bouncing at the end of the delay. The void loop() function in

Listing 2-3 includes the debounce delay, rereads the switch pin and compares

the new switch state with the switch state read before the delay. In Listing 2-3,

the new instructions compared to Listing 2-2 are highlighted in bold.

Chapter 2 SwitCheS

23

Listing 2-3. LED Switch with Debounce Time

void loop()

{

 reading = digitalRead(switchPin); // read switch pin

 if(reading != switchState) // if state of switch has changed

 {

 delay(50); // debounce time of 50ms

 reading = digitalRead(switchPin); // read switch pin again

 if(reading != switchState) // compare switch state again

 {

 if (reading == HIGH && switchState == LOW) LEDState =!LEDState;

 digitalWrite(LEDpin, LEDState);

 switchState = reading;

 }

 }

}

A second software method is to continue delaying until there is no

longer a change in the switch state at the end of the delay or debounce time.

The debounce time is essentially the time that the switch must be held in

a constant state before the LED is turned on or off. The state of the switch

has to be stored at three times: before the switch was pressed (oldSwitch),

when the switch was pressed during the debounce time (switchState) and

when the switch was last pressed (reading). The millis() function counts

the number of milliseconds that the sketch has been running and is used

to store the time when the switch was pressed. The state of the switch is

continuously read, until the switch state is the same for longer than the

debounce time, at which time the LED can be turned on or off. The number

of milliseconds may be greater than the upper limit of an integer number

(215–1)ms or 33 seconds, so the time variable is defined as an unsigned long

with maximum value of (232–1)ms or 50 days.

Chapter 2 SwitCheS

24

In Listing 2-4, lastSwitch refers to the time the switch was last pressed

during the debounce time and the changes relative to the non-debounced

sketch, Listing 2-2, are highlighted in bold.

Listing 2-4. Debounced LED Switch with Continued Delay

int switchPin = 8; // define switch pin

int LEDpin = 4; // define LED pin

int reading; // define reading as an integer

int switchState = LOW; // set switch state to LOW

int LEDState = LOW; // set LED state to LOW

unsigned long switchTime; // define time as unsigned long

int lastSwitch = LOW; // set last switch press in debounce time

int debounceTime = 50; // define debounce time in ms

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = digitalRead(switchPin); // read switch pin

 if(reading != lastSwitch) // if reading different from last reading

 {

 switchTime = millis(); // time switch state change in debounce time

 lastSwitch = reading; // update last switch state

 } // is switch state the same for required time

 if((millis() – switchTime) > debounceTime)

 {

Chapter 2 SwitCheS

25

 if(reading !=switchState)

 {

 if (reading == HIGH && switchState == LOW) LEDState =!LEDState;

 digitalWrite(LEDpin, LEDState);

 switchState = reading;

 }

 }

}

When the outcome of an if() instruction cannot be included on the

same line as the if() instruction, then the outcome of the if() instruction is

contained in curly brackets, just as with the void loop() function. Indenting

of instructions within an if() instruction makes the sketch easier to interpret.

 Hardware Switch Debounce
The hardware solution is to include a capacitor across the

switch (see Figure 2-3). The capacitor charges while the

switch is not pressed. When the switch is pressed, the

capacitor discharges and the switch signal to the Arduino is

HIGH. While the switch bounces, the capacitor maintains the switch signal

at HIGH. With the hardware solution, there is no need for the software

debouncing sketch. One resistor- capacitor combination is a 10kΩ pull-

down resistor and 10μF capacitor.

Chapter 2 SwitCheS

26

The rate, RC, at which a capacitor charges or discharges depends on

the resistance (R) of the resistor and the capacitance (C) of the capacitor.

The voltage across the capacitor after t seconds of charging is V(1 − e−t/RC),

where V is the supply voltage, and after t seconds of discharging the

voltage across the capacitor is V(e−t/RC). The higher the RC value, the

longer the debounce delay. After the initial switch press and the capacitor

discharge, the capacitor has recharged to 50% of capacity and the switch

signal is again HIGH after a debounce delay of RC × ln(2) seconds. The

debounce delay time can be expressed as 0.693 × RC or RC/1.44 seconds.

With the resistor-capacitor combination of a 10kΩ resistor and a 10μF

capacitor, the debounce delay is 69ms. There are many resistor- capacitor

combinations that achieve a given debounce delay lasting RC × ln(2)

seconds, but a large resistor should be used to minimize the current through

the resistor.

Figure 2-3. LED switch and capacitor

Chapter 2 SwitCheS

27

Electrolytic capacitors are polarized and the anode must be at a higher

voltage than the cathode. The cathode has a “–” marking and a colored

strip on the side of the capacitor. The long leg of an electrolytic capacitor is

the anode or positive leg (see Table 2-2).

 Ball Switch
A ball switch contains a metallic ball that joins two contact

points whenever the switch reaches a certain angle, which

can be about 70°, and the ball rolls onto the contact points. A

tilt switch is similar to a ball switch, except that a drop of mercury rolls to join

the contact points rather than a ball.

The layout of the ball switch circuit (see Figure 2-4) is identical to the

tactile switch circuit (see Figure 2-2), but the sketch (see Listing 2-5) contains

an if else instruction to turn the LED on or off. The if else instruction is

more efficient than two if() instructions and is used when there is more than

one condition, each with a different outcome. In the ball switch sketch, if the

reading is LOW, then the LED is turned on; otherwise, the LED is turned off.

Table 2-2. Connections for Figure 2-3

Component Connect to and to

Switch left arduino 5V

Switch right arduino pin 8

Switch right 10kΩ resistor arduino GND

Capacitor negative Switch right

Capacitor positive Switch left

LED long leg arduino pin 4

LED short leg 220Ω resistor arduino GND

Chapter 2 SwitCheS

28

Listing 2-5. LED and Ball Switch

int switchPin = 8; // define switch pin

int LEDpin = 4; // define LED pin

int reading;

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = digitalRead(switchPin); // read switch pin

Figure 2-4. LED and ball switch

Chapter 2 SwitCheS

29

 if(reading == LOW) digitalWrite (LEDpin, HIGH); // ball switch tips

 // over, led on

 else digitalWrite(LEDpin, LOW); // ball switch not tipped over, led off

}

 Summary
The chapter described how to program the Arduino so that a switch

could control an LED. The bounce effect of a switch was described and

the switch was debounced using two software solutions and a hardware

solution with a resistor and a capacitor. The range of programming

instructions was extended to enable the programming of more complex

sketches.

 Components List
• Arduino Uno and breadboard

• LED

• Resistors: 220Ω and 10kΩ

• Capacitor: 10μF

• Switches: tactile and ball

Chapter 2 SwitCheS

31© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_3

CHAPTER 3

Sensors
Sensors can be connected to the Arduino to measure aspects of the

environment with sensor information displayed on the serial monitor or

on the serial plotter. The Arduino can perform an instruction depending

on the sensor signal being above or below a given threshold, such as

turning on a light when a room is dark. This chapter describes several

sensors with accompanying sketches to demonstrate uses of the sensors.

In subsequent chapters, projects include one or more sensors, so it is

useful to have all the sensors described in one chapter.

 Temperature Sensor
The LM35DZ is a precision temperature sensor with an

operating temperature range of 0°C to 100°C that outputs 10mV

for every degree Celsius increase in temperature. The maximum

output voltage of the LM35DZ sensor is 100 × 10mV, or one volt.

The Arduino analog-to-digital conversion (ADC) converts a voltage to a

digital value between 0 and 1023. When the default ADC maximum voltage

of 5V is equated to a value of 1023, the range of output voltages from the

LM35DZ sensor has an analog equivalent of 0 to 205 (= 1023/5). If the ADC

maximum voltage is set to 1.1V rather than 5V, then the output voltages

from the LM35DZ sensor map to an analog range of 0 to 930 (= 1023/1.1),

32

providing greater resolution for the temperature sensor. For example, a

temperature increase of 1°C corresponds to an increased analog reading of

9 rather than only 2, with ADC maximum voltages of 1.1V and 5V,

respectively. The ADC voltage can be reduced from 5V to 1.1V with the

analogReference(INTERNAL) instruction.

The Arduino has three analog reference values:

• analogReference(DEFAULT) equates 5V to 1023 = 210-1

• analogReference(INTERNAL) equates 1.1V to 1023

• analogReference(EXTERNAL) equates 3.3V to 1023 when

the 3.3V pin is connected to

the AREF pin

After setting the ADC reference voltage to 1.1V, the temperature

in degrees Celsius is the temperature sensor’s reading multiplied by

110.0/1023. The reading is divided by 1023 and multiplied by 1100 to

convert the reading to mV, and then divided by 10 to convert mV to °C. The

LM35DZ temperature sensor must be connected correctly, as in Figure 3- 1,

with the right-hand side of the flat side connected to 5V; otherwise, the

LM35DZ temperature sensor rapidly overheats. The temperature sensor’s

output pin is connected to one of the Arduino’s six analog input pins,

marked A0 to A5 (see Table 3-1).

Chapter 3 SenSorS

33

The LM35DZ temperature reading can be displayed graphically using

the Arduino IDE serial plotter by selecting Tools ➤ Serial Plotter. The

communication speed between the Arduino and the serial plotter can be

set to 9600 baud (see Figure 3-2). The serial plotter constantly updates the

minimum and maximum values of Y axis. To prevent the updating, the

minimum and maximum values are defined and then combined with the

sensor reading into a string, with the three variables—minimum, sensor

value, and maximum—plotted simultaneously (see Listing 3-1).

Figure 3-1. Temperature sensor

Table 3-1. Connections for Temperature Sensor

Component Connect to

LM35DZ GND arduino GnD

LM35DZ OUT arduino pin a0

LM35DZ VCC arduino 5V

Chapter 3 SenSorS

34

Listing 3-1. Temperature Sensor

int tempPin = A0; // define LM35DZ signal on analog pin A0

int min =20; // define minimum plot value

int max = 30; // define maximum plot value

int reading; // define reading as an integer

float temp; // define temp as a real number

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 analogReference(INTERNAL); // set ADC voltage to 1.1V rather than 5V

}

void loop()

{

 reading = analogRead(tempPin); // read temperature sensor pin

 temp = (reading * 110.0)/1023; // convert reading to temperature

 // convert minimum, temperature and maximum to a string

Figure 3-2. Serial plotter with temperature

Chapter 3 SenSorS

35

 String axis = String(min) +" "+ String(temp) +" "+ String(max);

 Serial.println(axis); // update plot

 delay(10); // delay 10ms between readings

}

The temp = (reading * 110.0)/1023 instruction returns a real number

for temp when there is a real number in the calculation. If all numbers in the

calculation are integers, then an integer value is returned, even though temp is

defined as a real number. For example, a reading of 500 produces temp values

of 53.76 and 53 given the instructions temp = (reading * 110.0)/1023 and

temp = (reading * 110)/1023, respectively.

 Variables
Variables are defined as integer, real, or text. Integers are stored as powers

of 2. For example, 13 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20), as 20 = 1, so the

4-bit binary representation of 13 is B1101.

A Boolean variable, bool, takes the value 0 or 1, true or false, HIGH or

LOW, and only requires one bit of memory (see Table 3-2).

A byte stores an integer between 0 and 255. A character, char, is stored

as an integer, with values from –128 to 127, with each character allocated

an ASCII (American Standard Code for Information Interchange) value,

such as the letter A with value 65.

An integer, int, has maximum value 215–1 and a long integer, long, has

maximum value 231–1, but requires 4 bytes of memory.

Chapter 3 SenSorS

36

Table 3-3. Variable Types and Definition

Name bits upper value

unsigned char uint8_t 8 255

unsigned int uint16_t 16 65535

unsigned long uint32_t 32 4,294,967,295

Real numbers, float, require 4 bytes of storage, which is the same as

for a long integer, but the maximum stored value of a real number is

3.403 × 1038, as real numbers are converted into a fraction part multiplied

by a power of two. Real numbers have only 6 to 7 decimal digits of

precision, which is the total number of digits, not the number of digits to

the right of the decimal point. Multiplying a real number by an integer

value results in an integer, but if a value with a decimal point is included,

then the result is a real number. For example, if X is a real number, then 2*X

is an integer, but 2.0*X is a real number.

Variables can be defined using the C program language and the uint

format (see Table 3-3).

Table 3-2. Variable Types and Their Properties

name Power

of 2

Storage Upper Value Centered

On Zero

Lower Limit Upper Limit

bool 1 bit 1 0 1

byte 8 1 byte 255 char –128 127

unsigned

int

16 2 bytes 65535 int –32768 32767

unsigned

long

32 4 bytes 4,294,967,295 long –2,147,483,648 2,147,483,647

Chapter 3 SenSorS

37

An integer or real number that has a constant value throughout a sketch

can be defined as a const, which reduces memory requirements. For

example, the const int tempPin = A0 instruction requires less memory

storage than if tempPin is defined as an integer with int tempPin = A0.

 Humidity Sensor
The DHT11 humidity and temperature sensor

measures temperatures between 0°C and 50°C

and relative humidity between 20% and 90%.

Measurements are taken every second, with an accuracy of ±2°C for

temperature and ±5% for relative humidity. At a relative humidity of 0%, the

air is completely dry, and at 100% condensation occurs.

The DHT11 sensor is supplied as a unit or mounted on a printed

circuit board (PCB) that includes a 10kΩ pull-up resistor between the

signal and 5V connections. The function of pull-up and pull-down

resistors was described in Chapter 2. Connection pins for the DHT11 unit

or PCB- mounted DHT11 are different, as shown in Figure 3-3. A 10kΩ

pull-up resistor should be connected between the signal and 5V pins of the

DHT11 unit. For illustration, connections for both the DHT11 unit and the

PCB- mounted DHT11 are shown in Figure 3-3 and Table 3-4.

Chapter 3 SenSorS

38

Figure 3-3. DHT11 sensors

Table 3-4. Connections for DHT11 Sensors

Component Connect to and to

PCB DHT11 GND arduino GnD

PCB DHT11 VCC arduino 5V

PCB DHT11 OUT arduino pin 7

DHT11 GND arduino GnD

DHT11 OUT arduino pin 12 10kΩ resistor

DHT11 VCC arduino 5V 10kΩ resistor

Chapter 3 SenSorS

39

 Library Installation
A library of instructions is required to use the DHT11 sensor. While the

Arduino IDE includes several libraries for managing hardware, such as

writing to an SD card or controlling a motor, a library for the DHT11 sensor

must be downloaded and installed into the Arduino IDE. There are three

methods for installing a library into the Arduino IDE.

 Library Installation Method 1

 1. Download the library in a .zip file and store on the

computer/laptop.

 2. Open the Arduino IDE and select Sketch ➤ Include

Library ➤ Add .zip Library.

 3. Select the location where the .zip file was saved

when downloaded.

 4. Select the .zip file containing the library and

click Open. The library is installed in the default

Documents ➤ Arduino ➤ libraries folder.

 5. To confirm the location of the default folder, select

File ➤ Preferences in the Arduino IDE.

 Library Installation Method 2

 1. Download the library in a .zip file and extract the

.zip file to the default Documents ➤ Arduino ➤

libraries folder.

 2. To confirm the location of the default library folder

for the Arduino IDE, select File ➤ Preferences.

Chapter 3 SenSorS

40

 3. The Arduino IDE must be restarted before the

installed library is listed in the Arduino IDE using

Sketch ➤ Include Library.

 Library Installation Method 3

 1. Several libraries are directly accessible by the

Arduino IDE and do not have to be downloaded as

.zip files. Before downloading a library .zip file, first

check if the library is not already available within

the Arduino IDE framework.

 2. Open the Arduino IDE and select Sketch ➤ Include

Library ➤ Manage libraries.

 3. In the Library Manage window, use the Filter your

search option to locate the required library.

 4. Click More info, select the library version number,

and click Install.

For each library listing, within the Arduino IDE, select More info to

access GitHub for library documentation and updates.

There are example sketches within each library, which are accessed

within the Arduino IDE by selecting File ➤ Example ➤ library name.

There are several libraries for the DHT11 sensor. The dht library

(DHTlib) by Rob Tilllaart is recommended. The dht library is contained

within a .zip file available at https://github.com/RobTillaart/Arduino.

Use installation method 1 or method 2 to install the dht library.

A library is included in a sketch with the #include <libraryname.h>

instruction, which references the libraryname.h file located in the

Documents ➤ Arduino ➤ libraries ➤ libraryname folder. Note there is no

semicolon at the end of the library #include instruction. When a library is

included in a sketch, a variable must be associated with the library, which

Chapter 3 SenSorS

https://github.com/RobTillaart/Arduino

41

is called “creating an instance of the class,” where class is the library. The

variable has the properties of the library, in a similar way that a variable

defined as an integer has the properties of an integer. Instructions specific

to a library are prefixed with the variable name.

For example, the dht library is included in the sketch with the #include

<dht.h> instruction. The DHT variable is associated with the dht library

with the dht DHT instruction. The dht library-specific temperature

instruction is prefixed with DHT in the sketch DHT.temperature

instruction.

Listing 3-2 displays (on the serial monitor) the temperature and

humidity measurements from a DHT11 unit and a PCB-mounted DHT11

sensor, but only for consistency with Figure 3-3. Comment out instructions

for the DHT11 unit or the PCB-mounted DHT11 sensor, as required.

Text is displayed on the serial monitor before the temperature or

humidity reading is displayed. Text is included in quotation marks (" "),

as is the tab character, which is \t. The sensors are read at one-second

intervals, using the delay(1000) instruction to wait 1000ms. The humidity

component of the DHT11 sensor is more responsive to change than the

temperature component.

Listing 3-2. DHT11 Sensors

#include <dht.h> // include dht library

dht DHT; // associate DHT with dht library

int DHTpin = 12; // DHT11 unit on pin 12

int PCBpin = 7; // PCB mounted DHT11 on pin 7

int check;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

}

Chapter 3 SenSorS

42

void loop()

{

 check = DHT.read11(DHTpin); // read DHT11 sensor on DHTpin

 Serial.print("DHT11 Unit temp: "); // print text followed by a space

 Serial.print(DHT.temperature,0); // temperature reading, integer only

 Serial.print("\thumidity: "); // print tab then text

 Serial.println(DHT.humidity,0); // humidity reading, integer only

 check = DHT.read11(PCBpin); // repeat for the DHT11 on PCB

 Serial.print("DHT11 PCB temp: ");

 Serial.print(DHT.temperature,0);

 Serial.print("\thumidity: ");

 Serial.println(DHT.humidity,0);

 delay(1000); // delay one second

}

 Light Dependent Resistor
A light dependent resistor (LDR), or photoresistor, is used to

quantify incident light, as the resistance of the LDR

decreases with increasing incident light. The LDR is

combined with a 4.7kΩ resistor to form a voltage divider

(see Figure 3-4), which is outlined in more detail later in the

chapter. The voltage divider’s output voltage, reflecting the

LDR resistance, is converted by the Arduino’s analog to

digital converter (ADC) to a digital value. The LDR’s

resistance is between 3kΩ and 5kΩ in average daylight, so a

4.7kΩ resistor provides a balanced resistance for the voltage

divider. Like any resistor, an LDR can be connected either way around in a

circuit.

Chapter 3 SenSorS

43

Figure 3-4. LDR and voltage divider

A voltage divider’s output voltage, Vout, is V
R

R Rin
resistor

LDR resistor+
æ

è
ç

ö

ø
÷ , where

RLDR and Rresistor are the LDR and known resistor resistances, respectively,

and Vin is the input voltage of 5V from the Arduino. As the incident light

increases, the LDR’s resistance decreases and the output voltage of the

voltage divider increases. The Arduino ADC converts the voltage divider’s

output voltage to a digital reading equal to V

V
out

in

´1023 . The LDR’s

resistance is
1023

1
reading

Rresistor-
æ

è
ç

ö

ø
÷ , which ranges from 700Ω in light

conditions to 50kΩ in the dark, corresponding to light intensity readings of

890 and 90, respectively.

The LDR can be used to change the brightness of an LED, depending

on the incident light, such as a night light (see Figure 3-5). The connections

and sketch are shown in Table 3-5 and Listing 3-3. The LED is turned on

only when the light intensity is low, with a threshold of 500 for the voltage

Chapter 3 SenSorS

44

Figure 3-5. Light dependent resistor and LED

Table 3-5. Connections for Light Dependent Resistor and LED

Component Connect to and to

LDR right leg arduino 5V

LDR left leg arduino a0

LDR left leg 4.7kΩ resistor arduino GnD

LED long leg arduino pin 11

LED short leg 220Ω resistor arduino GnD

divider reading. A high LED brightness is required in low light conditions,

so the voltage divider reading is inversely mapped to the LED brightness,

with low readings corresponding to high LED brightness.

Chapter 3 SenSorS

45

Listing 3-3. Light Dependent Resistor and LED

int Vdivid = A0; // voltage divider analog pin

int LEDpin = 11; // LED on PWM pin

int thresh = 500; // threshold light intensity

int reading, bright;

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = analogRead(Vdivid); // voltage divider reading

 bright = 0; // set LED brightness to zero

 // map reading to LED brightness

 if(reading<thresh) bright = map(reading, 0, thresh, 255, 0);

 analogWrite(LEDpin, bright); // change LED brightness

 delay(1000); // delay 1000ms

}

The analogRead(Vdivid) instruction reads the value on the analog pin,

Vdivid, with values between 0 and 1023. The bright = map(reading, 0,

thresh, 255, 0) instruction maps a reading value between 0 and thresh

(= 500) to a LED bright value of 255 to 0. Note that the low LDR readings

are mapped to high LED brightness values. A mapping of analog inputs to

analog outputs is often required, as the analog inputs are on a scale of 0 to

1023, while analog outputs are on a scale of 0 to 255.

Chapter 3 SenSorS

46

 Light Dependent Resistor and Several LEDs
A light dependent resistor can be used to turn on a number of LEDs,

depending on the ambient light, with a brighter light turning on more LEDs

(see Figure 3-6, Table 3-6, and Listing 3-4). The LEDs do not have to be

connected to Arduino PWM pins, as the LEDs are only turned on or off. The

map() function converts the output from the voltage divider to the number

of LEDs to be turned on, equal to the level variable. In the sketch, level LEDs

are turned on and (nLEDs – level) LEDs are turned off, where nLEDs is the

total number of LEDs. The maximum value of level is the number of LEDs

plus one, so that no LEDs are turned on in very low ambient light.

Figure 3-6. LDR and several LEDs

Chapter 3 SenSorS

47

Listing 3-4. LDR and Several LEDs

int Vdivid = A0; // voltage divider analog pin

int nLEDs = 5; // number of LEDs

int LEDpin[] = {8, 9, 11 ,12, 13}; // LED pins

int reading, level;

void setup()

{ // define LED pins as outputs

 for (int i=0; i<5; i++) pinMode(LEDpin[i], OUTPUT);

}

void loop()

{

 reading = analogRead(Vdivid); // voltage divider reading

 level = 0; // set number of LEDs to zero

 level = map(reading, 0, 1023, 0, nLEDs+1); // map reading to level

 for (int i = 0; i < nLEDs; i++)

 { // turn on LED

 if (i < level) digitalWrite(LEDpin[i], HIGH); // less than level

 else digitalWrite(LEDpin[i],LOW); // otherwise turn off LED

 }

 delay(1000); // delay 1000ms

}

Table 3-6. Connections for LDR and Several LEDs

Component Connect to and to

LDR left leg arduino 5V

LDR right leg arduino a0

LDR right leg 4.7kΩ resistor arduino GnD

LED long legs arduino pins 8, 9, 11, 12, 13

LED short legs 220Ω resistors arduino GnD

Chapter 3 SenSorS

48

The int LEDpin[] = {8, 9, 11, 12, 13} instruction defines an

array of integer values, with the values of the array referenced as LEDpin[0]

to LEDpin[4] and not as LEDpin[1] to LEDpin[5]. The size of the array does

not have to be explicitly defined, as it is implicitly defined by the number of

values between the curly brackets. The size of an array can also be defined

with the int LEDpin[5] instruction.

The for (int i = start; i < finish; i++) instruction repeats the

series of instructions contained in the curly brackets (finish – start) times

by incrementing the counter i from start to finish. For example, to repeat

an instruction four times, the instruction is for (int i = 0; i < 4;

i++) with the counter i taking the values 0, 1, 2 and 3. If the counter is to

run from 10 to 6, for example, then the instruction is for (int i = 10;

i >5; i--) with counter i taking the values 10, 9, 8, 7, and 6.

In Listing 3-4, a for() instruction is used to define the LED pins

as OUTPUT, rather than having to repeat the pinMode(pin, OUTPUT)

instruction several times. The second for() instruction repeats nLEDs

times with the counter i incrementing from 0 to nLEDs-1, and an LED is

turned on if i is less than level; otherwise, the LED is turned off.

 Voltage Divider
A voltage divider (see Figure 3-7) can change an output voltage with a

combination of resistors, as in the two examples with a light dependent

resistor. A potentiometer is another example of a voltage divider when

used for tuning to a radio station or controlling the movement of a motor.

A second use of voltage dividers is as a logic level converter to reduce

the voltage of a transmitted signal. For example, a logic level converter

is required by a receiving Bluetooth module operating at 3.3V when

connected to an Arduino transmitting a 5V signal.

Chapter 3 SenSorS

49

Figure 3-7. Voltage divider

A voltage divider consists of an input voltage, Vin, two resistors, R1 and

R2, in series, and an output voltage, Vout, at the junction of the two resistors.

From Ohm’s law, as discussed in Chapter 1, the output voltage Vout = I × R2,

where I is the current through the circuit, equal to
V

R R
in

1 2+
, so

V V
R

R Rout in=
+

æ
è
ç

ö
ø
÷

2

1 2
. If the two resistors are equal, then the output voltage

is half the input voltage.

A signal voltage of 5V can be reduced to 3.3V by using the combination

of 1kΩ and 2kΩ resistors or by using the combination of 5kΩ and 10kΩ

resistors. The difference between using the two sets of resistors is in the

power to reduce the signal voltage and the change in energy produces

heat. In Chapter 1, power was defined as V × I, which is
V

R R
in
2

1 2+
 for a

voltage divider. For the two combinations of resistors, the power is 8.33mW

and 1.67mW, respectively, so the 5kΩ and 10kΩ resistor combination

produces less heat as the current, and so the power, is lower than with the

1kΩ and 2kΩ resistors.

Chapter 3 SenSorS

50

A voltage divider should never be used to reduce the voltage to supply

a device or load. The Thevenin resistance of a voltage divider is R R

R R

1 2

1 2

´
+

Ω

and the combination of a voltage divider and a load is essentially like another

voltage divider with an output voltage to the load of V
Rload

RVD Rloadin +
æ
è
ç

ö
ø
÷ ,

where Rload and RVD are the Thevenin resistance of the load and voltage

divider, respectively.

If a 5kΩ and a 10kΩ resistor combination formed a voltage divider to

reduce 5V to 3.3V for a device with a resistance of 66Ω, then the actual

voltage supply to the device would be only 0.1V. Conversely, if a 50Ω and

a 100Ω resistor combination formed the voltage divider, then the output

voltage would be the required 3.3V, but the power output would be

250mW, which may be sufficient to burn out the resistors.

 Ultrasonic Distance Sensor
The HC-SR04 ultrasonic distance sensor estimates

distance by transmitting (sensor T) an ultrasonic sound

wave and measuring the time taken to receive (sensor

R) the echo. The frequency of the sound wave is 40kHz,

which is above the upper limit of human hearing of

20kHz. The distance, in centimeters, between the sensor and the target

point is half the echo time, measured in microseconds, multiplied by

0.0343, assuming a speed of sound of 343m/s.

The minimum and maximum measureable distances are 2cm and 4m,

respectively. For reliable distance measurements, the ultrasonic distance

sensor should be perpendicular to the scanned surface, both horizontally

and vertically, and the scanned surface should be flat. The time for the

signal to return over a 5m distance is 29ms, so a delay between subsequent

distance measurements of at least 40ms avoids interference between

signals from different measurements.

Chapter 3 SenSorS

51

To initiate the ultrasonic distance sensor, the trigger pin is held HIGH

for at least 10μs. The sensor then sends out an eight-cycle signal at 40kHz

with the pulseIn() function, automatically setting the echo pin to HIGH,

and waits for the signal to return, when the echo pin is set to LOW. The

time interval between the echo pin changing from HIGH to LOW is the

echo time. If the echo pin is HIGH when the pulseIn() function is called,

the pulseIn() function waits until the echo pin is set to LOW and then to

HIGH before timing the signal.

An ultrasonic distance sensor to measure distance is given in Figure 3- 8,

with connections in Table 3-7 and a sketch in Listing 3-5.

Figure 3-8. Ultrasonic distance and temperature sensors

Chapter 3 SenSorS

52

Table 3-7. Connections for Ultrasonic Distance

and Temperature Sensor

Component Connect to

HC-SR04 VCC arduino 5V

HC-SR04 Trig arduino pin 6

HC-SR04 Echo arduino pin 7

HC-SR04 GND arduino GnD

LM35DZ GND arduino GnD

LM35DZ OUT arduino pin a5

LM35DZ VCC arduino 5V

Listing 3-5. Measure Distance with the Ultrasonic Distance Sensor

int trigPin = 6; // HC-SR04 trigger pin

int echoPin = 7; // HC-SR04 echo pin

float duration, distance;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(trigPin, OUTPUT); // define trigger pin as output

}

void loop()

{

 digitalWrite(echoPin, LOW); // set the echo pin LOW

 digitalWrite(trigPin, LOW); // set the trigger pin LOW

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH); // set the trigger pin HIGH for 10μs

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH); // measure the echo time (μs)

Chapter 3 SenSorS

53

 distance = (duration/2.0)*0.0343; // convert echo time to distance (cm)

 if(distance>400 || distance<2) Serial.println("Out of range");

 else

 {

 Serial.print("Distance : ");

 Serial.print(distance, 1); Serial.println(" cm");

 }

}

Ultrasonic distance sensor information can be displayed on the

Arduino IDE serial monitor by selecting Tools ➤ Serial Monitor (see

Figure 3-9). The communication speed of 9600 baud (Bd) between the

Arduino and the serial monitor is defined in the void setup() function

with the Serial.begin(9600) instruction.

Figure 3-9. Serial monitor

Chapter 3 SenSorS

54

There are several options for displaying information on the serial

monitor.

• Serial.print(X, d) print the real number X

with d decimal places

• Serial.print("abc") print abc

• Serial.print("abc\tdef") insert a tab (\t) after abc

and before def

• Serial.println("abc") insert a carriage return (\r)

and new line (\n) after abc

There are several libraries for the HC-SR04 ultrasonic distance sensor

and the NewPing library by Tim Eckel is recommended. The NewPing

library can be installed within the Arduino IDE using installation method 3,

as outlined earlier in the chapter.

The sketch (see Listing 3-6) for the ultrasonic distance sensor includes

the library, NewPing, with the #include <NewPing.h> instruction. Note

there is no semicolon after the angle brackets with the library name. The

sonar functions in the NewPing library are initialized with the NewPing

sonar(trigPin, echoPin, maxdist) instruction, defining the trigger and

echo pins and the expected maximum measurement distance to avoid

noise. The distance between the start and target point is half the echo time

multiplied by the speed of sound and divided by 104, given the echo time

in μs and the distance in centimeters (cm).

Listing 3-6. Ultrasonic Distance Sensor and NewPing Library

#include <NewPing.h> // include NewPing library

int trigPin = 6; // trigger pin

int echoPin = 7; // echo pin

int maxdist = 100; // set maximum scan distance (cm)

int echoTime; // echo time

float distance; // distance (cm)

Chapter 3 SenSorS

55

NewPing sonar(trigPin, echoPin , maxdist); // associate sonar with

 // NewPing library

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

}

void loop()

{

 echoTime = sonar.ping(); // echo time (μs)

 distance = (echoTime/2.0)*0.0343; // distance between sensor and target

 Serial.print("echo time: "); // print text "echo time: "

 Serial.print(echoTime); // print echo time

 Serial.print(" microsecs\t"); // print text " microsecs" and tab

 Serial.print("distance: "); // print text "distance: "

 Serial.print(distance,2); // print distance with 2 DP

 Serial.println(" cm"); // " cm" followed by a new line

 delay(500);

}

The following are other sonar functions in the NewPing library.

• sonar.ping_cm(): Returns the distance between the

sensor and the target point, but there are no digits after

the decimal point.

• sonar.convert_cm(echotime): Returns the distance

given the echo time, but outlier values can be observed.

It is more robust to calculate the distance between the

sensor and target point directly from the echo time.

• sonar.ping_median(number of observations):

Returns median echo time for the number of

observations, with a minimum of five observations,

after excluding out-of-range values.

Chapter 3 SenSorS

56

 Speed of Sound
The speed of sound depends on the air temperature and can be estimated

as 331.3 + 0.606 temp m/s, where temp is the temperature in degrees

Celsius. If an temperature sensor is connected to Arduino analog pin A5,

then the speed of sound can be estimated based on the echo time over

a known distance (see Figure 3-8 and Table 3-7). The known distance is

defined at the start of the sketch (see Listing 3-7).

Listing 3-7. Speed of Sound

#include <NewPing.h> // include NewPing library

int pinTrig = 6; // trigger pin

int pinEcho = 7; // echo pin

int maxdist = 100; // max scan distance (cm)

int echoTime;

float distance = 15; // known distance to scan (cm)

NewPing sonar(pinTrig, pinEcho, maxd ist); // associate sonar with

 // NewPing library

int tempPin = A5; // temperature sensor on analog pin A5

float speed, temp, predict;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 analogReference(INTERNAL); // set ADC voltage to 1.1V rather than 5V

}

void loop()

{

 echoTime = sonar.ping_median(5); // median echo time (μs)

 speed = distance*2.0*pow(10,4)/echoTime; // speed of sound (m/s)

 Serial.print(echoTime);Serial.print(" microsecs\t"); // print echo time

Chapter 3 SenSorS

57

 Serial.print("speed "); // print text "speed"

 Serial.print(speed,1); Serial.print("\t"); // print speed to 1DP and tab

 temp = (analogRead(tempPin)*110.0)/1023; // read temperature

 predict = 331.3 + 0.606 * temp; // calculate speed of sound

 Serial.print("predict ");

 Serial.print(predict,1);Serial.println(" m/s"); // print prediction to 1DP

 delay(500);

}

The pow(x,y) instruction raises the x variable to the power y, so

pow(10,4) is 104.

 Hall Effect Sensor
Hall effect sensors are activated by a magnet field and are used

to measure rotational speed of a car crankshaft or a bicycle

wheel or for detecting the presence of a magnetic field, as in a

door or window alarm system.

When the Hall effect sensor is in a magnetic field, the field exerts

a force on the semiconductor material of the sensor and deflects the

material’s electrons away from the magnetic field. The movement of

electrons creates a potential difference between the two sides of the

semiconductor material, which indicates that the sensor is in a magnetic

field. The Hall effect sensor is sensitive to the magnetic field’s polarity,

with the sensor activated when the South pole of the magnet is close to the

label side of the sensor or when the North pole of the magnet is close to

the flat side of the sensor (see Figure 3-10). The orientation of a magnet is

determined with a compass.

Chapter 3 SenSorS

58

The 3144 Hall effect sensor (see Figure 3-10 and Table 3-8) requires

a pull-up resistor (see Figure 3-11). The internal pull-up resistors of

the Arduino input pins can be used, rather than connecting a resistor

between the output and VCC pins of the sensor,. The Arduino’s internal

pull-up resistor is activated with the digitalWrite(pin, INPUT_PULLUP)

instruction.

Figure 3-10. Hall effect sensor

Chapter 3 SenSorS

59

The structure of the sketch for the Hall effect sensor (see Listing 3-8) is

based on the switch sketch of Listing 2-2. The sketch determines the rpm,

time per revolution and speed of a bicycle with 700×32 tyres, which have a

circumference of 2.16m. The results are displayed on the serial monitor in

this chapter, as display screens are outlined in Chapters 4 and 13.

Table 3-8. Connections for Hall Effect Sensor

Component Connect to

Hall VCC (flat side left) arduino VCC

Hall GND arduino GnD

Hall out (flat side right) arduino pin 8

Figure 3-11. Pull-up resistor

Chapter 3 SenSorS

60

Listing 3-8. Hall Effect Sensor

int switchPin = 8; // Hall effect sensor pin

int switchState = LOW; // set switch to LOW

int revolution = 0; // number of revolutions

float circum = 2.16; // tyre circumference

unsigned long time = 0; // time (ms) per revolution

float speed, rpm;

int reading;

void setup()

{ // pull-up resistor on hall

 pinMode(switchPin, INPUT_PULLUP); // effect sensor pin

 Serial.begin(9600); // set baud rate for Serial Monitor

}

void loop()

{

 reading = digitalRead(switchPin); // read Hall switch

 if(reading != switchState) // switch state changed

 {

 if (reading == HIGH && switchState == LOW)

 { // start of new revolution

 revolution = revolution +1; // increment number of revolutions

 time = millis() - time; // time (ms) since last revolution

 speed = 3600.0*circum/time; // speed calculationin km/h

 rpm = 60000.0/time; // revolutions per minute

 Serial.print(revolution); // print number of revolutions

 Serial.print("\t"); // and a tab

 Serial.print(speed,1); // print speed to 1DP

 Serial.print("km/h\t"); // with " km/h" and tab

Chapter 3 SenSorS

61

 Serial.print(rpm,0);Serial.println("rpm"); // print rpm, "rpm"

 time = millis(); // update revolution time

 }

 switchState = reading; // update hall switch state

 }

}

 Sound Sensor
The LM393 sound sensor (see Figure 3-12 with connections in

Table 3-9) detects sound above a threshold, which is

controlled by adjusting the sensor’s potentiometer. In the

sketch (see Listing 3-9), an LED is turned on while the sound

level is above a threshold level and the serial monitor displays that a new

sound has been detected or that the previous sound has finished. A

minimum time lag between sounds has to occur before two sounds are

considered discrete rather than continuous. Reducing the time lag,

increases the “sensitivity” to new sounds. When the detected sound is

above the threshold, the output is set to LOW rather than to HIGH.

Chapter 3 SenSorS

62

Figure 3-12. Sound sensor

Table 3-9. Sound Sensor

Component Connect to and to

Sound sensor VCC arduino 5V

Sound sensor GND arduino GnD

Sound sensor OUT arduino pin 11

LED long leg arduino pin 5

LED short leg 220Ω resistor arduino GnD

Chapter 3 SenSorS

63

Listing 3-9. Sound Sensor

int soundPin = 11; // sound sensor pin

int LEDpin = 5; // LED pin

int detected = LOW; // sound detect state to LOW

unsigned long detectTime; // time sound detected

int lag = 1000; // time between sounds (ms)

int sound;

void setup ()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop ()

{

 sound = digitalRead(soundPin); // read sound pin

 if (sound == LOW) // sound detected with LOW, not HIGH

 {

 detectTime = millis(); // start time of new sound

 if (detected == LOW) // if currently no sound

 { // print "new SOUND" and tab

 Serial.print("new SOUND");Serial.print("\t");

 detected = HIGH; // update sound detect state to HIGH

 digitalWrite(LEDpin, detected); // turn LED on

 }

 }

 else if (sound == HIGH) // no sound detected

 { // continuous sound no longer detected

 if(detected == HIGH && (millis()-detectTime) > lag)

 {

 Serial.println("now quiet"); // print "now quiet" with a new line

Chapter 3 SenSorS

64

 detected = LOW; // update sound detect state to LOW

 digitalWrite(LEDpin, detected); // turn LED off

 }

 }

}

 Infrared Sensor
Infrared (IR) remote controls are used to operate devices, such

as television or machinery, by transmitting a signal consisting

of pulses of infrared light. The VS1838B infrared sensor

receives an IR signal, which is decoded to implement the

appropriate action. For example, the IR signal in Figure 3-13 has binary

and HEX representations of B011101 and 0x1D, respectively. Infrared light

is not visible to the human eye, as the wavelength of IR light, 700 nm to

1000nm, is longer the wavelength of visible light, 400 nm to 700nm.

However, the IR light from an IR transmitter is visible though the camera of

a mobile phone or tablet, as generally the cameras do not have an IR filter.

Figure 3-13. Infrared signal

The IRremote library by Ken Shirriff is recommended for sketches with

an IR sensor. The IRremote library is available within the Arduino IDE and

is installed using installation method 3, as outlined earlier in the chapter.

Chapter 3 SenSorS

65

When the IR sensor detects a signal, the sketch (see Listing 3-10)

displays the device type, HEX representation and bit count of an IR signal

and turns the LED on for one second (see Figure 3-14 with connections in

Table 3-10).

Figure 3-14. Infrared sensor

Table 3-10. Infrared Sensor

Component Connect to and to

IR sensor OUT arduino pin 12

IR sensor GND arduino GnD

IR sensor VCC arduino 5V

LED long leg arduino pin 4

LED short leg 220Ω resistor arduino GnD

Chapter 3 SenSorS

66

Listing 3-10. Infrared Sensor

#include <IRremote.h> // include IRremote library

int IRpin = 12; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library

decode_results reading; // IRremote variable reading

int LEDpin = 4; // LED pin

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 irrecv.enableIRIn(); // start the infrared receiver

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 if(irrecv.decode(&reading)) // read pulsed signal

 { // NEC, Sony, RC5 or RC6 signals

 if(reading.decode_type == NEC) Serial.print("NEC: ");

 else if(reading.decode_type == SONY) Serial.print("Sony: ");

 else if(reading.decode_type == RC5) Serial.print("RC5: ");

 else if(reading.decode_type == RC6) Serial.print("RC6: ");

 else Serial.print("Other: ");

 Serial.print(reading.value, HEX); // display device type and

 Serial.print("\tBits: "); // HEX code on Serial Monitor

 Serial.println(reading.bits); // display number of IR signal bits

 digitalWrite(LEDpin, HIGH); // turn LED on

 delay(100); // delay before next IR signal

 digitalWrite(LEDpin, LOW); // turn LED off

 irrecv.resume(); // receive the next infrared signal

 }

}

Chapter 3 SenSorS

67

 Infrared Distance Module
Infrared can also be used to determine the distance from an

object based on the time taken for the infrared signal to bounce

off a target object and be received by the infrared sensor. The

TCRT500 infrared distance module includes an infrared

emitter and receiver on one side of the module, with a potentiometer on the

other side. The analog value on the Arduino A0 pin is determined by both

the distance to the target object and the color of the target object. For

example, a black surface reflects less light than a white surface, so the

distance to a black target object appears greater than the distance to a white

target object in the same position. If the received signal is less than the

threshold, set by the potentiometer, then the TCRT500 D0 pin state changes

from HIGH to LOW and the built-in LED turns on. The TCRT500 infrared

distance module is connected to 5V (see Figure 3-15 and Table 3-11).

Figure 3-15. Infrared distance sensor

Chapter 3 SenSorS

68

Table 3-11. Connections for Infrared Distance Sensor

Component Connect to

TCRT500 VCC arduino 5V

TCRT500 GND arduino GnD

TCRT500 D0 arduino pin 7

TCRT500 A0 arduino pin a0

The sketch (see Listing 3-11) displays the analog value on pin A0 and

the state of the built-in LED.

Listing 3-11. Infrared Distance Sensor

int IRpin = A0; // IR sensor pin

int threshPin = 7; // threshold pin

int reading, thresh;

void setup()

{

 Serial.begin(9600); // set Serial Monitor baud rate

}

void loop()

{

 reading = analogRead(IRpin); // read IR sensor pin

 thresh = 1-digitalRead(threshPin); // read threshold pin

 Serial.print("Distance: "); // print "Distance: " to Serial Monitor

 Serial.print(reading); // print IR sensor value

 Serial.print("\tThreshold : "); // print a tab and "Threshold"

 Serial.println(thresh); // print threshold value

 delay(1000); // delay 1s

}

Chapter 3 SenSorS

69

 Passive Infrared Sensor
All objects with a temperature above absolute zero emit heat

energy in the form of infrared radiation. The HR-SC501

passive infrared (PIR) sensor converts the infrared radiation

into an output voltage. The PIR sensor has two halves to detect a change in

infrared radiation, caused by an object moving in front of the PIR sensor, as

movement is indicated by a change in infrared radiation not the level of

infrared radiation. The Fresnel lenses above the PIR sensor increase the

field of view of the PIR sensor to about 110° with a range of six meters. PIR

sensors are used in motion detector alarms.

The PIR sensor requires up to 60s to stabilize after switching

on and the output stays HIGH for a minimum of 2.5s after

movement is detected. The time delay (Tx) and the sensor

sensitivity (Sx) are increased by turning clockwise the appropriate

potentiometer on the side of the module. Smaller movements are detected

with high sensitivity with a distance range between 3m and 7m. The time

delay ranges from 2.5s to 5min, so initially the most counterclockwise

position is useful.

The structure of the PIR sensor sketch (see Listing 3-12, Figure 3-16,

and connections in Table 3-12) is the same as the structure of the sound

sensor sketch (see Listing 3-9). In both sketches, the void loop() function

consists of two halves, with the first half detecting the occurrence of a new

event and the second half determining if the event has ended.

Chapter 3 SenSorS

70

Figure 3-16. PIR sensor

Table 3-12. PIR Sensor Connections

Component Connect to and to

PIR sensor VCC arduino 5V

PIR sensor OUT arduino pin 11

PIR sensor GND arduino GnD

LED long leg arduino pin 8

LED short leg 220Ω resistor arduino GnD

Chapter 3 SenSorS

71

Listing 3-12. PIR Sensor

int PIRpin = 11; // PIR sensor pin

int LEDpin = 8; // LED pin

int PIRstate = LOW; // set PIR state to LOW

int reading;

unsigned long detectTime; // time lag on PIR sensor

float moveTime;

void setup()

{

 Serial.begin(9600); // set Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 reading = digitalRead(PIRpin); // read PIR pin

 if (reading == HIGH && PIRstate == LOW) // PIR detected new

 { // movement

 Serial.print("New movement detected"); // print to Serial Monitor

 detectTime = millis(); // time of movement

 PIRstate = HIGH; // update PIR state to HIGH

 digitalWrite(LEDpin, PIRstate); // turn LED on

 } // movement no longer detected

 else if (reading == LOW && PIRstate == HIGH)

 {

 moveTime = millis() - detectTime; // duration of movement

 moveTime = moveTime/1000.0;

 Serial.print(" and lasted for "); // print to Serial Monitor

 Serial.print(moveTime,1); // print detect time (s) with 1DP

 Serial.println(" seconds"); // print text with a new line

Chapter 3 SenSorS

72

 PIRstate = LOW; // update PIR state to LOW

 digitalWrite(LEDpin, PIRstate); // turn LED off

 }

}

 Accelerometer and Gyroscope
An accelerometer measures an object’s acceleration, but not

relative to an observer. For example, an object at rest on the

Earth’s surface has an acceleration due to Earth’s gravity of

9.81ms-2. For example, an accelerometer detects the orientation

of a laptop to ensure that an image is displayed upright. A gyroscope

measures angular velocity and when combined with an accelerometer

forms an inertial navigation system.

The GY-521 module includes an MPU-6050 accelerometer and

gyroscope sensor, which can be powered by 3.3V or 5V, but 3.3V is

preferable. The GY-521 module communicates with I2C (see Chapter 4)

with an I2C address of 0x68. The I2C address can be changed to 0x69 by

setting the AD0 pin to HIGH rather than the default LOW, to include a

second GY-521 module. Only the VCC, GND and two I2C communication

pins, SDA and SCL, are connected to the Arduino, with the latter two

connected to pins A4 and A5, respectively.

The values for the three accelerometer and gyroscopic axes (X: left–right,

Y: forward–back, and Z: up–down) are stored in six pairs of registers (see

Table 3-13), with values in a pair of registers then combined. For example,

if the values in the pair of registers for the accelerometer X axis are AxHigh

and AxLow, then the combined value is 28 × AxHigh + AxLow equivalent

to the AxHigh<<8 | AxLow instruction, which shifts the value in the high

register by eight positions and then adds the value in the low register.

Chapter 3 SenSorS

73

Using the YPR (yaw, pitch, roll) representation (see Appendix), the

accelerometer measurements are converted to a roll angle = arctan(y/z)180/π

and a pitch angle = − arcsin (x)180/π, where, x, y, and z are the adjusted

accelerometer measurements. Defining A a a aX Y Z= + +2 2 2 , where aX, aY,

and aZ are the accelerometer measurements, each divided by 214, with the

adjusted accelerometer measurement x = aX/|A| and similarly for aY and aZ.

The arctan(numerator/denominator) instruction in the Arduino IDE is

atan2(numerator, denominator), which is equivalent to atan2

(denominator, numerator) in Excel.

To illustrate using the GY-521 module for determining orientation, LEDs

are positioned on four sides of the GY-521 module (see Figure 3-17) and

when the module is tilted, the corresponding LEDs are turned on, based

on the accelerometer measurements. In the void setup() function of

the sketch, the I2C address of the MPU-6050 sensor is defined, the power

management register is set to zero to “wake up” the sensor. Within the void

loop() function of the sketch, the accelerometer measurements are adjusted

to the x, y, and z values, to then calculate the roll and pitch angles.

Table 3-13. Data Registers for Accelerometer and Gyroscope Sensor

Variable High address Low address

Accel X-axis 0x3B 0x3C

Accel Y-axis 0x3D 0x3e

Accel Z-axis 0x3F 0x40

Temperature 0x41 0x42

Gyro X-axis 0x43 0x44

Gyro Y-axis 0x45 0x46

Gyro Z-axis 0x47 0x48

Chapter 3 SenSorS

74

Using an aircraft analogy, a positive roll angle is a turn with the right

wing down and a positive pitch angle is the nose lifting up. If the roll angle

is greater than 10° or less than –10°, then the right or left LED is turned on,

with the front or back LED turned on when the pitch angle is greater than

10° or less than –10°, respectively.

The sketch (see Listing 3-13) uses the Wire library for I2C communication

between the Arduino and the GY-521 module. The Wire library is included

in the Arduino IDE, so only the I2C address of the GY- 521 module is

required. Connections for the GY-521 module are given in Table 3-14).

Figure 3-17. GY-521 with LEDs

Chapter 3 SenSorS

75

Listing 3-13. GY-521 Module

#include<Wire.h> // include Wire library

int I2Caddress = 0x68; // I2C address of the MPU-6050

int frontLED = 13;

int backLED = 11; // define LED pins

int rightLED = 12;

int leftLED = 10;

float accelX,accelY,accelZ; // accelerometer measurements

float roll, pitch, sumsquare;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(frontLED, OUTPUT);

 pinMode(backLED, OUTPUT); // define LED pins as OUTPUT

 pinMode(rightLED, OUTPUT);

 pinMode(leftLED, OUTPUT);

 Wire.begin(); // initiate I2C bus

 Wire.beginTransmission(I2Caddress); // transmit to device at I2Caddress

Table 3-14. GY-51 Module Connections

Component Connect to and to

GY-521 VCC arduino 3.3V

GY-521 GND arduino GnD

GY-521 SCL arduino a5

GY-521 SDA arduino a4

LED long legs arduino pins 10, 11, 12, 13

LED short legs 220Ω resistors arduino GnD

Chapter 3 SenSorS

76

 Wire.write(0x6B); // PWR_MGMT_1 register

 Wire.write(0); // set to zero wakes up MPU-6050

 Wire.endTransmission(1); // end of transmission

}

void loop()

{ // transmit to device at

 Wire.beginTransmission(I2Caddress); // I2Caddress

 Wire.write(0x3B); // start reading from register 0x3B

 Wire.endTransmission(0); // transmission not finished

 Wire.requestFrom(I2Caddress,6,true); // request data from 6 registers

 accelX=Wire.read()<<8|Wire.read(); // combine AxHigh and AxLow

 accelY=Wire.read()<<8|Wire.read(); // combine AyHigh and AyLow

 accelZ=Wire.read()<<8|Wire.read(); // combine AzHigh and AzLow

 accelX = accelX/pow(2,14);

 accelY = accelY/pow(2,14); // scale X, Y and Z measurements

 accelZ = accelZ/pow(2,14);

 sumsquare = sqrt(accelX*accelX+accelY*accelY+accelZ*accelZ);

 accelX = accelX/sumsquare;

 accelY = accelY/sumsquare; // adjusted accelerometer measurements

 accelZ = accelZ/sumsquare;

 roll = atan2(accelY, accelZ)*180/PI; // roll angle

 pitch = -asin(accelX)*180/PI; // pitch angle

 LEDs(); // call function to control LEDS

}

void LEDs() // function to control LEDs

{

 int front = LOW;

 int back = LOW; // turn off all LEDs

 int right = LOW;

 int left = LOW;

 if(roll>10) right = HIGH; // right or left LEDS with roll angle

 else if(roll< -10) left = HIGH;

 if(pitch>10) front = HIGH; // front or back LEDs with pitch angle

 else if(pitch< -10) back = HIGH;

Chapter 3 SenSorS

77

 digitalWrite(frontLED, front); // if value = HIGH, LED on

 digitalWrite(backLED, back); // if value = LOW, LED off

 digitalWrite(rightLED, right);

 digitalWrite(leftLED, left);

 delay(500);

}

The GY-521 module includes a temperature sensor, with the temperature

measurement stored in the register after the accelerometer Z measurements.

The temperature, in degrees Celsius, is equal to temp/340.0 + 36.53,

where temp is the combined value from the temperature pair of registers.

Information on registers and temperature calculation is available from

InvenSense register data pages. The instructions in Listing 3-14 can be

included in Listing 3-13, between the Wire.endTransmission(0) and

accelX = accelX/pow(2,14) instructions.

Listing 3-14. Temperature Reading from GY-521 Module

 Wire.requestFrom(I2Caddress,8,true); // request data from 8 registers

 accelX=Wire.read()<<8|Wire.read(); // combine AxHigh and AxLow

 accelY=Wire.read()<<8|Wire.read(); // combine AyHigh and AyLow

 accelZ=Wire.read()<<8|Wire.read(); // combine AzHigh and AzLow

 temp=Wire.read()<<8|Wire.read();

 tempC = temp/340.0 + 36.53; // temperature reading

 Summary
A selection of sensors were described with a demonstration sketch for each

sensor, because the sensors are used in subsequent projects. Sensors were

used to measure temperature, humidity, light, distance, sound, and the

speed of sound. The Hall effect sensor measured wheel revolutions with

a magnet. The infrared sensor detected signals, such as from a television

remote control, and measured distance with movement detected by the

passive infrared sensor. The accelerometer and gyroscope module detected

Chapter 3 SenSorS

78

when it was tilted. The voltage divider was combined with several sensors.

Installing libraries to the Arduino IDE was described. More programming

instructions were introduced to develop sketches to control the sensors.

 Components List
• Arduino Uno and breadboard

• LED

• Resistors: 220Ω, 4.7kΩ, and 10kΩ

• Light dependent resistor (or photoresistor)

• Temperature sensors: LM35DZ and DHT11

• Ultrasonic distance sensor: HC-SR04

• Hall effect sensor: 3144

• Magnet

• Sound sensor: LM393

• Infrared sensor: VM1838B

• Passive infrared (or PIR) sensor: TCRT500

• Accelerometer and gyroscope module: GY-521

Chapter 3 SenSorS

79© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_4

CHAPTER 4

Liquid Crystal Display
The liquid crystal display (LCD) screen displays output

from the Arduino, so that the Arduino does not need to

be connected to a computer screen or laptop. A 16×4 LCD

with a HD44780 controller is used in the chapter, which can

display four rows of 16 characters per row, with each character defined by an

8×5–pixel array. LCDs have different sizes such as 16×2, 16×4, 20×2, and 20×4.

The LCD has 16 pins numbered from left to right, when looking

down on the screen. Some LCDs have no backlight function, so pins 15

and 16 are unconnected. The LCD screen contrast is controlled with

a 10kΩ potentiometer. Details of the LCD pin functions are given in

Table 4-1. Register selection provides information on the type of signal

received by the LCD, such as an instruction to move the cursor to a

given position or the data on a character to be displayed.

Table 4-1. LCD Pin Description

Pin Description Arduino Pin

1 VSS Ground GND

2 VDD 5V power supply for logic 5V

3 V0 LCD contrast adjustment Potentiometer signal pin

4 RS Register Selection: data or instruction

register for LCD controller

Pin 2

(continued)

80

The LiquidCrystal library by Adafruit is built into the Arduino IDE,

so it does not need to be uploaded. The LCD control and data lines are

mapped to the Arduino pins with the LiquidCrystal lcd(RS, E, D4,

D5, D6, D7) instruction, where RS, E, and D4 to D7 are the Arduino pins

connected to the LCD pins. For example, if Arduino pins 2, 3, 4, 5, 6, and 7

are connected to the LCD RS, E and D4 to D7 pins, then the pin definition

instruction would be either

LiquidCrystal lcd(2, 3, 4, 5, 6, 7)

or

int RS = 2;

int E = 3;

int D4 = 4;

int D5 = 5;

int D6 = 6;

int D7 = 7;

LiquidCrystal lcd(RS, E, D4, D5, D6, D7);

In Listing 4-1, the number of seconds that the sketch has been running

and the temperature from an LM35DZ temperature sensor, described in

Pin Description Arduino Pin

5 RW Read or Write mode GND for Write to LCD

6 E Enable data ready for transmission Pin 3

7-10 D0–D3 Unconnected

11- 14 D4–D7 Unconnected Pin 4–Pin 7

15 A or LED+ LED backlight (anode) 5V for backlight

16 K or LED- LED backlight (Cathode) GND for backlight

Table 4-1. (continued)

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

81

Chapter 3, are displayed on the LCD (see Figure 4-1). The void setup()

function specifies the dimensions of the LCD screen and the text to be

constantly displayed, so that during the void loop() function only the

updated time and temperature are written to the LCD. The reference point of

the LCD to position a character is the top left-hand corner with position (0,0).

For example, the fifth column and second row position is (4,1). Connections,

other than the LCD, for Figures 4–1 and 4–2 are given in Table 4-2.

Figure 4-1. LCD and temperature sensor

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

82

Table 4-2. Connections for LCD and Temperature Sensor

Component Connect to

LM35DZ GND Arduino GND

LM35DZ OUT Arduino pin A0

LM35DZ VCC Arduino 5V

Potentiometer GND Arduino GND

Potentiometer signal LCD pin 3

Potentiometer VCC Arduino 5V

Capacitor negative Arduino GND

Capacitor positive Arduino pin 9

Capacitor positive LCD pin 3

Listing 4-1. LCD and Temperature Sensor

#include <LiquidCrystal.h> // include the LiquidCrystal library

int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows

 // associate lcd with LiquidCrystal library

LiquidCrystal lcd (2,3,4,5,6,7); // define LCD pins RS, E and D4 to D7

int tempPin = A0; // LM35DZ temperature sensor pin

int time = 0;

int reading;

float temp;

void setup()

{

 lcd.begin(LCDcol, LCDrow); // define LCD dimensions

 lcd.setCursor(0,0); // move cursor to start of first row

 lcd.print("LCD to display"); // print first row "LCD to display"

 lcd.setCursor(0,1); // move cursor to start of second row

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

83

 lcd.print("time and temp"); // print second row "time and temp"

 lcd.setCursor(3,2); // move cursor to insert "secs" on third row

 lcd.print(" secs");

 lcd.setCursor(5,3); // move cursor to insert "C" in fourth row

 lcd.print(" C");

 analogReference(INTERNAL); // set ADC voltage to 1.1V rather than 5V

}

void loop()

{

 lcd.setCursor(0,2); // move cursor to start of third row

 if(time < 100) lcd.print(" "); // spacing for 10s < time <100s

 if(time < 10) lcd.print(" "); // spacing for time < 10s

 lcd.print(time); // print time (s)

 time++; // increment time

 reading = analogRead(tempPin); // read temperature from sensor

 temp = (reading * 110.0)/1023; // convert to Celsius given 1.1V range

 lcd.setCursor(0,3); // move cursor to start of fourth row

 lcd.print(temp); // print temperature

 if(time>999) time = 0; // reset time to zero

 delay (1000); // delay 1000ms

}

 Contrast Adjustment with PWM
The LCD contrast can be adjusted with pulse width modulation (PWM),

as described in Chapter 1, smoothed with a 100μF (or 0.1mF) capacitor

(see Figure 4-2). The LCD contrast increases with decreasing PWM. Note

that electrolytic capacitors are polarized and the anode must be at a higher

voltage than the cathode. The cathode has a “–” marking and a colored

strip on the side of the capacitor.

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

84

Figure 4-2. LCD contrast and PWM

The LCD contrast adjustment pin, V0, is connected to an Arduino

PWM pin with the capacitor connected across the PWM output and

ground. The following three instructions are added to the end of the void

setup() function.

int contrast = 9; // PWM pin for contrast

pinMode(contrast, OUTPUT); // define contrast pin as OUTPUT

analogWrite(9, 80); // PWM value of 80 (maximum is 255)

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

85

Decreasing the PWM value decreases the LCD contrast.

The LCD backlight can be turned on or off with the instructions

lcd.backlight() and lcd.noBacklight(), respectively.

 Scrolling Text
Rather than the displayed text being in a fixed position on the LCD, the text

can be scrolled across the LCD screen. Substrings of up to 16 characters

are printed, moving the start column from the right of the LCD screen to

the left. When the first 16-character substring has been displayed across

the LCD screen, the first character is dropped and a new last character is

added to the substring. The process is repeated, dropping one character

and adding another. The example text string is split over two lines of

instructions with the continuation character (\) (see Listing 4-2).

Listing 4-2. Scrolling Text on LCD

#include <LiquidCrystal.h> // include the LiquidCrystal library

int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows

LiquidCrystal lcd(2,3,4,5,6,7); // define LCD pins RS, E and D4 to D7

int first; // position of first letter in 16 character substring

int last = 0; // position of last letter in 16 character substring

int row = 1; // row of LCD to display text

int col;

String text = "The quick brown fox jumps over the lazy dog \

contains every letter of the alphabet."; // line continuation with \

 // character

void setup()

{

 lcd.begin(LCDcol, LCDrow); // define LCD dimensions

 text = text + " "; // add space at end of text as a buffer

}

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

86

void loop()

{

 if(last>text.length()+15) last=1; // set first column of substring

 if(last<17) first = 0; // substring<17 characters, start character =0

 else first = last-16; // substring>=17 chars, start char = last-16

 if(last>16) col = 0; // substring>16 characters, start column = 0

 else col = 16-last; // substring<=16 chars, start col = last-16

 lcd.setCursor(col,row); // set cursor position

 lcd.print(text.substring(first, last)); // print substring

 last = last +1; // increment last

 delay(250); // delay 250ms

}

The if else instruction is more efficient than two if() instructions

and is used when there is more than one condition, each with a different

outcome. For example, if there are four mutually exclusive conditions,

each with separate outcomes, then the following “instructions”

if (condition A is true) outcome A

else if (condition B is true) outcome B

else if (condition C is true) outcome C

else outcome D // if conditions A, B and C are not true, then outcome D

are more efficient than the four “instructions”:

if (condition A is true) outcome A

if (condition B is true) outcome B

if (condition C is true) outcome C

if (condition D is true) outcome D

When an else if condition is true, the sketch moves to the next

instruction, rather than checking all the remaining else instructions, which

is more efficient than checking each if() instruction in a series of if()

instructions. For example, if condition B were true, then condition C would

not need to be checked.

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

87

The text.length() function determines the length of the string text.

The text.substring(first, last) function creates a substring consisting

of characters first to last of the string text.

 LCD with I2C Bus
The Inter-Integrated Circuit (I2C) bus is used for

communication between a microcontroller and other devices,

such as an LCD. The I2C Two Wire Interface (TWI) bus uses

two signal lines: serial data (SDA) and serial clock (SCL), irrespective of the

number of devices. The microcontroller communicates with all devices

and the message includes the address of the device to be communicated

with, so that only the relevant device responds to the microcontroller. One

pair of Arduino I2C pins are A4 for SDA and A5 for SCL. An I2C bus

reduces the number of Arduino input pins to communicate with an LCD

from six to two. The LCD screen contrast is controlled using an I2C bus

potentiometer. The jumper at the end of the I2C bus can be disconnected

to turn off the LCD backlight. Chapter 11 includes more information on

I2C communication.

The microcontroller requires the hexadecimal address of the I2C

bus to communicate with the I2C bus. I2C addresses for sensors and

modules are available at https://learn.adafruit.com/i2c-addresses/

the-list. Listing 4-3 displays the address of all I2C devices connected

to the Arduino. On transmitting to an I2C device, the device returns “0”

to indicate a successful transmission, while, for example, a return of “4”

indicates an error. The I2C addresses 0x00 to 0x07 and 0x78 to 0x7F are

reserved, so are not scanned to detect an I2C device.

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

https://learn.adafruit.com/i2c-addresses/the-list
https://learn.adafruit.com/i2c-addresses/the-list

88

Listing 4-3. I2C Addresses

#include <Wire.h> // include Wire library

int device = 0; // set device counter to 0

void setup()

{

 Serial.begin (9600); // set Serial output baud rate

 Wire.begin(); // start I2C bus

 for (int i=8; i<120; i++) // scan through channels 8 to 119

 {

 Wire.beginTransmission (i); // transmit to device at address i

 if (Wire.endTransmission () == 0) // device response to transmission

 {

 Serial.print("Address 0x"); // print to screen "Address 0x"

 Serial.println(i, HEX); // print to screen I2C address in HEX

 device++; // increment device count

 delay(10); // delay 10ms

 }

 }

 Serial.print(device); // print to screen device count

 Serial.println(" device found"); // print to screen " device found"

}

void loop()

{} // nothing in void loop() function

 I2C with Temperature and Pressure Sensor
To illustrate connecting more than one I2C device to the

Arduino, temperature and pressure are displayed on the LCD,

with readings from a BMP280 sensor, which can communicate

with the Arduino with either I2C or SPI (see Chapter 11 for

details). The BMP280 sensor measures temperature between

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

89

-40°C and 85°C with an accuracy of ±0.01°C and pressure with an accuracy

of ±0.12hPa, equivalent to ±1m in altitude. There are several libraries

available for the BMP280 sensor. The sketch uses the Adafruit BMP280 and

Adafruit Unified Sensor libraries, which are included in the Arduino IDE

and installed using installation method 3, as outlined in Chapter 3.

The BMP280 sensor operates at 3.3V, so a logic level converter (LLC) is

required to reduce the voltage of the transmitted signal from the Arduino,

which operates at 5V. On the low voltage side, the logic level converter TX

and RX pins are connected to the BMP280 SDI and SCK pins, respectively

(see Figure 4-3). On the high voltage side, the logic level converter TX and

RX pins are connected to the Arduino I2C pins A4 (SDA) and A5 (SCK),

respectively. The BMP280 SD0 pin should be connected to GND. The I2C

address of the BMP280 sensor is 0x76, as the SD0 pin is pulled to GND, but

otherwise, the default I2C address is 0x77.

Figure 4-3. LCD with I2C bus and BMP280 sensor

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

90

The LiquidCrystal_I2C library by Frank de Brabander is included in

the Arduino IDE and is installed using installation method 3, as outlined in

Chapter 3. In the Arduino IDE, select Sketch ➤ Include Library ➤ Manage

Libraries. Enter LiquidCrystal_I2C. Click More Info. Select the latest version

and click Install.

After connecting the I2C bus and BMP280 sensor (see Table 4-3), the

sketch (see Listing 4-4) includes the Wire and LiquidCrystal_I2C libraries,

the I2C bus address, which is 0x3F, and initializes the LCD. The sketch

displays the current time, temperature, and pressure, with the initial

hour and minutes entered through the serial monitor buffer. The while

(Serial.available() > 0) instruction ensures that the entire serial

buffer is read. The Serial.parseInt()instruction extracts integers from

the serial buffer by waiting until a non-numeric value enters the serial

buffer and then converts the previous numeric values into an integer. In

the sketch, the comma following hour and the carriage return following

minutes are the required non-numeric values of the Serial.parseInt()

function.

A similar instruction, Serial.parseFloat(), extracts real numbers

from the serial buffer. In the sketch, the void setup() function prints

constant text to the LCD, while updating of the time, temperature, and

pressure occurs in the void loop() function.

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

91

Table 4-3. Connections for LCD with I2C Bus and BMP280 Sensor

Component Connect to and to

I2C bus GND LLC high voltage GND Arduino GND

I2C bus VCC LLC high voltage 5V Arduino 5V

I2C bus SDA LLC high voltage tX Arduino A4

I2C bus SCL LLC high voltage RX Arduino A5

BMP280 VCC LLC low voltage 3.3V Arduino 3.3V

BMP280 GND LLC low voltage GND

BMP280 SDI LLC low voltage tX

BMP280 SCK LLC low voltage RX

BMP280 SD0 LLC low voltage GND

Listing 4-4. LCD with I2C Bus and BMP280 Sensor

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LiquidCrystal_I2C library

int I2Caddress = 0x3F; // I2C address of I2C bus

int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows

LiquidCrystal_I2C lcd(I2Caddress,LC Dcol,LCDrow); // I2C address

 // and LCD size

#include <Adafruit_Sensor.h> // include Unified Sensor library

#include <Adafruit_BMP280.h> // include BMP280 library

Adafruit_BMP280 bmp; // associate bmp with Adafruit_BMP280 library

int BMPaddress = 0x76; // I2C address of BMP280

int sec = 0;

int min, hour;

float temp, pressure;

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

92

void setup()

{

 lcd.init(); // initialise LCD

 bmp.begin(BMPaddress); // initialise BMP280 sensor

 Serial.begin(9600); // define Serial output baud rate

 Serial.print("Enter time as hh,mm"); // print text to screen

 lcd.setCursor(0,0); // move cursor to column 1 row 1

 lcd.print("Current"); // print "Current" to LCD

 lcd.setCursor(0,1); // move cursor to column 1 row 2

 lcd.print("time"); // print "time" to LCD

 lcd.setCursor(0-4,2); // move cursor to column 1 row 3

 lcd.print("temp"); // and reduce col by 4 for 3rd and 4th rows

 lcd.setCursor(0-4,3); // move cursor to column 1 row 4

 lcd.print("pres");

}

void loop()

{

 while (Serial.available()>0) // read data in Serial buffer

 {

 hour = Serial.parseInt(); // first integer in Serial buffer is hours

 min = Serial.parseInt(); // second integer in buffer is minutes

 }

 sec++; // short for sec = sec + 1

 if(sec>59) // increase minutes when seconds = 60

 {

 sec = 0; // reset seconds to 0

 min++; // increase minutes by 1

 }

 if(min>59) // increase hours when minutes = 60

 {

 min = 0; // reset minutes to 0

 hour++; // increase hours by 1

 }

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

93

 if(hour>23) hour = 0; // set hours to 0 when hours = 24

 lcd.setCursor(6, 1); // move cursor to column 6 row 2

 if(hour < 10) lcd.print(" "); // spacing for hours < 10

 lcd.print(hour); // print hour to LCD

 lcd.print(":"); // print ":" to LCD

 if(min<10) lcd.print("0"); // leading zero for minutes < 10

 lcd.print(min); // print minutes to LCD

 lcd.print(":");

 if(sec<10) lcd.print("0"); // leading zero for seconds < 10

 lcd.print(sec); // print seconds to LCD

 temp = bmp.readTemperature(); // read temperature from sensor

 pressure = bmp.readPressure()/100.0; // read pressure from sensor

 lcd.setCursor(6-4,2); // move cursor to column 6 row 3

 lcd.print(temp, 1); // print temperature to LCD to 1DP

 lcd.print(char(178)); // print degree character to LCD

 lcd.print("C");

 lcd.setCursor(6-4,3); // move cursor to column 6 row 4

 lcd.print(pressure, 1); // print pressure to LCD to 1DP

 lcd.print(" hPa");

 delay (1000); // delay 1000ms

}

 16×4 LCD Cursor Positioning
The 16×4 LCDs have different starting addresses for the third and fourth

rows than 20×4 LCDs for which the LCD library was written. To position

the cursor at column N in the third row requires the lcd.setCursor(N-4, 2)

instruction instead of lcd.setCursor(N ,2) and similarly for the fourth

row. The effect is demonstrated for a 16×4 LCD (see Listing 4-5).

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

94

Listing 4-5. Cursor Position on 16×4 LCD

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LiquidCrystal_I2C

int I2Caddress = 0x3F; // address of I2C bus

int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows

LiquidCrystal_I2C lcd(I2Caddress,LCDcol,LCDrow);

void setup()

{

 lcd.init(); // initialize the lcd

}

void loop()

{

 for (int col=0; col<16; col++)

 {

 lcd.clear(); // clear the LCD

 lcd.setCursor(col,0); // first row

 lcd.print("A");

 lcd.setCursor(col,1); // second row

 lcd.print("B");

 lcd.setCursor(col-4,2); // reduce col by 4 in the third row

 lcd.print("C");

 lcd.setCursor(col-4,3); // reduce col by 4 in the fourth row

 lcd.print("D");

 delay(500);

 }

}

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

95

Further, when a string longer than 16 characters is written to the first

and second rows of the 16×4 LCD, characters 17 onward are displayed on

the third and fourth rows. For a long string, printing a substring of at most

16 characters on a 16×4 LCD is recommended.

 Display Entered Values on LCD
Data entry from the keyboard, through the serial monitor, can be displayed

on the LCD. The lcd.write() instruction is used to display alphanumeric

characters on the LCD rather than lcd.print(). When a character in the

serial monitor buffer is read by Serial.read(), the lcd.print(Serial.

read())instruction displays the ASCII (American Standard Code for

Information Interchange) code of the character, while lcd.write(Serial.

read()) converts the ASCII code to display the alphanumeric character,

provided that the No line ending option is selected on the serial monitor.

The sketch (see Listing 4-6) displays on the LCD the characters entered on

the keyboard through the serial monitor buffer.

Listing 4-6. Display on LCD Characters Entered on Keyboard

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LiquidCrystal_I2C library

int I2Caddress = 0x3F; // address of I2C bus

int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows

LiquidCrystal_I2C lcd(I2Caddre ss,LCDcol,LCDrow); // I2C address

 // and LCD size

void setup()

{

 lcd.init(); // initialize LCD

 Serial.begin(9600); // define Serial output baud rate

}

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

96

void loop()

{

 if (Serial.available()>0) // if data in Serial input buffer

 {

 lcd.clear(); // clear the LCD

 while (Serial.available()>0) lcd.write(Serial.read());

 } // read and display input buffer

}

The if (Serial.available()) instruction determines if there

are characters in the serial input buffer and the while (Serial.

available() > 0) instruction ensures that all the buffer is read, as

Serial.read() reduces the serial buffer by one character at a time. The

lcd.clear()instruction clears the LCD screen and moves the cursor to

position (0, 0).

 LCD Character Set
Listing 4-7 displays the 256 possible characters on the 16×4 LCD in

blocks of 64 characters, as the character set of an LCD can differ from the

standard character set associated with an HD44780 controller. The screen

number to display 64 characters is entered on the serial monitor, with

screen number 1 corresponding to character values 0 to 63.

Listing 4-7. Display LCD Character Set

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LCD with I2C library

int I2Caddress = 0x3F; // I2C address of I2C bus

LiquidCrystal_I2C lcd(I2Caddress,16,4); // I2C address and LCD size

int screen = 1;

int j,start;

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

97

void setup()

{

 lcd.init(); // initialise LCD

 Serial.begin(9600); // define Serial output baud rate

 Serial.print("Enter screen number 1 to 4");

} // print message to Serial Monitor

void loop()

{ // read screen from Serial buffer

 while (Serial.available()>0) screen = Serial.parseInt();

 for (j=(screen-1)*4; j<screen*4; j++) // 4 rows of characters per screen

 {

 lcd.setCursor(0,(j%4)); // position cursor at start of row

 if((j%4)>1) lcd.setCursor(0-4,(j%4)); // reduce col by 4 for rows 3 and 4

 start = j*16; // 16 characters per row

 for (int i=0; i<16; i++) lcd.print(char(i+start));

 }

} // display characters by row

The calculation j%4 is j modulus 4 or the remainder when j is divided by 4.

A character is displayed on the LCD with the lcd.print(char(N))

instruction, where N is the binary, decimal, or hexadecimal character

code. For example, the character T has binary, decimal, and hexadecimal

character codes of B01010100, 84, and 0x54, respectively. Tables of

character sets (see Table 4-4) are often formatted with the columns and

rows containing the upper and lower four bits of the character code. For

example, the letter T has upper and lower four bits equal to 0101 and

0100, respectively. ASCII codes with upper bits equal to 0001 are for non-

printing characters and are not included in Table 4-4.

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

98

 Additional Characters
An additional eight characters can be created for display on the LCD. The

pixel pattern for a character is defined by an 7×5 array. The columns are

allocated the value of 24, 23, 22, 21, and 20, from left to right, with the seven

row totals equal to the sum of the five columns. Figure 4-4 illustrates

creating the additional characters of a clock and a tick. The row totals

are included in an eight byte array labelled with the additional character

Table 4-4. Upper and Lower Bits of Character Codes

Upper Four Bits

Lower four Bits 0010 0011 0100 0101 0110 0111

0000 space 0 @ P ' p

0001 ! 1 A q a q

0010 " 2 B R b r

0011 # 3 C S c s

0100 $ 4 D t d t

0101 % 5 E U e u

0110 & 6 F V f v

0111 ' 7 G W g w

1000 (8 h X h x

1001) 9 i y i y

1010 * : J Z j z

1011 + ; K [k {

1100 , < L \ l |

1101 - = M] m }

1110 . > N ^ n ~

1111 / ? O _ o DELEtE

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

99

name, for example byte clock[8] = {0, 14, 21, 23, 17, 14, 0}.

In the void setup() function, the additional character is allocated a

character number from 0 to 7, for example lcd.createChar(0, clock)

with the additional character displayed with the lcd.write(number)

instruction. The additional characters of a clock, a tick, and a cross are

created and displayed in Listing 4-8.

Figure 4-4. Additional characters

Listing 4-8. Additional Characters

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LCD with I2C library

int I2Caddress = 0x3F; // I2C address of I2C bus

LiquidCrystal_I2C lcd(I2Caddress,16,4); // I2C address and LCD size

byte clock[8] = {0, 14, 21, 23, 17, 14, 0}; // clock pixel pattern

byte tick[8] = {0, 1, 3, 22, 28, 8, 0}; // tick pixel pattern

byte cross[8] = {0, 27, 14, 4, 14, 27, 0}; // cross pixel pattern

void setup()

{

 lcd.init(); // initialise LCD

 lcd.createChar(0, clock); // create character 0 named clock

 lcd.createChar(1, tick); // create character 1 named tick

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

100

 lcd.createChar(2, cross); // create character 2 named cross

 lcd.setCursor(0,0); // position cursor

 for (int i=0;i<3;i++) lcd.write(i); // display new characters

}

void loop() // nothing in void loop()

{}

 Summary
The liquid crystal display (LCD) displayed sensor data. The LCD contrast

is controlled by a potentiometer or by pulse width modulation (PWM)

with a capacitor. Text messages were scrolled across the LCD, rather than

only static text display. An I2C bus was used to communicate between

the Arduino and the LCD. The character set and cursor positioning of

a 16×4–pixel LCD were described with creating additional characters.

Programming included parsing data from text entered on the keyboard

through the serial monitor buffer.

 Components List
• Arduino Uno and breadboard

• LCD display: 16×4pixels

• I2C bus for LCD

• Potentiometer: 10kΩ

• Capacitor: 100μF

• Temperature sensors: LM35DZ and BMP280

• Logic level converter

ChAPtER 4 LiqUiD CRyStAL DiSPLAy

101© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_5

CHAPTER 5

7-Segment LED
Display

Numbers and characters displayed on electronic devices use

modules of seven LEDs with an eighth LED for the decimal

point. Conventions for labelling the LEDs are a, b, … g or A,

B, … G, with the decimal point denoted P or DP. There are 10

pins on the 7-segment display with pins 1 to 5 corresponding to LEDs e, d,

common, c, and P with pins 6 to 10 mapping to LEDs b, a, common, f, and g.

The two common pins, 3 and 8, are connected to a common cathode or

common anode (see Figure 5-1).

Figure 5-1. 7-segment LED display

102

To determine if a 7-segment display has a common cathode or

common anode, the negative center of a lithium battery can be held

against the common pin and the positive top of the battery to another pin.

If one of the LEDs turns on, the 7-segment display has a common cathode.

The Chapter uses 7-segment displays with a common cathode, so that an

LED is on when the signal to the LED is HIGH.

 Basic Schematic
Each LED is connected to an Arduino pin, which is set to HIGH or LOW.

The number two is displayed by setting the pins that control LEDs a, b, d, e,

and g to HIGH with the pins for LEDs c and f set to LOW. As an example, the

sketch (see Listing 5-1) alternately displays the numbers two and six. The

blue-yellow color-coding of the connecting wires in Figure 5-2 is only to aid

following connections between Arduino pins and the 7-segment display.

The instructions at the start of Listing 5-1 detail connections between the

Arduino pins and the 7-segment display, with Arduino GND connected to a

220Ω resistor and then to the common pin of the 7-segment display.

Chapter 5 7-Segment LeD DiSpLay

103

Figure 5-2. 7-segment LED display

Listing 5-1. 7-Segment LED Display

int pinA = 2; // yellow wire to display LED a

int pinB = 3; // blue wire to display LED b

int pinC = 4; // yellow wire to display LED c

int pinD = 5; // blue wire to display LED d

int pinE = 6; // yellow wire to display LED e

int pinF = 7; // blue wire to display LED f

int pinG = 8; // yellow wire to display LED g

void setup()

{

 pinMode (pinA, OUTPUT); // define LED pins as output

 pinMode (pinB, OUTPUT);

 pinMode (pinC, OUTPUT);

 pinMode (pinD, OUTPUT);

Chapter 5 7-Segment LeD DiSpLay

104

 pinMode (pinE, OUTPUT);

 pinMode (pinF, OUTPUT);

 pinMode (pinG, OUTPUT);

}

void loop()

{

 digitalWrite(pinA, HIGH); // display number two

 digitalWrite(pinB, HIGH);

 digitalWrite(pinC, LOW);

 digitalWrite(pinD, HIGH);

 digitalWrite(pinE, HIGH);

 digitalWrite(pinF, LOW);

 digitalWrite(pinG, HIGH);

 delay(1000);

 digitalWrite(pinA, HIGH); // display number six

 digitalWrite(pinB, LOW);

 digitalWrite(pinC, HIGH);

 digitalWrite(pinD, HIGH);

 digitalWrite(pinE, HIGH);

 digitalWrite(pinF, HIGH);

 digitalWrite(pinG, HIGH);

 delay(1000);

}

Defining each LED pin, each LED pinMode as OUTPUT, the state of

each LED pin and each digitalWrite() in separate instructions is not

necessary. The LED pins and their states, 1 or 0 instead of HIGH or LOW,

can be defined in arrays with for() loops to set the LED states and the

digitalWrite() instructions. Listing 5-2 is substantially shorter and easier

to understand than Listing 5-1.

Chapter 5 7-Segment LeD DiSpLay

105

Listing 5-2. 7-Segment LED Display

int LEDs[] = {2,3,4,5,6,7,8}; // define LED pins

int two[] = {1, 1, 0, 1, 1, 0, 1}; // LED states to display number two

int six[] = {1, 0, 1, 1, 1, 1, 1}; // LED states to display number six

void setup()

{ // define LED pins as OUTPUT

 for (int i = 0; i<7; i++) pinMode (LEDs[i], OUTPUT);

}

void loop()

{ // display number two

 for (int i = 0; i<7; i++) digitalWrite(LEDs[i], two[i]);

 delay(1000); // display number six

 for (int i = 0; i<7; i++) digitalWrite(LEDs[i], six[i]);

 delay(1000); // delay 1s

}

 PWM and LED Brightness
When an LED is turned on, the 220Ω resistor between ground and the

common pin of the 7-segment display (see Figure 5-2) restricts the

current to less than 20mA, given the forward voltage drop of 2V across an

LED, as discussed in Chapter 1. When displaying numbers, the current

per LED is the total current divided by the number of LEDs that are

turned on, as the LEDs are in parallel. To display the number one, the

current through both LEDs will be greater than the current through all

the LEDs used to display the number eight and so the number one will be

brighter. To ensure similar brightness for each number, one option is a

resistor in series with each LED.

Chapter 5 7-Segment LeD DiSpLay

106

Alternatively, PWM can control the LED brightness of numbers one and

seven, which have only a few LEDs turned on, with analogWrite() instead of

digitalWrite(). The brightness levels of LEDs in the LED state arrays, one

and seven, have the values 0 or 255 × N/7, where N is the number of LEDs

to be turned on. The 7-segment display LEDs a, b and c are now connected

to PWM pins 9, 10 and 11 for the analogWrite() instruction of numbers

one and seven, with LED brightness levels of 73 or 109, respectively. The

other numbers are displayed using digitalWrite(), given that most of the

LEDs are turned on. When an analogWrite() follows a digitalWrite()

instruction, then all the LEDs must be turned off before the analogWrite()

instruction. The sketch (see Listing 5-3) combines digitalWrite() with

analogWrite() and PWM to display numbers one, two, seven, and zero, with

the numbers displayed having similar brightness.

Listing 5-3. Display Numbers Zero, One, Two, and Seven

int LEDpin[] = {9,10,11,5,6,7,8}; // LED pins with PWM for LEDs a, b and c

int one[] = {0,72,72,0,0,0,0}; // LED brightness to display number one

int two[] = {1,1,0,1,1,0,1}; // LED states to display number two

int three[] = {1,1,1,1,0,0,1};

int four[] = {0,1,1,0,0,1,1};

int five[] = {1,0,1,1,0,1,1};

int six[] = {1,0,1,1,1,1,1};

int seven[] = {109,109,109,0,0,0,0};// LED brightness to display number seven

int eight[] = {1,1,1,1,1,1,1};

int nine[] = {1,1,1,1,0,1,1};

int zero[] = {1,1,1,1,1,1,0};

void setup()

{ // define LED pins as OUTPUT

 for (int i = 0; i<7; i++) pinMode (LEDpin[i], OUTPUT);

}

Chapter 5 7-Segment LeD DiSpLay

107

void loop()

{ // turn off all LEDs

 for (int i = 0; i<7; i++) digitalWrite(LEDpin[i],0);

 delay(10); // display number one

 for (int i = 0; i<3; i++) analogWrite(LEDpin[i], one[i]);

 delay(1000); // display number two

 for (int i = 0; i<7; i++) digitalWrite(LEDpin[i], two[i]);

 delay(1000); // turn off all LEDs

 for (int i = 0; i<7; i++) digitalWrite(LEDpin[i],0);

 delay(10); // display number seven

 for (int i = 0; i<3; i++) analogWrite(LEDpin[i], seven[i]);

 delay(1000); // display number zero

 for (int i = 0; i<7; i++) digitalWrite(LEDpin[i], zero[i]);

 delay(1000); // delay 1s

}

 Shift Register
A shift register, such as a 74HC595, loads a byte, consisting of eight bits,

of data, one bit at a time. An 8-bit number can represent

the status of all LEDs in the 7-segment display, rather than

individually declaring the status of each LED. For example,

the number five is displayed by turning on LEDs a, c, d, f,

and g and turning off LEDs b and e. If an LED turned off is represented

by 0 with 1 for an LED turned on, then the sequence of 0s and 1s to

display the number five is 1101101 for LEDs g to a, which is equivalent to

the binary number B1101101 or decimal 109 or hexadecimal 0x6D. The

second advantage of the shift register is that only three, rather than eight,

Arduino pins are required to communicate the LED states for the LEDs

(see Figure 5-3 and Table 5-1).

Chapter 5 7-Segment LeD DiSpLay

108

Table 5-1. 74HC595 Shift Register Pin Layout

Symbol Description Connect to

QB shift register output for LeD b 7-segment display pin b

QC shift register output for LeD c 7-segment display pin c

QD shift register output for LeD d 7-segment display pin d

QE shift register output for LeD e 7-segment display pin e

QF shift register output for LeD f 7-segment display pin f

QG shift register output for LeD g 7-segment display pin g

QH shift register output for LeD p

GND ground arduino gnD

QH’ output if more than one register

Figure 5-3. 7-segment display and shift register

(continued)

Chapter 5 7-Segment LeD DiSpLay

109

Symbol Description Connect to

SRCLR clear the register when LOW arduino 5V

SRCLK storage register clock arduino pin 2 CLOCK

RCLK shift register clock arduino pin 3 LatCh

OE output enabled when ground arduino gnD

SER serial input for next pin arduino pin 4 Data

QA shift register output for LeD a 7-segment display pin a

VCC 5V supply arduino 5V

The line above the SRCLR and OE symbols indicate that the pin is

active LOW, rather than the pin being active when the pin state is HIGH.

The shift register pins are numbered 1 to 16, with pins 1, 8, 9 and 16

corresponding to QB, GND, QH’, and VCC. Note that the cut-out at the end

of the 74HC595 shift register indicates the end with pins 1 and 16 or QB

and VCC.

To display the number five, the states of LEDs P and g to a map to the

binary number B01101101 equal to decimal 109.

LED P LED g LED f LED e LED d LED c LED b LED a

(0×27) + (1×26) + (1×25) + (0×24) + (1×23) + (1×22) + (0×21) + (1×20) = 109

or hexadecimal conversion

24 × [(0 × 23) + (1 × 22) + (1 × 21) + (0 × 20)] + [(1 × 23) + (1 × 22) + (0 × 21) + (1 × 20)]

= 24 × 6 + 13, which is hexadecimal 0x6D.

Table 5-1. (continued)

Chapter 5 7-Segment LeD DiSpLay

110

Hexadecimal is a 2-digit 4-bit representation of an 8-bit binary

number, which is split into upper and lower 4-bit numbers. In the

preceding example, the upper 4-bit binary number is B0110 and the lower

4-bit binary number is B1101. The upper and lower 4-bit numbers are

equal to decimal 6 and 13, respectively, which is denoted as hexadecimal

0x6D, since decimal values 10, 11, 12, 13, 14, and 15 have hexadecimal

representations of A, B, C, D, E, and F. The advantages of hexadecimal are

that numbers up to 256 are represented by two alphanumeric characters

and that an 8-bit binary number can easily be split into two hexadecimal

components.

The shift register loads the state of the first LED, then the state of the next

LED until the states all the LED have been loaded. While the shift register

clock (RCLK or LATCH) is set LOW, the LED states (HIGH or LOW) for LEDs

P and g to a are loaded via the data pin (SER or DATA) into the shift register,

one LED state at a time, controlled by the storage register clock (SRCLK

or CLOCK). After all eight LED states are loaded, the shift register clock

(RCLK or LATCH) is set HIGH and the updated LED states are implemented

simultaneously. Figure 5-4 illustrates the shift register sequentially loading

the LED states to display the number five on a 7-segment display.

Chapter 5 7-Segment LeD DiSpLay

111

Figure 5-4. Shift register loading

The instructions to pass data through the shift register are

digitalWrite(latchPin, LOW); // set the latch to LOW

shiftOut(dataPin, clockPin, MSBFIRST, number); // LED states as a number

digitalWrite(latchPin, HIGH); // set the latch to HIGH

MSBFIRST indicates that the most significant bit is loaded first, which is

the state of LED P, the LED for the decimal point, which has binary multiple

of 27. For example, the decimal representations of the numbers one, two,

and three with the most significant bit first are 6, 91, and 79, with binary

representations of B00000110, B01011011, and B01001111, respectively. The

least significant bit, which is the state of LED a, has a binary multiple of 20.

If the least significant bit was loaded first, then LSBFIRST would be used in

the shiftOut() instruction. For example, the decimal representations of the

Chapter 5 7-Segment LeD DiSpLay

112

numbers one, two, and three with the least significant bit first are 96, 218, and

242, with binary representations of B01100000, B11011010, and B11110010,

respectively. So use of MSBFIRST or LSBFIRST must be defined.

A sketch with a shift register to display the numbers zero to nine compared

to the sketch without a shift register only displaying numbers two and six

demonstrates the advantage of the shift register (see Table 5-2). Note that in

Figure 5-3, the 74HC595 shift register pins 1 and 16 are on the left-hand side.

Table 5-2. Sketches with and Without a Shift Register

Numbers zero to nine Numbers two and six, only

int clockpin = 2; int pins[] = {2,3,4,5,6,7,8,9};

int latchpin = 3; int two[] = {1, 1, 0, 1, 1, 0, 1 };

int datapin = 4; int six[] = {1, 0, 1, 1, 1, 1, 1};

int num[] = {63,6,91,79,102,109,125,7,127,111};

void setup() void setup()

{ {

 pinmode (clockpin, OUtpUt); for (int i=0; i<7; i++)

 pinmode (latchpin, OUtpUt); pinmode (pins[i], OUtpUt);

 pinmode (datapin, OUtpUt);

} }

(continued)

Chapter 5 7-Segment LeD DiSpLay

113

The shiftOut() instruction can use binary, decimal or hexadecimal

numbers to represent the LED states in the 7-segment display. For

example, the three instructions to display the number five are equivalent to

 shiftOut(dataPin, clockPin, MSBFIRST, B01101101}

or shiftOut(dataPin, clockPin, MSBFIRST, 109}

or shiftOut(dataPin, clockPin, MSBFIRST, 0x6D)

 Shift Register, PWM, and LED Brightness
The shift register output enable pin, OE , is normally connected to ground.

If the shift register output enable pin is connected to a PWM pin (see

Figure 5-5), then the brightness of the 7-segment display can be controlled

with PWM.

Numbers zero to nine Numbers two and six, only

void loop() void loop()

{ {

 for (int i=0; i<10; i++) for (int i=0; i<7; i++)

 { digitalWrite(pins[i], two[i]);

 digitalWrite(latchpin, LOW); delay(1000);

 shiftOut(datapin,clockpin,mSBFirSt,num[i]); for (int i=0; i<7; i++)

 digitalWrite(latchpin, high); digitalWrite(pins[i], six[i]);

 delay(1000); delay(1000);

 }

} }

Table 5-2. (continued)

Chapter 5 7-Segment LeD DiSpLay

114

For example, defining the PWM pin with int PWMpin = 11 and in the

void loop() function, inserting the analogWrite(PWMpin, 250 - i*25)

instruction increases the 7-segment display brightness as the display

number increases. The reason for the 7-segment display brightness

increasing as the value of (250 - i*25) in the analogWrite() function

decreases, is that the OE shift register pin is active LOW rather than HIGH.

An application of the display brightness being dependent on incident

light, with a brighter display in lighter conditions, is a digital clock that is

brighter during daylight than at night, as used in Listing 5-4 when numbers

are displayed. The output from a voltage divider with a light dependent

resistor controls the brightness of the seven segment display (see Figure 5-5).

The bright = map(reading, 0, 1023, 255, 0) instruction reverses the

Figure 5-5. 7-segment display with PWM control

Chapter 5 7-Segment LeD DiSpLay

115

effect of the OE shift register pin. The schematic is the same as in

Figure 5-4 with the addition of a voltage divider and light dependent

resistor, with the additional connections given in Table 5-3.

Listing 5-4. Display Brightness Dependent on Incident Light

int clockPin = 2; // shift register CLOCK pin

int latchPin = 3; // shift register LATCH pin

int dataPin = 4; // shift register DATA pin

int num[] = {63,6,91,79,102,109,125,7,127,111}; // binary for numbers 0 to 9

int Vdivid = A5; // voltage divider pin

int PWMpin = 11; // shift register OE pin used for PWM

int reading, bright;

void setup()

{ // define

 pinMode (clockPin, OUTPUT); // shift register CLOCK pin as output

 pinMode (latchPin, OUTPUT); // shift register LATCH pin as output

 pinMode (dataPin, OUTPUT); // shift register DATA pin as output

}

Table 5-3. Connections for Shift Register, Voltage Divider, and

Light Dependent Resistor

Component Connect to and to

LDR right leg arduino a5

LDR right leg 4.7kΩ resistor arduino gnD

LDR left leg arduino 5V

74HC595 OE pin 13 arduino pin 11

Chapter 5 7-Segment LeD DiSpLay

116

void loop()

{

 for (int i=0; i<10; i++) // for each number 0 to 9

 {

 reading = analogRead(Vdivid); // voltage divider reading

 bright = map(reading, 0, 1023, 255, 0); // map reading to LED brightness

 analogWrite(PWMpin, bright); // change LED brightness

 digitalWrite(latchPin, LOW); // set the latch to LOW

 shiftOut(dataPin,clockPin,MSBFIRST,num[i]); // LED states as a number

 digitalWrite(latchPin, HIGH); // change number pattern

 delay(1000); // delay 1s

 }

}

 Alphanumeric Characters
Decimal representations to display alphanumeric characters for a

7-segment display with a common cathode and the most significant bit

first are given in Table 5-4.

Table 5-4. Decimal Representations of Alphanumeric Characters

Character Number Character Number Character Number Character Number

0 63 a 119 J 30 S 109

1 6 B 124 K 112 t 120

2 91 C 57 L 56 U 62

3 79 D 94 m 21 V 28

(continued)

Chapter 5 7-Segment LeD DiSpLay

117

Decimal representations of alphanumeric characters can be

determined from an Excel spreadsheet with conditionally formatted cells

representing LEDs set to HIGH or LOW and cell values equal to 1 or 0. For

example, in Figure 5-6, the LEDs turned on to display the number three are

a, b, c, d, and g, with LEDs e and f turned off.

Character Number Character Number Character Number Character Number

4 102 e 121 n 84 W 42

5 109 F 113 O 63 X 118

6 125 g 111 p 115 y 110

7 7 h 118 Q 103 Z 91

8 127 i 6 r 80

9 111 Dp 128

Table 5-4. (continued)

Figure 5-6. Numeric values of characters with Excel

Chapter 5 7-Segment LeD DiSpLay

118

The decimal representation of a pattern is calculated from

(SP × 27) + (Sg × 26) + (Sf × 25) + (Se × 24) + (Sd × 23) + (Sc × 22) + (Sb × 21) + (Sa × 20)

and Sa, Sb, Sc, Sd, Se, Sf, Sg, and SP are the eight LED states in the 7-segment

display, including the decimal point.

If the 7-segment display has a common anode, then the decimal

representation to display an alphanumeric character is 127 minus the

value in Table 5-4. The decimal representation of the decimal point is 127

when the 7-segment display has a common anode.

 Summary
Numbers and characters are displayed on the 7-segment LED display.

LED brightness can be controlled with pulse width modulation, for

characters only requiring a few LEDs. A shift register controlled the LEDs,

reduced the connections to the Arduino Uno and simplified the sketch.

Decimal, hexadecimal, and binary representations of characters are

described.

 Components List
• Arduino Uno and breadboard

• 7-segment LED display

• Resistors: 220Ω and 4.7kΩ

• Light dependent resistor (or photoresistor)

• Shift register: 74HC595

Chapter 5 7-Segment LeD DiSpLay

119© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_6

CHAPTER 6

4-Digit 7-Segment
Display

The 4-digit 7-segment display is an extension of the 1-digit

7-segment display discussed in Chapter 5. As with the

1-digit 7-segment display, there are seven LED segments

on the 4-digit display, labelled a, b, … g and P or DP. There

are an additional four pins controlling the 4-digit displays. The pin layout

on the 4-digit 7-segment display is illustrated in Figure 6-1 and the order

of the digits from the left-hand side is 1, 2, 3, and 4. The 4-digit 7-segment

display has a common cathode and a digit display is on when the digit pin

state is LOW, which is equivalent to the common pin connected to ground

for the 1-digit 7-segment display.

Figure 6-1. Pin layout of 4-digit 7-segment display

120

Listing 6-1 uses a 4-digit 7-segment display as a timer counting seconds.

Two functions are used with the digit() function turning on the appropriate

digit and the number() function splitting the number of seconds into units,

tens, hundreds, and thousands. The delay of 5ms between displaying digits

prevents flicker, but changing the delay to 250ms illustrates the digit display

pattern of displaying one digit at a time. In Figure 6-2, the wire colored yellow

is to aid following the circuit, with connections in Table 6-1.

Listing 6-1 demonstrates control of the 4-digit 7-segment display.

Inclusion of shift registers reduces the repeated instructions to define LED

states and the digitalWrite() instructions for each number, which is

described later in the chapter.

Figure 6-2. 4-digit 7-segment display as timer

Chapter 6 4-Digit 7-Segment DiSplay

121

Table 6-1. Connections for 4-Digit 7-Segment Display As Timer

Component Connect to and to

4 digit 7 seg pin 1 220Ω resistor arduino pin 6

4 digit 7 seg pin 2 220Ω resistor arduino pin 5

4 digit 7 seg pin 3

4 digit 7 seg pin 4 220Ω resistor arduino pin 4

4 digit 7 seg pin 5 220Ω resistor arduino pin 8

4 digit 7 seg pin 6 arduino pin 13

4 digit 7 seg pin 7 220Ω resistor arduino pin 3

4 digit 7 seg pin 8 arduino pin 12

4 digit 7 seg pin 9 arduino pin 11

4 digit 7 seg pin 10 220Ω resistor arduino pin 7

4 digit 7 seg pin 11 220Ω resistor arduino pin 2

4 digit 7 seg pin 12 arduino pin 10

Listing 6-1. 4-Digit 7-Segment Display As Timer

int pins[] = {2,3,4,5,6,7,8}; // LED pins

int digits[] = {10,11,12,13}; // digit control pins

int zero[] = {1,1,1,1,1,1,0}; // LED states for zero

int one[] = {0,1,1,0,0,0,0}; // LED states for one

int two[] = {1,1,0,1,1,0,1};

int three[] = {1,1,1,1,0,0,1};

int four[] = {0,1,1,0,0,1,1};

int five[] = {1,0,1,1,0,1,1};

int six[] = {1,0,1,1,1,1,1};

int seven[] = {1,1,1,0,0,0,0};

int eight[] = {1,1,1,1,1,1,1};

int nine[] = {1,1,1,1,0,1,1};

Chapter 6 4-Digit 7-Segment DiSplay

122

int time, n;

int del = 5; // time delay (ms)

void setup()

{ // define pins and digits as output

 for (int i = 0; i<7; i++) pinMode (pins[i], OUTPUT);

 for (int i = 0; i<4; i++) pinMode (digits[i], OUTPUT);

}

void loop()

{

 time = millis()/1000; // time is number of seconds

 digit(0); // digit D1 for thousands

 number(time/1000); // number to be displayed

 delay(del);

 digit(1); // digit D2 for hundreds

 number((time%1000)/100); // modulus(time, 1000)/100

 delay(del);

 digit(2); // digit D3 for tens

 number((time%100)/10); // modulus(time, 100)/10

 delay(del);

 digit(3); // digit D4 for units

 number(time%10); // modulus(time, 10)

 delay(del);

}

void digit(int d) // function to set digit states

{ // turn all digits off

 for (int i = 0; i<4; i++) digitalWrite(digits[i], 1);

 digitalWrite(digits[d], 0); // digit pin state is LOW, display is on

}

Chapter 6 4-Digit 7-Segment DiSplay

123

void number(int n) // function to display numbers

{

 if (n==0) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], zero[i]);

 else if (n==1) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], one[i]);

 else if (n==2) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], two[i]);

 else if (n==3) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], three[i]);

 else if (n==4) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], four[i]);

 else if (n==5) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], five[i]);

 else if (n==6) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], six[i]);

 else if (n==7) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], seven[i]);

 else if (n==8) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], eight[i]);

 else if (n==9) for (int i = 0; i<7; i++)

 digitalWrite(pins[i], nine[i]);

}

 Functions
The digit() and number() functions in Listing 6-1 are prefixed void as

the functions return no value to the main sketch. If a function returns an

integer or a real number, y, to the main sketch, then the function is prefixed

with int or float, respectively, and the instruction return y is included

in the function. If a function is passed a string, an integer, or a real number,

Chapter 6 4-Digit 7-Segment DiSplay

124

then the instruction includes the variable type with the variable name,

as in void digit(int d). For example, Listing 6-2 shows the double

function, which is passed an integer, x, and returns a real number, y.

Listing 6-2. Function to Pass an Integer and Return a Float

float double(int x)

{

 float y = 2.0*x;

 return y;

}

In Listing 6-1, the number() function uses the modulus of time divided

by 10, 100, or 1000, where modulus (x, y) is the remainder when integer x

is divided by integer y. For example, if time is 1234, the number of tens is

modulus(1234, 100) = 34, which is then divided by 10 to obtain the result of 3,

as the divisor uses integer arithmetic.

The combination of if else instructions is more efficient for multiple

mutually exclusive tests, rather than a series of if() instructions, as the

tests can be run simultaneously rather than sequentially. An alternative

to if else instructions is switch case instructions, where the switch

instruction compares the test variable to values in the case instruction and

the corresponding code is carried out. Use of switch case instructions can

be clearer to interpret when there are several instructions within a case;

otherwise, use of if else instructions is sufficient. Note that each case

instruction is closed with a break instruction. The switch case equivalent

of the if else instructions of Listing 6-1 is given in Listing 6-3.

Chapter 6 4-Digit 7-Segment DiSplay

125

Listing 6-3. Example of Switch Case

switch(n)

{

 case 0:

 for (int i = 0; i<7; i++) digitalWrite(pins[i], zero[i]);

 break;

 case 1:

 for (int i = 0; i<7; i++) digitalWrite(pins[i], one[i]);

 break;

 case 3:

 for (int i = 0; i<7; i++) digitalWrite(pins[i], three[i]);

 break;

}

When only one of two options is to be activated, then an if()

instruction, such as if(x>7) y = y+1, is sufficient. When both options are

required, the following pair of instructions has the same outcome, but the

left-hand side set of instructions is more efficient.

if(x>7) y = y+1; if(x>7) y = y+1;

else y = y-1; if(x<=7) y = y-1;

In contrast to the if() instruction, which operates once, the while()

instruction repeats the outcome continuously as long as the condition

is satisfied, so while(condition) outcome is a loop. For example, the

instruction if(1 == 1) Serial.println("test") displays “test” on

the serial monitor once, but while(1 == 1) Serial.println("test")

displays “test” on the serial monitor repeatedly. The if(condition) break

instruction is used to exit from within a while() loop.

Chapter 6 4-Digit 7-Segment DiSplay

126

Figure 6-3. 4-digit 7-segment display with shift register and
temperature sensor

 One Shift Register
A shift register can load the LED states in the 4-digit 7-segment display,

which reduces the number of connecting wires to the Arduino from eight

to three (see Figure 6-3), just as with the 1-digit 7-segment display (see

Figure 5-5). Connections to the shift register and 4-digit 7-segment display

are given in Tables 6-2 and 6-3, respectively.

Chapter 6 4-Digit 7-Segment DiSplay

127

Table 6-2. Connections to 74HC595 Shift Register

Pin Symbol Description Connect to

1 QB shift register output for leD b 4-digit 7-segment display b

2 QC shift register output for leD c 4-digit 7-segment display c

3 QD shift register output for leD d 4-digit 7-segment display d

4 Qe shift register output for leD e 4-digit 7-segment display e

5 QF shift register output for leD f 4-digit 7-segment display f

6 Qg shift register output for leD g 4-digit 7-segment display g

7 Qh shift register output for leD p 4-digit 7-segment display p

8 gnD ground arduino gnD

9 Qh' output if more than one register

10 SRCLR clear the register when lOW arduino 5V

11 SrClK storage register clock arduino pin 4 ClOCK

12 rClK shift register clock arduino pin 3 latCh

13 OE output enabled when ground arduino gnD

14 Ser serial input for next pin arduino pin 2 Data

15 Qa shift register output for leD a 4-digit 7-segment display a

16 VCC 5V supply arduino 5V

Chapter 6 4-Digit 7-Segment DiSplay

128

A temperature sensor, LM35DZ, can be combined with the time display

(see Figure 6-3). The sketch (see Listing 6-4) alternately displays, for a

duration of 5 seconds, the temperature and number of seconds elapsed.

The decimal point for the temperature is incorporated in the digit function

by adding 128 to the value of the number to be displayed. For example,

to display the number two without and with a decimal point, the binary

representations are B01011011 and B11011011, corresponding to decimal

values 91 and 219. In Figure 6-3, the brown wire is the connection between

the shift register and the 4-digit 7-segment display for the decimal point.

Table 6-3. Connections to 4-Digit 7-Segment Display and

Temperature Sensor

Symbol Description Connect to and to

E leD e 220Ω resistor 74hC595 pin 4

D leD d 220Ω resistor 74hC595 pin 3

P or DP leD p or Dp 220Ω resistor 74hC595 pin 7

C leD c 220Ω resistor 74hC595 pin 2

G leD g 220Ω resistor 74hC595 pin 6

D4 Digit 4 arduino pin 13

B leD b 220Ω resistor 74hC595 pin 1

D3 Digit 3 arduino pin 12

D2 Digit 2 arduino pin 11

F leD f 220Ω resistor 74hC595 pin 5

A leD a 220Ω resistor 74hC595 pin 15

D1 Digit 1 arduino pin 10

lm35DZ gnD arduino gnD

lm35DZ OUt arduino pin a5

lm35DZ VCC arduino 5V

Chapter 6 4-Digit 7-Segment DiSplay

129

Listing 6-4. Temperature and Time Display

int dataPin = 2; // shift register DATA pin

int latchPin = 3; // shift register LATCH pin

int clockPin = 4; // shift register CLOCK pin

int digits[] = {10,11,12,13}; // 4 digit pins and "values" of numbers 0 to 9

int numbers[] = {63,6,91,79,102,109,125,7,127,111};

int del = 5; // delay after turning digit on

int tempPin = A5; // temperature sensor pin

int duration = 5000; // display duration

unsigned long start;

int time, n, temp, reading;

void setup()

{

 pinMode (dataPin, OUTPUT); // define shift register DATA pin as output

 pinMode (latchPin, OUTPUT); // define shift register LATCH pin as output

 pinMode (clockPin, OUTPUT); // define shift register CLOCK pin as output

 for (int i = 0; i<4; i++) pinMode (digits[i], OUTPUT);

 analogReference (INTERNAL); // set ADC voltage to 1.1V rather than 5V

}

void loop()

{

 start = millis(); // milliseconds elapsed

 while (millis()-start<duration) // display time

 {

 time = millis()/1000; // time in elapsed seconds

 digit(0, time/1000, 0); // digit D1 for thousands

 digit(1, (time%1000)/100, 0); // digit D2 for hundreds

 digit(2, (time%100)/10, 0); // digit D3 for tens

 digit(3, time%10, 0); // digit D4 for units

 }

Chapter 6 4-Digit 7-Segment DiSplay

130

 reading = analogRead(tempPin); // temperature reading

 temp = 10.0*(reading*110.0)/1023.0; // multiplier to get decimal place

 // display temperature

 while (millis()-start>duration && millis()-start<2*duration)

 {

 digit(1, (temp%1000)/100, 0); // digit D2 for tens

 digit(2, (temp%100)/10, 1); // digit D3 for units 1 for DP

 digit(3, temp%10, 0); // digit D4 for decimal places

 }

}

void digit(int d, int n, int DP)

{ // turn all digits off, digit states are HIGH

 for (int i = 0; i<4; i++) digitalWrite(digits[i], 1);

 digitalWrite(latchPin, LOW); // add 128 for decimal point

 shiftOut(dataPin, clockPin, MSBFIRST, numbers[n]+DP*128);

 digitalWrite(latchPin, HIGH); // change display pattern

 digitalWrite(digits[d], 0); // turn digit on, digit state LOW

 delay(del); // delay del (ms)

}

The order of the instructions in the digit() function is important

to ensure no ghosting of numbers from the previous display. All digits

are turned off before the new display pattern is loaded. If the relevant

digit is turned on before the new number pattern is loaded, then for a

small period of time, the old number pattern is displayed, resulting in the

ghosting of numbers from the previous display.

Chapter 6 4-Digit 7-Segment DiSplay

131

 Two Shift Registers
With two shift registers, the first shift register controls the LED segments

and the second shift register controls the digits, with the second shift

register connected to the first shift register. To display a number on a given

digit of the 4-digit 7-segment display, bit data on the digit to be turned

on and the LED segment pattern of the number to be displayed is loaded

into the storage register of the first shift register. The bit data consists of

more than eight bits, so the additional bits are moved into the second shift

register. Figures 6-4 and 6-5 illustrate loading the bit data to display on

the third digit, B00010110, the number five, with LED segment pattern of

B01101101.

Figure 6-4. 4-digit data loaded into first shift register

Chapter 6 4-Digit 7-Segment DiSplay

132

In Figure 6-6, digits of the 4-digit 7-segment display are connected to

pins QB, QC, QD, and QE of the second shift register and a digit is turned

on when the corresponding shift register pin is LOW. Bit data to only turn

on the third digit is B00010110, as the third digit is connected to pin QD,

set to LOW, and digits 1, 2, and 4, which are connected to pins QB, QC, and

QE, are set to HIGH. The decimal representations of the bit data to turn on

digits, D1, D2, D3, and D4 are 28 (or B11100), 26 (or B11010), 22 (or B10110),

and 14 (or B01110), respectively. Note that in Figure 6-6, the second shift

register is turned upside down to make the schematic more interpretable,

so that the cutout at end of the 74HC595 shift register, which indicates the

end with pins 1 and 16 or QB and VCC, is on the right-hand side.

Figure 6-5. 4-digit data “shifted” into shift registers

Chapter 6 4-Digit 7-Segment DiSplay

133

Figure 6-6. 4-digit 7-segment display with two shift registers

The two shift registers are “daisy chained” together, so that only three

connections are required to the Arduino, rather than the initial 12 when no

shift registers were included. The serial output pin of the first shift register,

pin QH', is connected to the serial input pin of the second shift register,

pin SER. The storage register clock pins, SRCLK, and the shift register

clock pins, RCLK, of both shift registers are connected together. Figure 6-6

does not include provision for displaying the decimal point. The changes

to connections for the first 74HC595 shift register, when a second shift

register is included, are given in Table 6-4.

Chapter 6 4-Digit 7-Segment DiSplay

134

Table 6-4. Change in Connections of First Shift Register Given Second

Shift Register

Pin Symbol Description Connect to

9 Qh' output if more than one

register

74hC595 (2) pin 14

11 SrClK storage register clock arduino ClOCK pin, 74hC595 (2) pin 11

12 rClK shift register clock arduino latCh pin, 74hC595 (2) pin 12

Table 6-5. Connections for Second Shift Register

Pin Symbol Description Connect to

1 QB shift register output for digit 1 (D1) 4-digit 7-segment display pin D1

2 QC shift register output for digit 2 (D2) 4-digit 7-segment display pin D2

3 QD shift register output for digit 3 (D3) 4-digit 7-segment display pin D3

4 Qe shift register output for digit 4 (D4) 4-digit 7-segment display pin D4

8 gnD ground arduino gnD

10 SRCLR clear the register when lOW arduino 5V

11 SrClK storage register clock 74hC595 (1) pin 11

12 rClK shift register clock 74hC595 (1) pin 12

13 OE output enabled when ground arduino gnD

14 Ser serial input for next pin 74hC595 (1) pin 9

16 VCC 5V supply arduino 5V

74HC595 (1) and 74HC595 (2) refer to the first and second shift

register, respectively. The second shift register is connected to the 4-digit

7-segment display and to the first shift register, but not to the Arduino,

other than 5V and GND (see Table 6-5).

Chapter 6 4-Digit 7-Segment DiSplay

135

In Listing 6-4, the int digits[] = {10,11,12,13} instruction is

replaced with int digits[] = {28,26,22,14}, which are the decimal

representations of the bit data to turn on digits, D1, D2, D3, and D4. The

digit() function is changed by deleting instructions to turn digits off and

on and a new shiftOut() instruction (in bold) for the second shift register

is included (see Listing 6-5).

Listing 6-5. Second Shift Register Control of Digits

void digit(int d, int n, int DP)

{

 for (int i = 0; i<4; i++) digitalWrite(digits[i], 1);

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, MSBFIRST, digits[d]);

 shiftOut(dataPin, clockPin, MSBFIRST, numbers[n]+DP*128);

 digitalWrite(latchPin, HIGH);

 digitalWrite(digit[d], 0)

 delay(del);

}

 Summary
The 4-digit 7-segment LED display presented the time and temperature,

as an extension of the 1-digit 7-segment LED display. Shift registers were

introduced, with one shift register controlling the four digits with the

second shift register controlling the seven LED segments. Functions were

introduced to improve programming efficiency.

Chapter 6 4-Digit 7-Segment DiSplay

136

 Components List
• Arduino Uno and breadboard

• 4-digit 7-segment LED display

• Resistor: 8× 220Ω

• Shift register: 2× 74HC595

• Temperature sensor: LM35DZ

Chapter 6 4-Digit 7-Segment DiSplay

137© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_7

CHAPTER 7

8×8 Dot Matrix Display
The 8×8 dot matrix consists of 64 LEDs with 16 pins

corresponding to eight columns of anodes and eight rows of

cathodes. The label on one side of an 8×8 dot matrix display

usually indicates the side containing pins 1 to 8 (left to right) with the other

side containing pins 9 to 16 (right to left), as shown in Figure 7-1.

Figure 7-1. Pin numbering of 8x8 dot matrix display

Each 8×8 dot matrix has a specific column-row pin combination, such

as in Figure 7-2. For example, pin 1 of the dot matrix used in the chapter

controls LEDs in row 5. The orientation of the pin layout is determined

with a multimeter on the diode setting. Mark a left-hand end pin as pin 1

(there are only two possibilities). Connect the multimeter COM (black) to

pin 1 and the multimeter anode (red) to pin 16. If the LED in row 5

column 8 is turned on, then the 8×8 dot matrix has a common cathode;

otherwise, connect the multimeter anode to pin 1 and the cathode to pin 16.

If the LED in row 5 column 8 is turned on, then the 8×8 dot matrix has a

common anode.

138

The letter K (see Figure 7-3) illustrates displaying an alphanumeric

character with an 8×8 dot matrix. An 8-bit binary number represents the

LED states in a row, with a one corresponding to an LED being turned

on. The sixth row of the letter K is represented as B11011100, which has a

decimal value of 220. For an 8×8 dot matrix with a common cathode, an

LED is on when the column (anode) state is HIGH and the row (cathode)

state is LOW.

Figure 7-2. Pin layout of an 8×8 dot matrix

Chapter 7 8×8 Dot Matrix Display

139

A pattern is displayed on an 8×8 dot matrix by updating each LED state

in a row, with a short delay between updating each LED and then the next

row is updated, which is termed row scanning. The short delay of 200μs, for

example, is faster than the eye can detect and gives the impression that all

the LEDS are on simultaneously. A delay of 200μs is equivalent to a display

frequency of 5kHz and the human eye can detect flicker of up to 400Hz. For

the letter K, the LED in row 6 column 3 is off, as the binary representation

of row 6 is B11011100 and the value in the third column of the binary

representation is zero. The rows and columns are numbered from the top

left-hand corner (R1, C1), with rows parallel to the pins of the 8×8 dot matrix.

To display a character, the binary representation of the LED pattern

is replaced by the corresponding decimal value. For example, in the third

row of the letter A, LEDs in the first and fifth column are on and the binary

representation of the LED pattern, B10001, has decimal value 17 (see

Table 7-5 at the end of the chapter). The bitRead(binary number, c)

instruction reads the cth bit of the binary number, starting at the least

significant bit (rightmost), which is bit zero. If the bit is equal to one,

then to turn on the LED, Arduino pins controlling the corresponding

Figure 7-3. LED display of letter K

Chapter 7 8×8 Dot Matrix Display

140

column (anode) and row (cathode) of the 8×8 dot matrix display are set

to HIGH and LOW, respectively. Note that if the 8×8 dot matrix display

has a common anode, then an LED is turned on when the corresponding

cathode and anode of the LED are set to HIGH and LOW, respectively. A

time lag of one second is required for each letter to be displayed, which is

achieved with the while (millis() < start+1000) instruction with start

equal to the start time that the character is first displayed.

In Figure 7-4, connections to Arduino pins (see Table 7-1) controlling

rows of the 8×8 dot matrix are colored yellow and connections to pins

controlling columns in blue or orange, to aid interpretation of the

schematic. The 220Ω resistors are connected to each column pin (anode)

of the 8×8 dot matrix display, as the rows are scanned. Arduino pins A0, A1,

A2, and A3 are referenced as pins 14, 15, 16, and 17, respectively. The 8×8

dot matrix rows (R) and columns (C) are referenced in Figure 7-2.

Figure 7-4. 8×8 dot matrix display

Chapter 7 8×8 Dot Matrix Display

141

In Listing 7-1, to display the three letters: A, B, and C, the LED patterns

are defined in the matrix val[3][8], which has three rows, one for each letter,

and eight columns, one for each row of the 8×8 dot matrix display. In the

sketch, pin[] defines the 16 Arduino pins connected to the 8×8 dot matrix

display. In the C programming language, numbering of matrix elements

starts at zero, such that pin[1] refers to the second element of the pin[]

matrix. The term matrix, a two-dimensional array, includes the term vector,

which is a one-dimensional array. To aid consistency between the sketch and

the 8×8 dot matrix data sheet, the first element of pin[] is set to 19, Arduino

pin A5, to shift the other values by one element. For example, in Figure 7-4,

Arduino pin 13 is connected to pin 1 of the 8×8 dot matrix display, which

refers to row 5 of the 8×8 dot matrix display. Therefore, pin[1] is set equal to

Arduino pin 13 and the fifth element of the row[] matrix refers to pin[1].

Listing 7-1. Display Letters A, B, and C

 // Arduino display pins

int pin[] = {19,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2};

 // dot matrix display columns

int col[] = {pin[13],pin[3],pin[4],pin[10],pin[6],pin[11],pin[15],pin[16]};

 // dot matrix display rows

int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]};

byte val[3][8] = {4,10,17,17,31,17,17,0, // decimal representation of letter A

 15,17,17,15,17,17,15,0, // decimal representation of letter B

 14,17,1,1,1,17,14,0}; // decimal representation of letter C

unsigned long start;

bool pixel;

Table 7-1. Connections to 8×8 Dot Matrix Display

8×8 Dot Matrix Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8×8 dot matrix r5 r7 C2 C3 r8 C5 r6 r3 r1 C4 C6 r4 C1 r2 C7 C8

Arduino pin 13 12 9 8 11 7 10 17 16 6 5 15 4 14 3 2

Chapter 7 8×8 Dot Matrix Display

142

void setup()

{

 for (int i=1; i<18; i++) pinMode(pin[i], OUTPUT); // display pins as output

 for (int i=0;i<8;i++) digitalWrite(col[i], LOW); // set anodes LOW, turn off

 for (int i=0;i<8;i++) digitalWrite(row[i], HIGH); // set cathodes HIGH,

} // turn off

void loop()

{

 for (int n=0; n<3; n++) // display the letters A, B, C

 {

 start = millis(); // milliseconds elapsed

 while (millis() < start+1000) // display time for each letter

 for (int r=0; r<8; r++)

 {

 digitalWrite(row[r], LOW); // set cathodes to LOW for each row

 for (int c=0; c<8; c++)

 {

 pixel = bitRead(val[n][r], c); // read cth bit in rth row of nth letter

 if(pixel == 1) digitalWrite(col[c], HIGH); // set anode HIGH, LED on

 delayMicroseconds(200); // delay between LEDs in a row

 digitalWrite(col[c], LOW); // reset anode to LOW, LED off

 }

 digitalWrite(row[r], HIGH); // reset cathode to HIGH

 }

 }

}

A total of 16 Arduino pins are required to display patterns on the 8×8

dot matrix display, if shift registers are not used (see Figure 7-4). Just as

with the 4-digit 7-segment display (see Chapter 6), one shift register can

control the columns of the 8×8 dot matrix display with a second shift

register to control the rows of the 8×8 dot matrix display.

Chapter 7 8×8 Dot Matrix Display

143

Figure 7-5. 8×8 dot matrix display and shift register

 One Shift Register
Connection information between an Arduino pin and an 8×8 dot matrix

display pin, which was contained in the col[] matrix of Listing 7-1, is now

incorporated in the shift register connections (see Figure 7-5 and Table 7- 2).

Only the pin[] and row[] matrices are now required in Listing 7-2.

Chapter 7 8×8 Dot Matrix Display

144

Listing 7-2. Display Letters A, B, and C with Shift Register

 // Arduino display pins

int pin[] = {19,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2};

 // dot matrix display rows

int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]};

byte val[3][8] = {4,10,17,17,31,17,17,0, // decimal representation of letter A

 15,17,17,15,17,17,15,0, // decimal representation of letter B

 14,17,1,1,1,17,14,0}; // decimal representation of letter C

int dataPin = 2; // shift register DATA pin

int latchPin = 3; // shift register LATCH pin

int clockPin = 4; // shift register CLOCK pin

unsigned long start;

void setup()

{

 pinMode (dataPin, OUTPUT); // define shift register DATA pin as output

 pinMode (latchPin, OUTPUT); // define shift register LATCH pin as output

 pinMode (clockPin, OUTPUT); // define shift register CLOCK pin as output

 for (int i=1; i<17; i++) pinMode(pin[i], OUTPUT); // display pins as

 // output

 for (int i=0; i<8; i++) digitalWrite(row[i], HIGH); // set cathodes

} // HIGH, turn off

void loop()

{

 for (int n=0; n<3; n++) // display the letters A, B, C

 {

 start = millis(); // milliseconds elapsed

 while (millis()<start+1000) // display time for each letter

 for (int r=0; r<8; r++) // for each row of a letter

 {

 digitalWrite(latchPin,LOW);

 shiftOut(dataPin, clockPin, MSBFIRST,val[n][r]); // change display

 // pattern

Chapter 7 8×8 Dot Matrix Display

145

Table 7-2. Connections with 8×8 Dot Matrix and Shift Register

Pin Symbol Description Connect to

1 QB shift register output for column 2 8×8 dot matrix pin 3

2 QC shift register output for column 3 8×8 dot matrix pin 4

3 QD shift register output for column 4 8×8 dot matrix pin 10

4 Qe shift register output for column 5 8×8 dot matrix pin 6

5 QF shift register output for column 6 8×8 dot matrix pin 11

6 QG shift register output for column 7 8×8 dot matrix pin 15

7 Qh shift register output for column 8 8×8 dot matrix pin 16

8 GND ground arduino GND

9 Qh’ output if more than one register

10 SRCLR clear the register when loW arduino 5V

11 srClK storage register clock arduino pin 4 CloCK

12 rClK shift register clock arduino pin 3 latCh

13 OE output enabled when ground arduino GND

14 ser serial input for next pin arduino pin 2 Data

15 Qa shift register output for column 1 8×8 dot matrix pin 13

16 VCC 5V supply arduino 5V

 digitalWrite(latchPin,HIGH);

 digitalWrite(row[r], LOW); // set cathodes LOW, turn LED on

 delayMicroseconds(200); // delay between LEDs in a row

 digitalWrite(row[r], HIGH); // reset cathodes to HIGH, LED off

 }

 }

}

Chapter 7 8×8 Dot Matrix Display

146

Figure 7-6. 8×8 dot matrix display and two shift registers

 Two Shift Registers
A second 74HC595 shift register controls the rows of the 8×8 dot matrix

display, which reduces the number of required Arduino pins to three

(see Figure 7-6). Changes in connections to the first 74HC595 shift register,

when a second shift register is included, are given in Table 7-3.

Chapter 7 8×8 Dot Matrix Display

147

Table 7-3. Change in Connections of First Shift Register Given Second

Shift Register

Pin Symbol Description Connect to

9 Qh’ output if more than one

register

74hC595 (2) pin 14

11 srClK storage register clock arduino CloCK pin, 74hC595 (2) pin 11

12 rClK shift register clock arduino latCh pin, 74hC595 (2) pin 12

74HC595 (1) and 74HC595 (2) refer to the first and second shift

register, respectively. The second shift register is connected to the 4-digit

7-segment display and to the first shift register, but not to the Arduino

other than 5V and GND (see Table 7-4).

Table 7-4. Connections with 8×8 Dot Matrix and Shift Register

Pin Symbol Description Connect to

1 QB shift register output for row 2 8×8 dot matrix pin 14

2 QC shift register output for row 3 8×8 dot matrix pin 8

3 QD shift register output for row 4 8×8 dot matrix pin 12

4 Qe shift register output for row 5 8×8 dot matrix pin 1

5 QF shift register output for row 6 8×8 dot matrix pin 7

6 QG shift register output for row 7 8×8 dot matrix pin 2

7 Qh shift register output for row 8 8×8 dot matrix pin 5

8 GND ground arduino GND

9 Qh’ output if more than one register

10 SRCLR clear the register when loW arduino 5V

(continued)

Chapter 7 8×8 Dot Matrix Display

148

In Listing 7-2, references to pin[] and row[] are not required, so the

instructions in Listing 7-3 are deleted from Listing 7-2.

Listing 7-3. Deleted Instructions from Listing 7-2

int pin[] = {19,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2}

int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]}

for (int i=1; i<17; i++) pinMode(pin[i], OUTPUT)

for (int i=0; i<8; i++) digitalWrite(row[i], HIGH)

digitalWrite(row[r], LOW)

delayMicroseconds(200)

digitalWrite(row[r], HIGH)

The shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction

is added, before the shiftOut(dataPin, clockPin, MSBFIRST,val[n][r])

instruction.

Pin Symbol Description Connect to

11 srClK storage register clock 74hC595 (1) pin 11

12 rClK shift register clock 74hC595 (1) pin 12

13 OE output enabled when ground arduino GND

14 ser serial input for next pin 74hC595 (1) pin 9

15 Qa shift register output for row 1 8×8 dot matrix pin 9

16 VCC 5V supply arduino 5V

Table 7-4. (continued)

Chapter 7 8×8 Dot Matrix Display

149

The shiftOut() instruction of Listing 7-2 loads row information into

the first shift register, the added shiftOut() instruction now shifts the row

information from the first shift register to the second shift register and the

column information is then loaded into the first shift register.

The shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction

controls the rows of the 8×8 dot matrix display. Row r is turned on by

setting the corresponding cathode to LOW when the shift register loads

the binary representation for the row. For example, to turn on the fifth row,

the binary number B11101111 is loaded into the shift register. However,

it is easier when coding to load the binary value B00010000, which is the

“inverse” of B11101111, and then change bits from one to zero and from

one to zero with the symbol ~. The symbol << moves a bit with value one to

position r with the term (1<<r).

In summary, the shiftOut(dataPin, clockPin, MSBFIRST,

~(1<<r)) instruction generates the inverse of 2r in binary and loads the

value, with the most significant bit first, into the shift register.

With two shift registers, changing the shiftOut(dataPin, clockPin,

MSBFIRST, ~(1<<r)) instruction can transform characters. A reflection,

top to bottom, is obtained by changing MSBFIRST to LSBFIRST.

Characters can be repositioned by adding the loop for (int t=0; t<8;

t++) before start = millis() in the updated Listing 7-2 and changing the

shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction to

shiftOut(dataPin, clockPin, LSBFIRST, ~(1<<r)) reflection top to

bottom

or shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r+t)) step-shift down

or shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r-t)) step-shift up

with the if(r-t+1>0) instruction included before the

digitalWrite(latchPin,LOW) instruction.

Chapter 7 8×8 Dot Matrix Display

150

Replacing MSBFIRST with LSBFIRST in the shiftOut(dataPin,

clockPin, MSBFIRST,val[n][r]) instruction reflects a character left to

right, when either one or two shift registers are used.

 Scrolling Text
In Listings 7-1, 7-2, and 7-3, a row is activated and then the column LEDs,

within the row, are turned on or off, which is row scanning. A 220Ω resistor

in series with each column of the 8×8 dot matrix display restricts the current

to control the LED brightness, as with row scanning only one LED in a

column is on at any time. To display a scrolling message with the 8×8 dot

matrix display, the characters must be shifted from right to left rather than

shifted up or down. Therefore, columns, rather than rows, are activated and

the LEDs, within a column, are turned on or off, which is column scanning.

The 220Ω resistors are now connected in series with each row of the 8×8

dot matrix display (see Figure 7-7). When shifting characters with column

scanning, the shiftOut(dataPin, clockPin, MSBFIRST, (1<<7+c-t))

instruction does not include the symbol ~, as discussed in the previous

paragraph, as a column is activated by setting the anode to HIGH, in contrast

to row scanning when the cathode was set to LOW.

Chapter 7 8×8 Dot Matrix Display

151

Figure 7-7. 8×8 dot matrix display with column scanning

Listing 7-4 displays a message on the 8×8 dot matrix display with the

characters moving from right to left and the message entered into the serial

monitor buffer with the Serial.available()>0 instruction, as described

in Chapter 4. The Serial.read() instruction reduces the buffer by one

character at a time.

Decimal representations of the uppercase and lowercase characters

are loaded into a data file, rather than the main sketch to aid interpretation

of the main sketch.

Chapter 7 8×8 Dot Matrix Display

152

To create a data file in the Arduino IDE, select the triangle below the

serial monitor button on the right-hand side of the IDE. Choose New Tab

from the drop-down menu. Enter the title: letters.h. The New Tab, now

titled letters.h, is edited to include the matrices letters[], containing

the alphanumeric characters, and val[63][8], which includes the

character decimal representations (see Table 7-5). The character decimal

representations in the val[63][8] matrix have a row orientation, which

is changed to a column orientation with the bitRead() instruction and

results stored in the cols[] matrix.

When an additional file is included in a sketch, the #include

"filename.h" instruction uses quotation marks rather than the angle

brackets when a library is included in a sketch, as in the #include

"letters.h" instruction.

Listing 7-4. Scrolling Text on 8×8 Dot Matrix Display

#include "letters.h" // include letter data

int dataPin = 2; // shift register DATA pin

int latchPin = 3; // shift register LATCH pin

int clockPin = 4; // shift register CLOCK pin

byte cols[8];

char data;

int n;

unsigned long start;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode (dataPin, OUTPUT); // define shift register DATA pin as output

 pinMode (latchPin, OUTPUT); // define shift register LATCH pin as output

 pinMode (clockPin, OUTPUT); // define shift register CLOCK pin as output

}

Chapter 7 8×8 Dot Matrix Display

153

void loop()

{

 while (Serial.available()>0) // message read from Serial Monitor

 {

 data=Serial.read(); // message read one letter at a time

 Serial.print(data);

 // decimal representation of letter

 for (int lett=0; lett<63 ;lett++) if(data == letters[lett]) n=lett;

 for (int i=0; i<8;i++) // convert row to column orientation

 {

 cols[i]=0; // change to column orientation

 for (int j=0; j<8; j++) cols[i]= cols[i] + (bitRead(val[n][j],i)<<j);

 }

 for (int t=0;t<12;t++) // move character through 12 shifts

 { // across the 8×8 dot matrix display

 start = millis(); // elapsed time (ms)

 while (millis() - start <60) // 60 ms to display character

 for (int c=0; c<8; c++) // display with column scanning

 {

 if(8+c-t>0)

 {

 digitalWrite(latchPin,LOW); // change display pattern

 shiftOut(dataPin, clockPin, MSBFIRST,~cols[c]); // shift by one

 // column

 shiftOut(dataPin, clockPin, MSBFIRST, (1<<7+c-t));

 digitalWrite(latchPin,HIGH);

 }

 }

 }

 }

}

Matrices with alphanumeric characters and their decimal representations

are contained in the letters.h file (see Listing 7-5).

Chapter 7 8×8 Dot Matrix Display

154

Listing 7-5. Loading Character Data

char letters[] =

{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q',

'R','S','T','U','V','W','X','Y','Z',

'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q',

'r','s','t','u','v','w','x','y','z',

'0','1','2','3','4','5','6','7','8','9',' '};

byte val[63][8] ={4,10,17,17,31,17,17,0 ... 0,0,0,0,0,0,0,0};

Note that the matrix val[63][8] consists of columns 1 and 3 of

Table 7-5 for alphabetic characters, and column 1 of Table 7-6 for number

characters.

Table 7-5. Decimal Representations of Alphabetic Characters

Decimal Representation Character Decimal Representation Character

4,10,17,17,31,17,17,0, // a 0,0,6,8,14,9,14,0, // a

15,17,17,15,17,17,15,0, // B 1,1,13,19,17,19,13,0, // b

14,17,1,1,1,17,14,0, // C 0,0,6,9,1,9,6,0, // c

7,9,17,17,17,9,7,0, // D 16,16,22,25,17,25,22,0, // d

31,1,1,15,1,1,31,0, // e 0,0,6,9,7,1,14,0, // e

31,1,1,15,1,1,1,0, // F 4,10,2,7,2,2,2,0, // f

14,17,1,13,17,25,22,0, // G 0,0,6,9,9,6,8,7, // g

17,17,17,31,17,17,17,0, // h 1,1,13,19,17,17,17,0, // h

7,2,2,2,2,2,7,0, // i 1,0,1,1,1,1,2,0, // i

28,8,8,8,8,9,6,0, // J 4,0,6,4,4,4,4,3, // j

17,9,5,3,5,9,17,0, // K 1,1,9,5,3,5,9,0, // k

(continued)

Chapter 7 8×8 Dot Matrix Display

155

Decimal Representation Character Decimal Representation Character

1,1,1,1,1,1,15,0, // l 3,2,2,2,2,2,2,0, // l

17,27,21,21,17,17,17,0, // M 0,0,21,43,41,41,41,0, // m

17,19,19,21,25,25,17,0, // N 0,0,13,19,17,17,17,0, // n

14,17,17,17,17,17,14,0, // o 0,0,6,9,9,9,6,0, // o

15,17,17,15,1,1,1,0, // p 0,0,13,19,19,13,1,1, // p

14,17,17,17,21,9,22,0, // Q 0,0,22,25,25,22,16,16, // q

15,17,17,15,5,9,17,0, // r 0,0,13,19,1,1,1,0, // r

14,17,1,14,16,17,14,0, // s 0,0,14,1,6,8,7,0, // s

31,4,4,4,4,4,4,0, // t 0,2,7,2,2,2,4,0, // t

17,17,17,17,17,17,14,0, // U 0,0,17,17,17,25,22,0, // u

17,17,17,17,10,10,4,0, // V 0,0,17,17,17,10,4,0, // v

17,17,17,21,21,27,17,0, // W 0,0,17,17,21,21,10,0, // w

17,17,10,4,10,17,17,0, // x 0,0,17,10,4,10,17,0, // x

17,17,17,10,4,4,4,0, // y 0,0,9,9,9,14,8,6, // y

31,16,8,4,2,1,31,0, // Z 0,0,15,8,6,1,15,0, // z

Table 7-5. (continued)

Chapter 7 8×8 Dot Matrix Display

156

Table 7-6. Decimal Representations of Numeric Characters

Decimal Representation Number

14,17,25,21,19,17,14,0, // 0

4,6,4,4,4,4,14,0, // 1

14,17,16,12,2,1,31,0, // 2

14,17,16,12,16,17,14,0, // 3

8,12,10,9,31,8,8,0, // 4

31,1,1,14,16,17,14,0, // 5

12,2,1,15,17,17,14,0, // 6

31,16,8,4,2,2,2,0, // 7

14,17,17,14,17,17,14,0, // 8

14,17,17,30,16,8,6,0, // 9

0,0,0,0,0,0,0,0}; // space

 Summary
Alpha-numeric characters were displayed on the 8×8 dot matrix display,

with LEDs activated in rows (row scanning). Message scrolling required

LEDs to be activated in columns (column scanning). Two shift registers

were included to control the row and column LEDs.

 Components List
• Arduino Uno and breadboard

• 8×8 dot matrix display

• Resistors: 8× 220Ω

• Shift registers: 2× 74HC595

Chapter 7 8×8 Dot Matrix Display

157© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_8

CHAPTER 8

Servo and Stepper
Motors
Servo and stepper motors are used in a variety of applications, such as

robotics, tracking systems, and positioning devices. Servo motors are used

for fast movement to a given angle, while the stepper motors move at a

controlled speed in either continuous rotation or to a specific position. The

servo motor has a feedback mechanism to determine location in contrast to

the stepper motor that is moved incrementally. Servo motors are included in

projects in Chapters 13, 22, and 24 with the stepper motor used in Chapter 9.

 Servo Motors
Servo motors, or servomechanism, are used to move

an armature by a fixed angle. A servo motor is precisely

controlled by the width of a pulsed signal corresponding to

the angle that the servo motor is rotated. The SG90 servo

rotates to angles between 0° and 180° given signals with pulse widths

between 0.5ms and 2.5ms, at intervals of 20ms between pulses. The pulsed

signal is similar to pulse width modulation, described in Chapter 2.

The servo motor has three connections normally colored red for

power, brown or black for ground and orange or white for signal (see

Figure 8-1). A servo motor runs at 5V and can use hundreds of milliamps

during a few milliseconds that the rotor is turning, which is more than

158

the 40mA maximum output of the Arduino pins. Therefore, a servo motor

requires an external power supply, such as a 9V battery. In a circuit with

two power supplies, the 9V battery and the Arduino 5V output, the grounds

of both supplies must be connected together.

An L4940V5 voltage regulator reduces the voltage from

9V to 5V and the energy converted to heat is lost through

the metal surface at the rear of the voltage regulator.

Decoupling capacitors, on both sides of the voltage

regulator, smooth both the voltage supply and the voltage demand.

Figure 8-1. Servo motor

Chapter 8 Servo and Stepper MotorS

159

If electrolytic capacitors are used as decoupling

capacitors, then the negative terminal of the capacitor,

indicated by a silver strip on the side of the capacitor,

is connected to ground, as the capacitors are polarized. The schematic

in Figure 8-1 uses a L4940V5 voltage regulator and the datasheet

recommends a 0.1μF capacitor, which is 100nF, on the 9V (supply) side and

a 22μF capacitor on the 5V (demand) side (see Table 8-1). The schematic

in Figure 8-1 shows the decoupling capacitors either side of the voltage

regulator to make the layout clearer. In practice, ground pins of the voltage

regulator and decoupling capacitors are aligned to reduce wiring and

space (see Figure 8-2). Note that for the negative pins to align with the

central ground pin of the voltage regulator, the decoupling capacitors face

opposite directions.

In general, motors requiring high current should not be powered

directly by the Arduino, but by an external power source. The maximum

current from Arduino Uno output pins is 40mA, with a maximum current

from all output pins of 200mA. The Arduino Uno 5V pin is not connected

through the microcontroller, so 400mA can be supplied by the 5V pin when

the Arduino is powered by USB, given the limit of 500mA through the USB

interface. The 3.3V pin can supply 150mA, which is the limit of the Arduino

Uno voltage regulator.

Chapter 8 Servo and Stepper MotorS

160

The Servo library by Michael Margolis is built-in to the Arduino IDE, so

does not need to be uploaded. The Servo library utilizes Timer1, which uses

Arduino pins 9 and 10, so these pins cannot be used in a sketch requiring

pulse width modulation. The sketch (see Listing 8-1) rotates a servo motor to

angle x° with the servo.write(x) instruction. Some servo motors can stick

at 0° or at 180°, so a range of angles from 5° to 175° may be more robust.

Listing 8-1. Servo motor

#include <Servo.h> // include Servo library

Servo servo; // associate servo with Servo library

int servoPin = 11; // servo motor pin

void setup()

{

 servo.attach(servoPin); // define servo motor pin to Servo library

}

Table 8-1. Connections for Servo Motor

Component Connect to and to

Servo VCC L4940v5 demand Capacitor 22μF positive

Servo GND arduino Gnd

Servo signal arduino pin 11

9V battery positive L4940v5 supply Capacitor 0.1μF positive

9V battery negative arduino Gnd

Potentiometer VCC arduino 5v

Potentiometer signal arduino pin a1

Potentiometer GND arduino Gnd

Capacitor 0.1μF negative arduino Gnd

Capacitor 22μF negative arduino Gnd

Chapter 8 Servo and Stepper MotorS

161

void loop()

{

 for (int i=0; i<19; i++)

 {

 servo.write(10 * i); // rotate to angles 0, 10, 20 ... 180

 delay(500); // delay 500ms between movements

 }

 for (int i=8; i>=0; i--)

 {

 servo.write(20 * i); // rotate to angles 160, 140 ... 0

 delay(500); // delay 500ms between movements

 }

}

 Servo Motor and a Potentiometer
A potentiometer is used to rotate the servo motor to a specific angle, with

the potentiometer output voltage converted to a digital reading by the

Arduino analog-to-digital converter (ADC) (see Figure 8-2). The map()

instruction relates the digital reading from 0 to 1023 to the corresponding

angle between 5° to 175°. The direction of the servo motor rotation can

be changed, with respect to the direction of the potentiometer dial,

by the swapping the voltage supply and ground connections of the

potentiometer. Listing 8-2 shows the updated void loop() function of

Listing 8-1, with the sketch updated by also including definition of the

potentiometer pin, int potPin = A1, and declaring the integer variables

reading and angle.

Chapter 8 Servo and Stepper MotorS

162

Listing 8-2. Updated void loop()

void loop()

{

 reading = analogRead(potPin); // potentiometer voltage

 angle = map(reading, 0, 1023, 5, 175); // map voltage to angle

 servo.write(angle); // move servo to angle

 delay(10); // delay 10ms

}

Figure 8-2. Servo motor with potentiometer

Chapter 8 Servo and Stepper MotorS

163

The delay of 10ms after the servo.write() instruction allows the servo

motor time to rotate to required position before the next input from the

potentiometer.

A light source can be detected by attaching a light dependent resistor

(LDR), described in Chapter 3, to the rotor arm of the servo motor and

scanning through 180°, with the LDR measuring the light intensity at each

point on the semicircle (see Listing 8-3). Figure 8-3 shows the connections

of the LDR to an Arduino, based on Figure 8-2, with the light dependent

resistor attached to the rotor arm on top of the servo motor and not a

breadboard. An application of a light sourcing sensor is the orientation of a

solar panel to maximize power generation.

Listing 8-3. Servo Motor with LDR

#include <Servo.h> // include servo library

Servo servo; // associate servo with Servo library

int servoPin = 11; // servo motor pin

int LDRpin = A0; // LDR on analog pin A0

int maxLDR = 0; // maximum LDR reading

int reading, maxAngle;

Figure 8-3. Connection for LDR

Chapter 8 Servo and Stepper MotorS

164

void setup()

{

 servo.attach(servoPin); // define servo motor pin to servo library

 Serial.begin(9600); // define Serial output baud rate

}

void loop()

{ // scan from angle 0° to 180°

 for (int angle=0; angle<190; angle = angle + 10)

 {

 servo.write(angle); // rotate servo motor

 reading = analogRead(LDRpin); // read light dependent resistor

 if (reading>maxLDR) // compare reading to maximum

 {

 maxLDR = reading; // update maximum light reading

 maxAngle = angle; // update angle of max light reading

 }

 delay(50); // delay 50ms between LDR readings

 }

 Serial.print("Light source at "); // print text to Serial Monitor

 Serial.print(maxAngle); // print angle of incident light

 Serial.println(" degrees"); // print " degrees" to Serial Monitor

 servo.write(maxAngle); // rotate servo to point at the light source

 delay(1000); // delay while pointing at light source

 maxLDR=0; // reset maximum light reading

 servo.write(0); // rotate to 0°

 delay(500); // delay 500ms

}

Chapter 8 Servo and Stepper MotorS

165

 Stepper Motor
A stepper motor is also precisely controllable, but unlike a

servo motor, a stepper motor can revolve continuously and

the rotation speed can be controlled. For a stepper motor,

the number of steps that the motor has to move is defined

rather than the angle of movement. The 28BYJ-48 stepper motor is used in

this chapter (see Figure 8-4).

A unipolar stepper motor consists of two pairs of coils, with a common

center connected to 5V, and a coil is activated by connecting the coil to

ground. The coil connecting wires are generally colored blue and yellow

for one coil pair, pink and orange for the other coil pair, and red for the

common center. The stepper motor connecting board includes a ULN2003

chip, to control the coil activation sequence, with four LEDs: A, B, C, and

D, to indicate when the blue, pink, yellow, and orange coils are activated.

Chapter 8 Servo and Stepper MotorS

166

To control a stepper motor, there are three coil activation sequences:

wave driving, full-step and half-step. Wave driving activates each coil

individually: blue, pink, yellow then orange, and the internal motor shaft

turns by 1/32 of a revolution, as each of the four coils is associated with

eight internal motor positions. Full-step activates two coils simultaneously:

blue and pink, pink and yellow, yellow, and orange, and then orange and

blue, which provides more torque to the stepper motor. The internal motor

shaft again turns by 1/32 of a revolution. Both wave driving and full-step

have four coil activation stages. Given the stepper motor’s internal gearing

Figure 8-4. Stepper motor

Chapter 8 Servo and Stepper MotorS

167

of 63.68:1, the internal motor shaft rotates 2038 = 4 (coil activation stages) × 8

(internal motor positions) × 63.68 (gearing) times with wave driving or full-

step for each rotation of the stepper motor rotor.

Half-step alternately activates one or two coils: blue, blue and pink, pink,

pink and yellow, yellow, and so forth. Half-step provides intermediate torque

compared to wave driving and full-step and the internal motor shaft turns by

1/64 of a revolution on each of eight coil activation stages. With half-step, the

internal rotor shaft rotates 4076 = 8 × 8 × 63.68 times for each rotation of the

stepper motor rotor. Wave drive and full step require at least 2ms between

steps with at least 1ms between steps for half-step.

As with a servo motor, an external power supply is recommended for

the stepper motor and the grounds of the external supply and the Arduino

must be connected. The jumper next to the DC 5-12V power supply on the

stepper motor connecting board can be used to turn on or off the stepper

motor (see Table 8-2).

Table 8-2. Connections for Stepper Motor

Component Connect to and to

Stepper blue wire ULn2003 In1 arduino pin 12

Stepper pink wire ULn2003 In2 arduino pin 11

Stepper yellow wire ULn2003 In3 arduino pin 10

Stepper orange wire ULn2003 In4 arduino pin 9

9V battery positive ULn2003 positive

9V battery negative ULn2003 negative arduino Gnd

Potentiometer VCC arduino 5v

Potentiometer signal arduino pin a1

Potentiometer GND arduino Gnd

LED long leg 220Ω resistor arduino pin 6

LED short leg arduino Gnd

Chapter 8 Servo and Stepper MotorS

168

The Stepper library originally by Tom Igoe is built-in to the Arduino

IDE, so does not need to be uploaded. The Stepper library supports full-

step. The order of pins on the stepper motor connecting board is IN1,

IN2, IN3, and IN4, which are the connections for the blue and yellow coil

pair and the pink and orange coil pair. In contrast, the ULN2003 stepper

motor driver board configures the pins in coil activation order: blue, pink,

yellow, and orange. The different coil connection and activation orders

are defined in Listing 8-4. This sketch illustrates rotating the stepper

motor half a revolution, then reversing the direction and increasing the

motor speed. The stepper motor rotates at speed S rpm for N steps with

the stepper.setSpeed(S) and stepper.step(N) instructions, where S is

the number of revolutions per minute (rpm) and N is the number of steps,

which is negative when the motor direction is reversed. For example, the

stepper.step(50) and stepper.step(-50) instructions move the stepper

motor 50 steps clockwise and 50 steps counterclockwise, respectively.

Listing 8-4. Stepper Motor with Stepper Library

#include <Stepper.h> // include Stepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003

int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

int steps = 2038; // steps per revolution

 // associate stepper with Stepper library and coil pairing order

Stepper stepper(steps, blue, yellow, pink, orange);

int direct = 1; // direction of rotation

int revTime;

float secs, revs;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 Serial.println("rpm time(s) revs"); // print header to Serial Monitor

}

Chapter 8 Servo and Stepper MotorS

169

void loop()

{

 for (int i = 2; i<19; i=i+2) // motor speed from 2 to 18 rpm

 {

 stepper.setSpeed(i); // set motor speed (rpm)

 direct = -direct; // change direction of rotation

 revTime = millis(); // set start time (ms)

 stepper.step(direct * steps/2); // move number of steps

 revTime = millis()-revTime; // time for half revolution (ms)

 delay(500); // delay 0.5s

 secs = revTime/1000.0; // time (s) to move steps

 revs = i*secs/60.0; // check number of revolutions

 Serial.print(i);Serial.print("\t"); // print speed on Serial Monitor

 Serial.print(secs);Serial.print("\t"); // print time

 Serial.println(revs,3); // print number of revolutions

 }

}

The Accelstepper library, by Mike McCauley, is recommended for

sketches with a stepper motor as it has more functionality than the Stepper

library, such as control of the stepper motor acceleration rate and use of

both half-step and full-step. The Accelstepper library is installed within the

Arduino IDE, using installation method 3, as outlined in Chapter 3. The

stepper motor’s initial speed, acceleration rate and maximum speed can

be set along with the target position.

The Accelstepper library requires the number of coil activation stages to

be defined when initializing the stepper motor, which is four for full-step and

eight for half-step. Listing 8-5 rotates the stepper motor for one revolution

and then reverses the direction to demonstrate control of the acceleration

rate. A rotation is defined as moving from position +P to position 0 and then

to position –P, where P is half the number of steps in a revolution, which

is 1019 for full-step and 2038 for half-step. The maximum rotor speeds for

full-step and half-step are set at 700 and 1400 steps per second, respectively,

which results in the same rpm, given that half-step has double the number

Chapter 8 Servo and Stepper MotorS

170

of steps per revolution than full-step. Note that motor speed with the

AccelStepper library is measured in steps/s, but in rpm with the Stepper

library. To convert rpm to motor speed, in steps/s, use the formula: rpm ×

steps = 60 × motor speed, where steps is the number of steps per revolution.

In the example, an acceleration rate of 600 steps/s2 maximized the time of

constant acceleration/deceleration with full-step, but with half-step, the

required acceleration rate was 1200 steps/s2, given double the number of

steps per revolution.

Listing 8-5. Stepper Motor with Accelstepper Library

#include <AccelStepper.h> // include Accelstepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003

int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

int fullstep = 4; // number of coil activation stages

int halfstep = 8; // with full-step and half-step

int coil = fullstep; // set to full-step or to half-step

 // associate stepper with AccelStepper library and coil pairing order

AccelStepper stepper(coil, blue, yellow, pink, orange);

int steps = (coil/4)*2038; // number of steps per revolution

long last = 0;

int lag = 500; // time (ms) interval for display

int direct = 1; // direction of rotation

float rpm, speed, oldspeed, accel;

int nsteps;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 stepper.setMaxSpeed((coil/4)*700); // max speed 700 or 1400 steps/s

 stepper.setAcceleration(600); // acceleration rate (steps/s2)

 Serial.println("steps rpm accel"); // print header to Serial Monitor

}

Chapter 8 Servo and Stepper MotorS

171

void loop()

{

 stepper.moveTo(direct*steps/2); // move to position ±1019 or ±2038

 // change direction of rotation

 if(stepper.distanceToGo()==0) direct = -direct;

 if(millis()>last + lag) // lag time elapsed since last print

 {

 speed = stepper.speed(); // current motor speed (steps/s)

 nsteps = speed*lag/pow(10,3); // steps/s taken during lag time

 Serial.print(nsteps);Serial.print("\t"); // display number

 // of steps and a tab

 rpm = 60.0*speed/steps; // derive rpm

 Serial.print(rpm,2);Serial.print("\t"); // display rpm to 2DP

 accel = (speed - oldspeed)*1000.0/lag; // derived acceleration

 // rate (steps/s2)

 Serial.println(accel,0); // display acceleration

 oldspeed = speed; // update speed value

 last = millis(); // update last print time

 }

 stepper.run(); // move to new position

}

In Listing 8-5, the stepper.run() instruction moves the motor to a

new position, but if the motor has to move at a different speed then the

stepper.runSpeed() instruction is required. The following are other

Accelstepper instructions.

stepper.currentPosition() determine the current position

stepper.move(N) move N steps, with N positive or negative

stepper.moveTo(N) move to position N

stepper.distanceToGo() determine number of steps to target position

stepper.runToPosition() update motor to move to target position

stepper.setSpeed(N) set constant speed (steps/s)

stepper.runSpeed() update motor to run at new speed (steps/s)

Chapter 8 Servo and Stepper MotorS

172

To move the stepper motor for a fixed time, the stepper.setSpeed()

and delay() instructions are required. To move the stepper motor a

number of steps requires the stepper.move() or stepper.moveTo() and

the stepper.run() instructions. Listing 8-6 provides the replacement void

setup() and void loop() functions of Listing 8-5 to move the stepper with

an initial speed and acceleration to a given position and back again.

Listing 8-6. Move Stepper Motor

void setup()

{

 stepper.setSpeed(200);

 stepper.setAcceleration(600);

 stepper.moveTo(512);

}

void loop()

{

 if (stepper.distanceToGo() == 0)

stepper.moveTo (-stepper.currentPosition());

 stepper.run();

}

 Stepper Motor and a Potentiometer
A potentiometer can be used to rotate the stepper motor at a specific

speed, while the brightness of an LED is also changed (see Figure 8-5,

Table 8-2, and Listing 8-7). The potentiometer output voltage is converted

by the Arduino ADC to a digital value, which is mapped to the motor

speed. The internal motor shaft is moved 256 steps to allow almost

continuous response to changes in the potentiometer output voltage,

rather than responding at the end of a revolution. Every 2038 steps,

which is a complete revolution of the stepper motor rotor with full-step,

the revolution time, rpm, and stepper motor speed are displayed on the

Chapter 8 Servo and Stepper MotorS

173

serial monitor. The minimum and maximum stepper motor rotor speeds,

as defined in rpm, are defined in the sketch and then converted to rotor

speeds in terms of steps/s using the map() function.

Figure 8-5. Stepper motor and potentiometer

Listing 8-7. Stepper Motor with Potentiometer

#include <AccelStepper.h> // include Accelstepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003

int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

Chapter 8 Servo and Stepper MotorS

174

int fullstep = 4; // number of coil activation stages

int coil = fullstep; // set number of coil activation stages

 // associate stepper with AccelStepper library and coil pairing order

AccelStepper stepper(coil, blue, yellow, pink, orange);

int steps = (coil/4)*2038; // number of steps per revolution

int potPin = A1; // potentiometer pin

int LEDpin = 6; // LED on PWM pin

unsigned long revTime = 0;

float rpmMin = 10.0;

float rpmMax = 21.0; // minimum and maximum speed in rpm

float speedMin = rpmMin*steps/60.0; // and in steps/s

float speedMax = rpmMax*steps/60.0;

float rpm;

int reading, speed, bright;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 stepper.setMaxSpeed(1500); // set maximum speed (step/s)

}

void loop()

{

 reading = analogRead(potPin); // potentiometer voltage

 // map voltage to speed (step/s)

 speed = map(reading, 0, 1023, speedMin, speedMax);

 bright = map(reading, 0, 1023, 0, 255); // map voltage to LED

 // brightness

 analogWrite(LEDpin, bright); // set LED brightness with PWM

 stepper.move(256); // move the internal motor 256 steps

 stepper.setSpeed(speed); // set the internal motor speed

 stepper.runSpeed(); // run the stepper motor

 if((stepper.currentPosition() % steps)==0) // on each complete

 // revolution

Chapter 8 Servo and Stepper MotorS

175

 {

 revTime = millis()-revTime; // time (ms) for one revolution

 rpm = stepper.speed()*60.0/steps; // stepper motor rpm

 Serial.print(revTime); // print revolution time

 Serial.print(" ms\t\t"); // print "ms " and two tabs

 Serial.print(rpm, 2); // print rpm with 2DP

 Serial.print(" rpm\t"); // print "rpm" and a tab

 Serial.print(stepper.speed(),0); // print motor speed with 0DP

 Serial.println(" steps/s"); // print " steps/s" and a new line

 delay(2); // delay 2ms to prevent duplicates

 revTime=millis(); // update revolution start time

 }

}

 Stepper Motor Gear Ratio
The often quoted gear ratio of 64:1 for the 28BYJ-48 stepper motor

approximates the actual ratio of 63.684:1. The internal gearing consists of

five cogs with gear ratios: motor shaft 31:1, internal A 26:10, internal B 22:9,

internal C 32:11, and rotor shaft 1:9. The overall gear ratio is the product of

the individual gear ratios. The number of steps per revolution with full-

step or with half-step is the overall gear ratio multiplied by the number of

coil activation stages (4 or 8) and the number of internal motor positions

(8), which is 2038 and 4076 steps, respectively.

There are many stepper motors available and the 28BYJ-48 stepper

motor is an example of a unipolar stepper motor, while the NEMA 17 is an

example of a bipolar stepper motor. For unipolar stepper motors, the coils

are activated the same way with the common center always negative, so at

most only half of the coils can be activated at any one time. With bipolar

stepper motors, an H-bridge circuit changes the direction of current at

each coil activation stage, so that all coils can be activated at one time.

Bipolar stepper motors have more torque than unipolar stepper motors,

due to the higher number of activated coils.

Chapter 8 Servo and Stepper MotorS

176

 Summary
The angle of rotation of a servo motor was controlled by a potentiometer

and by a light dependent resistor to detect a light source. The speed

and target position of a stepper motor was also controlled with a

potentiometer. The map() function was used to convert the potentiometer

output to motor speed or motor target position.

 Components List
• Arduino Uno and breadboard

• Servo motor: SG90

• Stepper motor: 28BYJ-48

• Stepper motor connecting board with ULN2003 chip

• Battery: 9V

• Voltage regulator: L4940V5

• Capacitors: 0.1μF and 22μF

• Potentiometer: 10kΩ

• LED

• Resistor: 220Ω

Chapter 8 Servo and Stepper MotorS

177© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_9

CHAPTER 9

Rotary Encoder
A rotary encoder is used to finely control an output, such as

the rotation of a motor, the cursor position on a screen or

simply the brightness of an LED. Rotary encoders are used

as control switches, such as on audio equipment. The rotary

encoder has 20 positions, but the rotor can be continuously

rotated either forward or backward to increase or decrease a control

variable.

There are three pins inside a rotary encoder: a common pin and two

pins, termed A and B, which are offset. As the rotor turns, pins A and B

each make contact with the common pin or are disconnected with the

common pin, which generates square waves of the same frequency, but

a quarter of a cycle, or 90°, out of phase (see Figure 9-1). The number of

pulses of the square waves indicates the extent of the rotation, which can

be measured on either pin A or pin B.

The square wave positions on pins A and B determine the direction

of rotation. If the rotation is clockwise, then pin A makes contact with the

common pin before pin B, so the square wave on pin B will be HIGH at

the falling edge of the square wave on pin A (see Figure 9-1) with the black

vertical line indicating the falling edge of pin A. In contrast, if the square

wave on pin B is LOW at the falling edge of the square wave of pin A, then

the rotation is counterclockwise. The rising edge of the square wave on pin

A can also be used as the time reference point, in which case a LOW value

of the square wave on pin B indicates a clockwise rotation.

178

The sequence of pin B and pin A states at a falling edge of the square

wave on pin B with clockwise rotation of the rotary encoder is (LOW,

LOW), (LOW, HIGH), (HIGH, HIGH) and (HIGH, LOW) or 00, 01, 11 and

10. Such a sequence is Gray code, with two successive values differing

by one bit. An increasing binary sequence 00, 01, 10 and 11 can also be

generated by two square waves (LOW, LOW), (LOW, HIGH), (HIGH, LOW)

and (HIGH, HIGH), but the two waves are in phase and the frequency of

the second wave is double that of the first wave (see Figure 9-2).

Figure 9-1. Rotary encoder square wave

Figure 9-2. Square waves for binary counting

Chapter 9 rotary enCoder

179

The switch on the rotary encoder, activated by pressing down on the

stem of the rotary encoder, can be used to change the state of a binary

variable. In the sketch (see Listing 9-1), pressing the switch turns off an

LED. Pins A and B of the rotary encoder are referenced as the clock (CLK)

and data (DT) pins. The switch (SW) pin of the rotary encoder uses an

internal pull-up resistor, attached to each input pin of the Arduino Uno,

rather than including a separate resistor in the circuit. An internal pull-

up resistor is activated with the digitalWrite(pin, INPUT_PULLUP)

instruction, but the pin is active LOW rather than active HIGH. The rotary

encoder module, KY-040, used in this chapter, includes 10kΩ pull-up

resistors on the clock (CLK) and data (DT) pins. An LED is connected to

an Arduino PWM pin for the rotary encoder to control the level of LED

brightness.

The rotary encoder clock (CLK), data (DT), and switch (SW) pins are

connected to Arduino pins A0, A1, and A2 only for convenience of the

schematic (see Figure 9-3 and Table 9-1), as a stepper motor is connected

to the Arduino in Figure 9-4 and Listing 9-2. The Arduino analog pins A0 to

A5 can be utilized as digital pins with the digitalRead(pin) instruction,

with pins A0 to A5 corresponding to pin numbers 14 to 19.

Chapter 9 rotary enCoder

180

Table 9-1. Connections for Rotary Encoder and LED

Component Connect to and to

Rotary encoder CLK arduino pin a0

Rotary encoder DT arduino pin a1

Rotary encoder SW arduino pin a2

Rotary encoder VCC arduino 5V

Rotary encoder GND arduino Gnd

LED long leg arduino pin 6

LED short leg 220Ω resistor arduino Gnd

Figure 9-3. Rotary encoder and LED

In Listing 9-1, the encoder() function returns the direction of rotation,

with a value of one for clockwise and minus one for counterclockwise

rotation. The encoder() function waits for a falling edge on pin A with the

Chapter 9 rotary enCoder

181

if (oldA == HIGH && newA == LOW) instruction. The LED brightness is

incremented by the fade amount, which is multiplied by the direction of

rotation of the rotary encoder to increase or decrease the LED brightness.

Pressing the rotary encoder switch turns the LED off by resetting the LED

brightness to zero.

Listing 9-1. Rotary Encoder and LED

int CLKpin= A0; // pin A or clock pin

int DTpin= A1; // pin B or data pin

int SWpin= A2 ; // switch pin

int LEDpin = 6; // LED on PWM pin

int bright = 120; // initial LED value

int fade = 10; // amount to change LED

int rotate = 0; // number of rotary turns

int oldA = HIGH; // status of pin A

int change, result, newA, newB;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 pinMode(SWpin, INPUT_PULLUP); // switch pin uses internal pull-up resistor

}

void loop()

{

 if(digitalRead(SWpin) == LOW) bright = 0; // switch, active LOW,

 // turns off LED

 change = encoder(); // function for direction of rotation

 rotate = rotate + abs(change); // number of turns of rotary encoder

 bright = bright + change*fade; // change LED brightness

 bright = constrain(bright, 0, 255); // constrain LED brightness

Chapter 9 rotary enCoder

182

 if(change != 0)

 { // display number

 Serial.print(rotate);S erial.print("\t"); // of rotary turns

 Serial.println(bright); // and LED brightness

 }

 analogWrite(LEDpin, bright); // update LED brightness

}

int encoder() // function to determine direction

{

 result = 0;

 newA = digitalRead(CLKpin); // state of (CLK) pin A

 newB = digitalRead(DTpin); // state of (DT) pin B

 // falling edge on (CLK) pin A

 if (oldA == HIGH && newA == LOW) result = 2*newB - 1;

 oldA = newA; // update state of (CLK) pin A

 return result;

}

If the void loop() function contains several tasks or delays, then the

microcontroller may miss turns of the rotary encoder by not detecting

all the falling edges on pin A or the CLK pin. For example, inserting the

delay(100) instruction within the void loop() function is sufficient for

the microcontroller to miss turns of the rotary encoder. Implementing

an interrupt resolves the problem of the microcontroller not detecting a

change in state of a device, when there are several tasks or delays in the

void loop() function. The subject of interrupts is discussed in Chapter 20.

 Rotary Encoder and Stepper Motor
The rotary encoder can be used to control a stepper motor, which was

outlined in Chapter 8. In the sketch (see Listing 9-2 and Table 9-2), the

stepper motor first moves to an initial position, and then to a target

position determined by the rotary encoder’s direction and number of

Chapter 9 rotary enCoder

183

turns. When the stepper motor reaches the target position, the direction of

rotation is reversed and the stepper motor moves to the “negative” target

position. The rotary encoder switch resets the stepper motor target to zero.

The maximum speed of the stepper motor is set at 700 steps per minute,

which is equivalent to 20.6 rpm with full-step. An LED is connected to

an Arduino PWM pin, so the rotary encoder controls the level of LED

brightness in parallel with changes to the stepper motor target.

Table 9-2. Connections for Rotary Encoder and Stepper Motor

Component Connect to and to

Stepper blue wire ULn2003 In1 arduino pin 12

Stepper pink wire ULn2003 In2 arduino pin 11

Stepper yellow wire ULn2003 In3 arduino pin 10

Stepper orange wire ULn2003 In4 arduino pin 9

9V battery positive ULn2003 positive

9V battery negative ULn2003 negative arduino Gnd

Rotary encoder CLK arduino pin a0

Rotary encoder DT arduino pin a1

Rotary encoder SW arduino pin a2

Rotary encoder VCC arduino 5V

Rotary encoder GND arduino Gnd

LED long leg 220Ω resistor arduino pin 6

LED short leg arduino Gnd

Chapter 9 rotary enCoder

184

Listing 9-2. Rotary Encoder and Stepper Motor

#include <AccelStepper.h> // include AccelStepper library

int blue = 12; // coil activation order on ULN2003

int pink = 11; // blue, pink, yellow, orange

int yellow = 10;

int orange = 9;

int fullstep = 4; // number of coil activation stages

int halfstep = 8; // with full-step and half- step

int coil = fullstep; // set number of coil activation stages

 // associate stepper with AccelStepper library and coil pairing order

AccelStepper stepper(coil, blue, yellow, pink, orange);

int stepperTarget = 500; // initial position for stepper motor

int stepperChange = 200; // number of steps to move stepper motor

int CLKpin= A0; // rotary encoder pin A

int DTpin= A1; // and pin B

int SWpin= A2 ; // switch pin

Figure 9-4. Rotary encoder, LED, and stepper motor

Chapter 9 rotary enCoder

185

int rotate = 0; // number of rotary encoder turns

int oldA = HIGH; // status of pin A

int direct = 1; // direction of rotation

int LEDpin = 6; // LED on PWM pin

int bright = 60; // initial LED value

int fade = 25; // amount to change LED

int change, result, newA, newB;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(SWpin, INPUT_PULLUP); // switch pin uses internal pull-up resistor

 stepper.setMaxSpeed(700); // maximum speed of stepper motor

 stepper.setAcceleration(600); // acceleration rate (steps/s2)

}

void loop()

{

 if(digitalRead(SWpin) == LOW)

 {

 stepperTarget = 0; // switch repositions stepper motor

 bright = 0; // and turns off the LED

 }

 change = encoder(); // determine direction of rotary encoder

 rotate = rotate + abs(change); // number of rotary encoder turns

 // move stepper motor to new position

 stepperTarget = stepperTarget + change * stepperChange;

 stepperTarget = constrain(stepperTarget, 0, 2037); // constrain position

 bright = bright + change*fade; // change LED brightness

 bright = constrain(bright, 0, 25 5); // constrain LED brightness

Chapter 9 rotary enCoder

186

 if(change != 0)

 {

 Serial.print(rotate);Serial.pr int("\t"); // display rotary turn number

 Serial.print(bright);Serial.pr int("\t"); // display LED brightness

 Serial.println(stepperTarget); // and new target position

 }

 analogWrite(LEDpin, bright); // update LED brightness

 stepper.moveTo(direct*stepperTarget/2); // move to target position

 if (stepper.distanceToGo() == 0) direct=-direct; // reverse direction

 stepper.run(); // move stepper motor

}

int encoder() // function to determine direction

{

 result = 0;

 newA = digitalRead(CLKpin); // state of (CLK) pin A

 newB = digitalRead(DTpin); // state of (DT) pin B

 // falling edge on (CLK) pin A

 if (oldA == HIGH && newA == LOW) result = 2*newB - 1;

 oldA = newA; // update state of (CLK) pin A

 return result;

}

 Summary
The direction and extent of rotation of a rotary encoder is used to control

devices, with an LED and a stepper motor as example devices.

Chapter 9 rotary enCoder

187

 Components List
• Arduino Uno and breadboard

• Rotary encoder: KY-040

• Stepper motor: 28BYJ-48

• Stepper motor connecting board with ULN2003 chip

• Battery: 9V

• LED

• Resistor: 220Ω

Chapter 9 rotary enCoder

189© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_10

CHAPTER 10

Infrared Sensor
Infrared (IR) remote controls operate devices, such as

domestic appliances and office machinery, wirelessly by

transmitting a signal consisting of pulses of infrared light.

When a remote control button is pressed, the infrared

sensor receives a signal, which is decoded to implement the appropriate

action corresponding to the remote control button. For example, if the

“power on” button signal has binary representation B011101, the pulsed

infrared signal would be as shown in Figure 10-1. The infrared wavelength

is not visible to the human eye, but a remote control signal can be

observed when viewed through the camera of a mobile phone.

Figure 10-1. Pulsed signal

The IRremote library by Ken Shirriff is recommended for sketches

with an IR sensor. The IRremote library is available within the Arduino

IDE and is installed using installation method 3, as outlined in Chapter 3.

Connections for the IR sensor are given in Table 10-1.

190

Listing 10-1 reads an infrared signal and displays the hexadecimal

signal code associated with each button of an infrared remote control to

illustrate use of the VS1838B IR sensor.

Listing 10-1. Infrared Signal

#include <IRremote.h> // include IRremote library

int IRpin = 6; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library

decode_results reading; // IRremote reading

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 irrecv.enableIRIn(); // initialise the IR receiver

}

void loop()

{

 if(irrecv.decode(&reading)) // read the infrared signal

 {

 Serial.print("0x"); // print leading 0x for hexadecimal

 Serial.println(reading.value, HEX); // print HEX code to Serial Monitor

 irrecv.resume(); // receive the next infrared signal

 }

 delay(1000); // delay before next remote control input

}

Once the pulsed infrared signals for the buttons have been

determined, each button can be associated with a particular function. In

the sketch (see Listing 10-2), three buttons are mapped to turning on one

of three LEDs (see Figure 10-2). Note that the hexadecimal signal codes are

just examples.

Chapter 10 Infrared SenSor

191

Table 10- 1. Connections for IR Sensor and LEDs

Component Connect to and to

IR sensor VCC arduino 5V

IR sensor OUT arduino Gnd

IR sensor GND arduino pin 6

LED long legs arduino pins 8, 9, 10

LED short legs 220Ω resistors arduino Gnd

Figure 10-2. Infrared sensor and LEDs

Chapter 10 Infrared SenSor

192

Listing 10-2. IR Signal and LEDs

#include <IRremote.h> // include IRremote library

int IRpin = 6; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library

decode_results reading; // IRremote reading

int redLED = 8;

int amberLED = 9; // LED pins

int greenLED = 10;

int color;

void setup()

{

 irrecv.enableIRIn(); // initialise the IR receiver

 pinMode(redLED, OUTPUT); // define LED pins as output

 pinMode(amberLED, OUTPUT);

 pinMode(greenLED, OUTPUT);

}

void loop()

{

 if(irrecv.decode(&reading)) // read the IR signal

 {

 switch(reading.value) // switch ... case for button signals

 { // associate IR codes with LED pins

 case 0xFF30CF: color = redLED; break;

 case 0xFF18E7: color = amberLED; break;

 case 0xFF7A85: color = greenLED; break;

 }

 digitalWrite(color,HIGH); // turn on and off corresponding LED

 delay(1000);

 digitalWrite(color,LOW);

 }

 irrecv.resume(); // receive the next infrared signal

 delay(1000); // delay before next remote control input

}

Chapter 10 Infrared SenSor

193

The IR sensor can also be used to display specific text on an LCD,

based on a remote control button, with the LCD connected to an I2C bus,

as described in Chapter 4. Figure 10-3 is the same as Figure 4-3, with an

infrared sensor replacing the temperature sensor, with connections given

in Table 10-2. The display string in Listing 10-3 is a combination of text

and a number converted to a string using the String(number) function.

The infrared signal is displayed in hexadecimal (HEX) or decimal (DEC)

format, as an illustration.

Figure 10-3. Infrared sensor and LCD with I2C bus

Listing 10-3. IR Sensor and Text Display

#include <Wire.h> // include Wire library

#include <LiquidCrystal_I2C.h> // include LiquidCrystal_I2C library

#include <IRremote.h> // include IRremote library

int I2Caddress = 0x3F; // address of I2C bus

int LCDcol = 16; // define the number of LCD columns

int LCDrow = 4; // define the number of LCD rows

 // associate lcd with LiquidCrystal_I2C library, define LCD address and size

Chapter 10 Infrared SenSor

194

LiquidCrystal_I2C lcd(I2Caddress,LCDcol,LCDrow);

int IRpin = A0; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library

decode_results reading; // IRremote reading

void setup()

{

 lcd.init(); // initialise LCD

 irrecv.enableIRIn(); // initialise the IR receiver

}

void loop()

{

 if(irrecv.decode(&reading)) // read the IR signal

 {

 translateIR(); // function to map signal to display string

 irrecv.resume(); // receive the next infrared signal

 delay(1000); // delay before next IR signal

 }

}

void translateIR() // function to determine display string

{

 switch(reading.value) // switch case rather than a series of if else instructions

 { // string equal to text plus elapsed time

 case 0xFF6897: displ("Outcome "+String(millis()/1000)); break;

 // string equal to signal in hexadecimal

 case 0xFF30CF: displ("Result "+String(reading.value,HEX)); break;

 // string equal to signal in decimal

 case 0xFF18E7: displ("Event "+String(reading.value,DEC)); break;

 default: displ("Not valid"); // default display

 }

}

Chapter 10 Infrared SenSor

195

Table 10-2. Connections for IR Sensor and LCD with I2C Bus

Component Connect to Component Connect to

I2C bus GND arduino Gnd IR sensor VCC arduino 5V

I2C bus VCC arduino 5V IR sensor OUT arduino pin a0

I2C bus SDA arduino a4 IR sensor GND arduino Gnd

I2C bus SCL arduino a5

void displ(String s) // function to display string on LCD

{

 lcd.print(s); // display string on LCD

 delay(2000); // delay 2000ms

 lcd.clear(); // clear LCD display and move cursor to zero position

}

 Infrared Emitter and Sensor
Infrared signals can be sent with an IR emitter LED and received by an

infrared sensor, VS1838B, exactly as if the IR signal was generated by a

remote control device. The IR emitter LED must be connected to Arduino

PWM pin 3, when using the IRremote library (see Figure 10-4). Note that the

top of the IR emitter LED must be facing the IR receiver with no obstruction

between the emitter and receiver (see Table 10-3). Information on the signal

to be sent, in a Sony format, and the length of the signal is included in the

irsend.sendSony(signal, signal length) instruction. The example signal

0xFF30CF in hexadecimal format has a signal length of 24 bits, given 4 bits

per integer. The sketch (see Listing 10-4) uses the sendSony() function as an

example format to transmit signals, but other signal formats, such as NEC,

JVC, RC5, and RC6, are included in the IRremote library. More information

on IR codes is available at www.sbprojects.net/knowledge/ir/index.php.

Chapter 10 Infrared SenSor

http://www.sbprojects.net/knowledge/ir/index.php

196

Figure 10-4. IR emitter and receiver

Table 10- 3. Connections for IR Emitter and Receiver

Component Connect to and to

IR sensor VCC arduino 5V

IR sensor OUT arduino pin 6

IR sensor GND arduino Gnd

IR emitter LED long leg arduino pin 3

IR emitter LED short leg 220Ω resistor arduino Gnd

The sketch for the IR transmitter to accompany the IR receiver (see

Listing 10-4) uses either the first sketch of the chapter (see Listing 10-1) or

the infrared receiver VS1838B sketch (see Listing 3-10) in Chapter 3. Note

that the hexadecimal signal codes are just examples.

Listing 10-4. IR Transmitter

#include <IRremote.h> // include IRremote library

long signal[] = {0xFF6897, 0xFF30CF, 0xFF18E7, 0xFF7A85, 0xFF10EF};

IRsend irsend; // associate irsend with IRremote library

Chapter 10 Infrared SenSor

197

void setup() // nothing in void setup function

{}

void loop()

{

 for (int i=0; i<5; i++) // transmit each of the five signals

 {

 irsend.sendSony(signal[i], 24); // transmit signal with 24 bit length

 delay(1000); // delay 1s between signals

 }

}

 Infrared Emitter and Receiver
Infrared distance sensor modules contain an infrared emitter

and receiver (see Figure 10-5), as well as signal processing

circuits, such as the TCRT500 module that was outlined

in Chapter 3. The infrared emitter is an LED that emits an

infrared signal with a wavelength of 980nm and the infrared

receiver is a photo-diode. Specific distance sensor modules can measure

distances between 10cm and 80cm, while the IR emitter and receiver pair

form a simple distance measure for distances between 10cm to 40cm.

The IR receiver has a black casing to block visible light, while the IR

emitter has a clear casing. The long legs of the IR emitter and receiver are

the anodes and the flat side is on the cathode side, as with an LED. Note

the cathode of the IR receiver is connected to 5V, as a reverse- biased

photodiode conducts with incident light, while a forward-biased LED

emits light. The 10kΩ resistor connected to the IR receiver functions as

a pull-down resistor, as the IR receiver or photo diode does not conduct

when no infrared light is detected (see Table 10-4).

Chapter 10 Infrared SenSor

198

The output voltage from the IR receiver is converted by the Arduino

ADC to a digital reading. When the tops of the IR emitter and receiver are

facing, the IR receiver reading can provide an estimate of the distance

between them, with the IR receiver reading increasing, non-linearly, from

0 to 1000 with decreasing distance (see Figure 10-6). If the IR emitter and

receiver are positioned close together and parallel, then the IR emitter

signal bounces off the target object onto the IR receiver and the IR receiver

reading is a measure of the double the distance to a target object.

Note that in Listing 10-5, the equations for converting the digital

reading to a distance are empirically derived for an IR emitter and receiver

pair. Different equations may be required for an IR emitter and receiver

pair from other manufacturers.

Figure 10-5. IR emitter and receiver

Chapter 10 Infrared SenSor

199

Figure 10-6. Distance and IR receiver readings

Table 10- 4. Connections for IR Emitter and Receiver

Component Connect to and to

IR receiver short leg arduino 5V

IR receiver long leg arduino a5

IR receiver long leg 10kΩ resistor arduino Gnd

IR emitter LED long leg arduino 5V

IR emitter LED short leg 220Ω resistor arduino Gnd

Chapter 10 Infrared SenSor

200

Listing 10-5. IR Emitter and Receiver

int IRpin = A5; // IR receiver pin

int reading, dist;

void setup()

{

 Serial.begin(9600); // set Serial Monitor baud rate

}

void loop()

{ // reading from IR receiver

 reading = analogRead(IRpin); // convert reading to distance

 if (reading < 970) dist = 605*pow(reading, -0.53);

 else dist = 409 - 0.406 * reading;

 Serial.print(reading);Serial.print("\t"); // print reading, tab and

 Serial.println(dist); // distance to Serial Monitor

 delay(100); // delay between readings

}

The IR emitter and receiver pair can be used to detect an object moving

between the IR emitter and receiver, as a moving object results in a change to

the IR receiver reading. IR receiver modules for remote control systems, such

as the TSOP382 contain a photo-detector and an amplifier with operational

distances of 45m when powered with just 5V. The change in an IR receiver

signal can trigger an alarm, which is how some movement detectors function.

 Summary
An infrared sensor detected infrared signals from a remote control,

displayed the corresponding signal codes on an LCD, controlled LEDs, and

displayed text according to the transmitted signals. An infrared emitter

LED and infrared sensor were used to transmit and receive infrared

signals. An infrared emitter LED and receiver pair formed a motion

detector by measuring the distance between the emitter and receiver.

Chapter 10 Infrared SenSor

201

 Components List
• Arduino Uno and breadboard

• Infrared sensor: VS1838B

• Infrared remote control

• Infrared emitter LED

• Infrared receiver

• LCD display: 16×4

• I2C bus for LCD display

• Resistors: 2× 220Ω and 1×10kΩ

• LED: 3×

Chapter 10 Infrared SenSor

203© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_11

CHAPTER 11

Radio Frequency
Identification

Radio frequency identification, RFID, uses electromagnetic

fields to transfer data wirelessly. Common uses of RFID are

entry passes to secure sites, library book logging, or tracking

component parts in a production process. Passive RFID tags

consist only of an antenna and a microchip, whose shadow can be seen

by holding an RFID card up to a light. Passive RFID tags are powered by

the RFID reader’s electromagnetic field to receive messages from the RFID

reader and transmit messages to the RFID reader.

The MFRC522 RFID reader operates at a frequency of 13.56MHz and

reads MIFARE Classic contactless cards and tags, which have to be within

2cm of the RFID reader to be read. The 1kB card has 1024 bytes of data

storage, with 16 sectors of four blocks, each containing 16 bytes of data. The

block structure is 6 bytes for data or Key A, and 4 access bytes and 6 bytes for

data or Key B. The 4kB card has 4096 bytes of data storage, with 32 sectors

of 4 blocks, and 8 sectors of 16 blocks, each containing 16 bytes of data. The

first block of a 1kB or 4kB card contains the following:

• Unique Identifier (UID): stored in 4 bytes of block 0

• Select Acknowledge (SAK) HEX code: 08 and 18 for

MIFARE Classic

• Proximity Integrated Circuit Card (PICC) type: MIFARE 1K or 4K

204

The MFRC522 RFID reader uses the Serial Peripheral Interface bus

(SPI) for communication. SPI has a master-slave framework, requiring the

three lines: master-out slave-in (MOSI), master-in slave-out (MISO), and

serial clock (SCK), with a separate slave select (SS) line for each device (see

Figure 11-1). The terminology is, unfortunately, the current convention.

Figure 11-1. SPI layout

All devices share the MOSI, MISO, and SCK lines, but the SS line

determines which device communicates with the microcontroller. The

Arduino SPI pins are 10, 11, 12, and 13 for SS, MOSI, MISO, and SCK. Other

Arduino pins can be used as the SS line, when there is more than one SPI

device. The SS pin on the MFRC522 RFID reader is marked SDA, for serial

data, and the interrupt pin (IRQ) is not connected to the Arduino. The

MFRC522 RFID reader must be connected to 3.3V and not to 5V.

For comparison with SPI, the layout of the I2C bus, outlined in

Chapter 4, uses the two bidirectional lines, SCK and SDA (see Figure 11- 2).

The microcontroller communicates with all devices, but the message

includes the address of the device to be communicated with, so that only

the relevant device responds to the microcontroller. I2C communication

Chapter 11 radio FrequenCy identiFiCation

205

is slower than SPI communication, as the lines are bi-directional. I2C is

used when outputting low amounts of data, such as with sensors, while SPI

communication is used for high volumes of data.

Figure 11-2. I2C layout

There are differences between SPI modules in the naming of module

pins, such as CS or SS or LOAD, MOSI or DATA or DIN, and SCK or CLK.

In sketches with SPI modules, the SPI pin naming of the module is used

in the sketch.

The MFRC522 library by Miguel Balbao is recommended for sketches

with RFID. The MFRC522 library is installed within the Arduino IDE, using

installation method 3, as outlined in Chapter 3.

 Display Content of MIFARE Classic 1K and 4K
Connections for the MFRC522 RFID reader (see Figure 11-3) are

shown in Table 11-1. A sketch (see Listing 11-1) to display the content

of a MIFARE Classic 1K or 4K RFID contactless card requires only the

mfrc522.PICC_DumpToSerial(&(mfrc522.uid)) instruction. The rest

of the sketch defines the pin connections to the Arduino, initializes

Chapter 11 radio FrequenCy identiFiCation

206

Figure 11-3. RFID card reader

hardware, and waits for the contactless card to be presented to the RFID

reader. The mfrc522.PICC_IsNewCardPresent() and mfrc522.PICC_

ReadCardSerial() instructions determine if a contactless card has been

presented and read by the RFID reader.

Chapter 11 radio FrequenCy identiFiCation

207

Listing 11-1. Content of MIFARE Contactless Card

#include <SPI.h> // include SPI library

#include <MFRC522.h> // include MFRC522 library

int RSTpin = 9; // reset pin for MFRC522

int SDApin = 10; // serial data pin

MFRC522 mfrc522(SDApin, RSTpin); // associate mfrc522 with MFRC522 library

void setup()

{

 Serial.begin(9600); // Serial output at 9600 baud

 SPI.begin(); // initialise SPI bus

 mfrc522.PCD_Init(); // initialise card reader

}

Table 11-1. Connections for RFID Card Reader

Component Connect to and to

RFID reader 3.3V arduino 3.3V

RFID reader RST arduino pin 9

RFID reader GND arduino Gnd

RFID reader IRQ not connected

RFID reader MISO arduino pin 12

RFID reader MOSI arduino pin 11

RFID reader SCK arduino pin 13

RFID reader SDA arduino pin 10

LED long legs arduino pins 3, 4

LED short legs 220Ω resistors arduino Gnd

Chapter 11 radio FrequenCy identiFiCation

208

void loop()

{

 if(!mfrc522.PICC_IsNewCardPresent()>0) return; // wait for a new card

 if(!mfrc522.PICC_ReadCardSerial()>0) return; // read card content

 mfrc522.PICC_DumpToSerial(&(mfrc522.uid)); // print to Serial Monitor

}

 Mimic RFID and Secure Site
To mimic use of RFID for accessing a secure site, Listing 11-2 identifies

which contactless cards are valid or are not valid and turns on a green

LED or a red LED accordingly. Rather than turning on an LED, the rotor

of a servo motor can be rotated to open a lock, when simulating use of

RFID in a security scenario. The sketch uses two functions, cardID() and

cardResult(), to read the card UID from the buffer one character at a time

and to print on the serial monitor if the card is valid or invalid.

As with Listing 11-1, much of the sketch (see Listing 11- 2) declares

variables and prints to the serial monitor. The details of the MFRC522

library instructions, such as mfrc522.PICC_GetType(mfrc522.uid.sak),

were obtained from MFRC522>Examples in the MFRC522 library within

the Arduino IDE.

Listing 11-2. RFID for Accessing a Secure Site

#include <SPI.h> // include SPI library

#include <MFRC522.h> // include MFRC522 library

int RSTpin = 9; // reset pin for MFRC522

int SDApin = 10; // serial data pin

MFRC522 mfrc522(SDApin, RSTpin); // associate mfrc522 with MFRC522 library

int redLED = 4; // red LED pin

int greenLED = 3; // green LED pin

Chapter 11 radio FrequenCy identiFiCation

209

int nuid = 1; // number of valid cards

String uids[20]; // list of valid UIDs – maximum 20

String uid;

int cardOK, pin, piccType;

int cardRead; // ** for add/delete card Listing 11-3

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 SPI.begin(); // initialise SPI bus

 mfrc522.PCD_Init(); // initialise MFRC522

 pinMode (redLED, OUTPUT); // define LED pins as output

 pinMode (greenLED, OUTPUT);

 uids[0] = "c049275"; // UIDs of valid cards

}

void loop()

{

 if(!mfrc522.PICC_IsNewCardPresent()>0) return; // wait for a new card

 if(!mfrc522.PICC_ReadCardSerial()>0) return; // read new card content

 cardID(mfrc522.uid.uidByte, mfrc522.uid.size); // function to

 // read card UID

 Serial.print("\nCard UID\t"); // print "card UID" and a tab

 Serial.println(uid); // print card UID

 piccType = mfrc522.PICC_GetType(mfrc522.uid.sak); // card PICC type

 Serial.print("PICC type\t"); // print PICC type

 Serial.println(mfrc522.PICC_GetTypeName(piccType)); // card SAK code

 Serial.print("SAK code\t"); // print "SAK code" and a tab

 Serial.println(mfrc522.uid.sak); // print SAK HEX code

 cardOK = 0;

 pin = redLED;

Chapter 11 radio FrequenCy identiFiCation

210

 for (int i=0; i<nuid; i++)

 {

 if(uid == uids[i]) // check if card on valid list

 {

 cardOK = 1;

 pin = greenLED; // set relevant LED pin

 }

 } // function to turn on LED and print SAK

 cardResult(mfrc522.uid.uidByte, mfrc522.uid.size);

 // *** INSERT Listing 11-3 HERE

}

void cardID(byte * buffer, byte bufferSize) // function to read card UID

{

 uid=""; // increment uid with buffer

 for (int i=0; i<bufferSize; i++) uid=uid+String(buffer[i], HEX);

}

void cardResult(byte * buffer, byte bufferSize)

{ // function to turn on LED, print SAK

 digitalWrite(pin, HIGH); // turn on and off relevant LED

 delay(1000);

 digitalWrite(pin, LOW);

 for (int i = 0; i < buf ferSize; i++) // print to Serial Monitor SAK code

 { // with leading “0” for

 if(buffer[i] <16) Serial.print("0"); // HEX values

 else Serial.print(" ");

 Serial.print(buffer[i], HEX);

 } // print message to

 if (cardOK == 1) Serial.println("\tValid"); // Serial Monitor

 else Serial.println("\tInvalid"); // depending on card validity

}

Chapter 11 radio FrequenCy identiFiCation

211

 Master Card Validation
In a contactless card security system, new cards must be defined as valid

and old cards must be classed as invalid. Listing 11-3 is incorporated

within Listing 11-2 to include the facility to update the list of validated

cards. A master card is used to validate a card or to remove a card from the

set of validated cards. The master card is the first card in the uid[] array.

When the master card is detected, the UID of the next card read is checked

against the list of valid cards and is added to the list, if not currently on the

list, or deleted from the list, if currently on the list. The set of instructions

in Listing 11-3 is inserted as the penultimate line of the void loop()

function in Listing 11-2. An additional function, readUID() in Listing 11-4,

is required to determine if the card has been read or not, is included at the

end of the sketch.

Listing 11-3. Inclusion of Master Card

if(uid == uids[0]) // read card is the master card

{

 Serial.println("\nMaster card"); // print "Master card" on a new line

 digitalWrite(redLED, HIGH); // turn on the red and green LEDs

 digitalWrite(greenLED, HIGH);

 delay(1000);

 digitalWrite(redLED, LOW); // turn off the red and green LEDS

 digitalWrite(greenLED, LOW);

 Serial.println("Scan card to be deleted or added"); // print message

 int cardRead=0;

 while(!cardRead >0) // wait for a card to be read

 {

 cardRead = readUID(); // function to detect card

 if(cardRead == 1) // card detected

Chapter 11 radio FrequenCy identiFiCation

212

 {

 cardID(mfrc522.uid.uidByte, mfrc522.uid.size); // read card UID

 cardOK = 0;

 for (int i=0; i<nuid; i++) if(uid == uids[i]) cardOK = i;

 if(cardOK !=0) // card already validated, delete from list

 {

 Serial.print("Card "); // print to Serial Monitor that card deleted

 Serial.print(uid); // from validated list

 Serial.println(" deleted");

 uids[cardOK] = ""; // delete card from list of valid cards

 }

 else

 {

 Serial.print("Card "); // print to Serial Monitor that card added

 Serial.print(uid); // to validated list

 Serial.println(" added");

 nuid = nuid+1; // increment valid cards

 uids[nuid-1] = uid; // add card to list of valid cards

 }

 }

 }

 delay(500); // delay so card details are not shown again

}

The first two instructions in the readUID() function are the similar to

the first two instructions in the void loop() function, with the addition of 0

after return (see Listing 11-4). If a card has not been presented to or read by

the card reader, then the readUID() function returns 0 to the main sketch.

After the card has been read, the readUID() function returns 1 to the main

sketch. The exclamation mark before a variable in the readUID() function

denotes the “opposite value,” as in 0 and 1 or in HIGH and LOW. The

instruction if(!mfrc522.PICC_IsNewCardPresent()>0) is equivalent to

if(mfrc522.PICC_IsNewCardPresent()<1).

Chapter 11 radio FrequenCy identiFiCation

213

Listing 11-4. Inclusion of Master Card: readUID Function

int readUID()

{

 if(!mfrc522.PICC_IsNewCardPresent()>0) return 0; // wait for a new card

 if(!mfrc522.PICC_ReadCardSerial()>0) return 0; // read card content

 return 1;

}

 Read and Write to Classic 1KB Card
The MFRC522 reader can also write to a MIFARE Classic 1K card or tag. Each

sector of the card has a sector trailer, which is the fourth block in a sector,

containing security and access keys, which should not be over- written. The

first three blocks in a sector are for data storage, with the exception of the

first block of the first sector, which contains manufacturer data.

The sketch (see Listing 11-5) writes data to a user entered block and

then displays the content of the data storage blocks. Again, the majority of

the sketch is for declaring variables and printing to the serial monitor. In

the sketch, the text ABCDEFGHIJKLMNOP is written to the required block

as defined in byte blockData[16] and setting blockData[16] to {0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0} restores the block to the default null value.

In the void loop() function, the while() functions are used to

wait on a card being presented and to wait for a block number to be

entered on the serial monitor. Given that no action is required while

waiting, there are no instructions for the while() functions, as indicated

in the while(Serial.available() == 0) {} instruction. The block

= Serial.parseInt()instruction extracts the block number from the

serial buffer, as described in Chapter 4. After a block number is entered,

the block number is checked to ensure it is not a sector trailer block.

Information in blockData is then written to the required block with the

writeBlock(block, blockData) function. Then for each block, the

Chapter 11 radio FrequenCy identiFiCation

214

data content of the contactless card is read using the readBlock(block,

blockRead) function and the card content is displayed on the serial

monitor. Finally, communication with the contactless card is closed with

the mfrc522.PCD_StopCrypto1() instruction.

The two functions, readBlock() and writeBlock(), have similar

structure. Validation checks are made prior to reading or writing to

a block with the mfrc522.PCD_Authenticate() function and the

MFRC522::STATUS_OK status of the check is returned. The readBlock()

function reads data in each block, except for the fourth block in each

sector, which is the sector trailer containing security and access keys.

The mfrc522.PICC_DumpMifareClassicSectorToSerial(&(m

frc522.uid),&key,sector) instruction reads and displays on the

serial monitor all the data within a specified sector, while the mfrc522.

PICC_DumpToSerial(&(mfrc522.uid)) instruction reads and displays

on the serial monitor all the data on the MIFARE Classic 1K or 4K RFID

contactless card.

Listing 11-5. Read and Write to Contactless Card

#include <SPI.h> // include SPI library

#include <MFRC522.h> // include MFRC522 library

int RSTpin = 9; // reset pin for MFRC522

int SDApin = 10; // serial data pin

MFRC522 mfrc522(SDApin, RSTpin); // associate mfrc522 with MFRC522 library

MFRC522::MIFARE_Key key; // access key

byte blockData[16] = {"ABCDEFGHIJKLMNOP"}; // data to be written

 // reset block to default value

//byte blockData[16] ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte blockRead[18]; // to hold the read data

byte blocksz = sizeof(blockRead);

int block, sectorTrail, check;

Chapter 11 radio FrequenCy identiFiCation

215

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 SPI.begin(); // initialise SPI bus

 mfrc522.PCD_Init(); // initialise mfrc522

 for (byte i=0; i<6; i++) key.keyByte[i] = 0xFF; // access key set to HEX 0xFF

}

void loop()

{ // print message to Serial Monitor

 Serial.println("Place card or tag beside MFRC522 reader");

 while (!mfrc522.PICC_IsNewCardPresent())

 {}; // do nothing but wait for a new card

 mfrc522.PICC_ReadCardSerial(); // read card content

 Serial.println("Enter block number"); // print message

 while(Serial.available() == 0){} // no action until entry in serial buffer

 while(Serial.available() >0) block = Serial.parseInt(); // get block number

 if((block+1)%4==0 || block == 0) // check if block is sector trailer block

 { // print message to

 Serial.print("Cannot write to block "); // Serial Monitor

 Serial.println(block); // return to start of void loop()

 return;

 }

 writeBlock(block, blockData); // function to write data

 Serial.print("\nFinished writing to block "); // print message

 Serial.println(block);

 for (block=0; block<64; block++) // display content of non-sector

 { // trailer blocks

 if((block+1) % 4 !=0 && block !=0) // non-sector trailer blocks

Chapter 11 radio FrequenCy identiFiCation

216

 {

 readBlock(block, blockRead); // function to read data

 Serial.print("\nBlock "); // print block number

 Serial.print(block);Serial.print("\t");

 for (int i=0 ; i<16 ; i++) Serial.write(blockRead[i]);

 } // print block data

 }

 Serial.println("\n\nFinished rea ding blocks"); // print message

 Serial.println("Enter 1 to continue writing to a card or tag");

 while(Serial.available() == 0) { } // no action until entry to serial buffer

 // extract integer from serial buffer

 while(Serial.available()>0) check=Serial.parseInt();

 mfrc522.PCD_StopCrypto1(); // stop communication to card or tag

}

void writeBlock (int block, byte blockData[]) // function to write to block

{

 sectorTrail = 3+4*(block/4);

 check = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A,

 sectorTrail, &key, &(mfrc522.uid));

 if (check != MFRC522::STATUS_OK)

 Serial.println(mfrc522.GetStatusCodeName(check));

 check = mfrc522.MIFARE_Write(block, blockData, 16);

 if (check != MFRC522::STATUS_OK)

 Serial.println(mfrc522.GetStatusCodeName(check));

}

void readBlock (int block, byte blockRead[]) // function to read block

{

 sectorTrail = 3+4*(block/4);

 check = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A,

 sectorTrail, &key, &(mfrc522.uid));

Chapter 11 radio FrequenCy identiFiCation

217

 if (check != MFRC522::STATUS_OK)

 Serial.println(mfrc522.GetStatusCodeName(check));

 check = mfrc522.MIFARE_Read(block, blockRead, &blocksz);

 if (check != MFRC522::STATUS_OK)

 Serial.println(mfrc522.GetStatusCodeName(check));

}

 Summary
The MFRC522 RFID reader was used to read and write to MIFARE

contactless cards, with a master card validation process to emulate a

security system by adding and deleting contactless cards from a validation

list. SPI and I2C communication protocols were compared.

 Components List
• Arduino Uno and breadboard

• RFID reader: MFRC522

• MIFARE Classic 1 contactless cards: ×3

• LED: ×2

• Resistor: 2× 220Ω

Chapter 11 radio FrequenCy identiFiCation

219© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_12

CHAPTER 12

SD Card Module
SD (Secure Digital) cards can be used for data storage and

data logging. Examples include data storage on digital

cameras or mobile phones and data logging to record

information from sensors. Micro SD cards can store 2GB

of data and should be formatted as FAT32 (File Allocation

Table) format. The micro SD card operates at 3.3V, so only micro SD card

modules with a 5V to 3.3V voltage level shifter chip and a 3.3V voltage

regulator can be connected to the Arduino 5V supply.

The micro SD module communicates with the Arduino using Serial

Peripheral Interface (SPI), as outlined in Chapter 11. The SPI connecting

pins on the micro SD module include the MOSI, MISO, SCK pins and the

SS pin denoted chip select (CS), which are connected to Arduino pins 11,

12, 13, and 10, respectively. Data is stored in a .csv file (comma-separated

values), which can be directly loaded into Excel. File names must have FAT

8.3 format, with no more than eight characters in the file name followed

by a dot and a three-character extension, such as File1234.csv. If a .csv file

is created on the micro SD card with Excel, then Excel should be closed

before ejecting the SD card from the computer or laptop.

Alphanumeric data, in a .csv file written to an SD card, must be

formatted as a string with commas separating each data value. The

following instruction concatenates into the data string the light, temp, and

humid values, separated by commas.

data = String(light) + "," + String(temp) + "," + String(humid)

220

Data is only written to the file on the SD card following the file.close()

instruction; therefore, every file.println(data) instruction must be

followed by a file.close() instruction and be preceded by an

SD.open("filename", FILE_WRITE) instruction. The SD.open() function

has default setting of FILE_READ, so the option FILE_WRITE is required to

write to a file.

The sequence of instructions required every time to write to an SD

card is

SD.open("filename", FILE_WRITE);

file.println(data);

file.close();

 Temperature and Light Intensity Logging
Storing temperature and light intensity measurements on a micro SD card

illustrates use of the micro SD module (see Figure 12-1). When the light

dependent resistor (LDR) and LM35DZ sensors operate separately, the

LDR signal has a sinusoidal pattern, while the LM35DZ signal is essentially

flat (see Figure 12-2). When the two sensors operate together, there can

be interference from the LDR signal on the LM35DZ signal, which can be

removed with a bypass capacitor (see Figure 12-2). Electrolytic capacitors

are polarized and the cathode, which has a “–” marking and a colored strip

on the side, is connected to GND. Connections for Figure 12-1 are given in

Table 12-1.

Chapter 12 SD CarD MoDule

221

Figure 12-1. Micro SD card module with sensors

Figure 12-2. Signals from LDR and LM35DZ sensors

Chapter 12 SD CarD MoDule

222

Another example of signal noise is the alternating current (AC) ripple

effect, particularly in the 50Hz-60Hz frequency, which is the frequency

of domestic AC power supplies. With alternating current, a capacitor’s

reactance is analogous to a resistor’s resistance and is equal to 1/(2πfC),

where f is the signal frequency and C the capacitance. A bypass capacitor

has high reactance to signals with low frequency, such as the LM35DZ

signal, and low reactance to signals with high frequency, such as the LDR

signal. When a bypass capacitor is connected between the LM35DZ signal

and ground, the high-frequency noise will go to ground, leaving a clean

LM35DZ signal available for the microcontroller.

The required capacitance of the bypass capacitor depends on the lower

limit of frequencies to be blocked and the reactance of the capacitor has to

be significantly lower than the output impedance of the LM35DZ sensor.

The LM35DZ sensor has an output current of 60μA and an output voltage

of 200mV with a temperature measurement of 20°C, giving an output

impedance of 3.3kΩ. Setting the capacitor’s reactance to one tenth of the

LM35DZ output impedance (Z), with a frequency threshold of 50Hz, then

the required capacitance of 10μF is derived from the equation C = 1/(2πfZ).

In Chapter 3, the temperature-recording sketch (see Listing 3-1) used

the analogReference(INTERNAL) instruction to reference the LM35DZ

temperature sensor’s output voltage to 1.1V rather than the default 5V. The

output voltage of the light dependent resistor is referenced to 5V, so when

the temperature sensor and light dependent resistor are used together, the

analogReference(INTERNAL) option is not available.

The sketch (see Listing 12-1) to write measurements of light intensity

and temperature to an SD card checks for the presence of the SD card and

that the SD card can be written to. Measurement of light intensity with a

LDR in conjunction with a voltage divider was described in Chapter 3. The

SD library is included in the Arduino IDE and is used to write to the micro

SD card. In the sketch, the existing file, data.csv, is effectively overwritten

by first deleting the file and then creating a new file. Later in the chapter,

file names are incremented, so that overwriting files is not required.

Chapter 12 SD CarD MoDule

223

Listing 12-1. Micro SD Card Module With Sensors

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

File file; // associate file with SD library

String filename = "data.csv"; // filename

int CSpin = 10; // chip select pin

int lightPin = A0; // LDR light intensity pin

int tempPin = A1; // temperature sensor pin

int i = 0; // data record counter

int light;

float temp;

String data;

Table 12-1. Connections for Micro SD Card Module with Sensors

Component Connect to and to

SD card GND arduino GND

SD card VCC arduino 5V

SD card MISO arduino pin 12

SD card MOSI arduino pin 11

SD card SCK arduino pin 13

SD card SCS arduino pin 10

LDR right arduino 5V

LDR left arduino pin a0

LDR left 4.7kΩ resistor arduino GND

LM35DZ GND arduino GND

LM35DZ signal arduino pin a1 10μF capacitor positive

LM35DZ VCC arduino 5V

10μF capacitor negative arduino GND

Chapter 12 SD CarD MoDule

224

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 Serial.println("checking SD card"); // print message to Serial Monitor

 if(SD.begin(CSpin) == 0) // check for presence of SD card

 {

 Serial.println("Card fail"); // return to void setup() if SD card not found

 return;

 }

 Serial.println("Card OK");

 if(SD.exists(filename)>0) SD.remove(filename); // delete existing file

 file = SD.open(filename, FILE_WRITE); // create new file

 if(file == 1) // file opened

 {

 String header = "i, light, temp"; // create column headers

 file.println(header); // write column header to SD card

 file.close(); // close file after writing to SD card

 }

 else Serial.println("Couldn't access file"); // file not opened

}

void loop()

{

 i++; // increase data record counter

 Serial.print("record ");Serial.println(i); // print record number

 light = analogRead(lightPin); // light reading

 temp = (500.0*analogRead(tempPin))/1023; // temp reading

 // referenced to 5V create string from readings

 data = String(i) + "," + String(light) + "," + String(temp);

 file = SD.open(filename, FILE_WRITE); // open data file before writing

 file.println(data); // write data string to file

 file.close(); // close file after writing to SD card

 delay(5000); // delay 5s before next reading

}

Chapter 12 SD CarD MoDule

225

Information on an SD card can be read and the contents displayed

on the serial monitor. The Serial.print() and Serial.write()

instructions differ as the former displays the ASCII (American Standard

Code for Information Interchange) code for an alphanumeric character,

while the latter converts the ASCII code to display the alphanumeric

character. In Listing 12-2, Serial.write() is used to display the

content of the data.csv file.

Listing 12-2. Display Contents Of File

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

File file; // associate file with SD library

String filename = "data.csv"; // filename

int CSpin = 10; // chip select pin

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 if(SD.begin(CSpin) == 0) // check for presence of SD card

 {

 Serial.println("Card fail");

 return; // return to void setup() if SD card not found

 }

 Serial.println("Card OK");

 file = SD.open(filename); // open file to read display contents of file

 while (file.available()>0) Serial.write(file.read());

 file.close(); // close file after reading

}

void loop()

{} // nothing in void loop() function

Chapter 12 SD CarD MoDule

226

 Date and Time Logging
The date and time of a sensor measurement or of a data

record can be included when writing data to an SD card

using a real-time clock (RTC) module, such as the DS3231.

The real-time clock can provide seconds, minutes, hours, day, date, month,

and year information. The DS3231 can be powered with 3.3V or 5V and a

CR2032 lithium button-cell battery powers the RTC when not connected

to the Arduino. The DS3231 also has an inbuilt temperature sensor. The

DS3231 uses I2C communication with the two bidirectional lines: serial

clock (SCL) and serial data (SDA) (see Figure 12-3). Connections for the

DS3231 are given in Table 12-2.

Figure 12-3. DS3231 real-time clock

Chapter 12 SD CarD MoDule

227

The DS3231 library by Henning Karsen is recommended, due to

the quality of the manual and ease of accessing time components with

the DS3231 library. A .zip file containing the DS3231 library can be

downloaded from www.rinkydinkelectronics.com. Chapter 3 included

details on installing a downloaded library .zip file using either installation

method 1 or method 2.

When the DS3231 RTC is first used, the date and time must be included

and then the sketch is re-run, with the date and time setting instructions

commented out, as in Listing 12-3. When setting the time, use the 24-hour

time format without leading zeros with uppercase for the weekday. Compiling

and loading takes 10 seconds, so set the time forward by 10 seconds. The

sketch displays the weekday, date and time, followed by the components of

the date and time and then the temperature in Celsius.

Table 12-2. Connections for Real-Time Clock Module

Component Connect to

DS3231 GND arduino GND

DS3231 VCC arduino 5V

DS3231 SDA arduino pin a4

DS3231 SCL arduino pin a5

Listing 12-3. Real-time Clock Module

#include <DS3231.h> // include DS3231 library

DS3231 rtc(SDA, SCL); // associate rtc with DS3231 library

Time t;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 rtc.begin(); // start rtc

Chapter 12 SD CarD MoDule

http://www.rinkydinkelectronics.com

228

// rtc.setDOW(WEDNESDAY) // set weekday

// rtc.setTime(10, 23, 20); // set the time to hh mm ss

// rtc.setDate(22, 8, 2018); // set the date to dd mm yyyy

}

void loop()

{

 Serial.print(rtc.getDOWStr());Serial.prin t(" "); // day of week

 Serial.print(rtc.getDateStr());Serial.print(" "); // date

 Serial.print(rtc.getTimeStr());Serial.print("\t"); // time

 t = rtc.getTime(); // components of date and time

 Serial.print(t.date);Serial.print(" "); // day

 Serial.print(rtc.getMonthStr()); // month as text

 Serial.print(" (month ");

 Serial.print(t.mon);Serial.print(") "); // month

 Serial.print(t.year);Serial.print("\t"); // year

 Serial.print(t.hour);Serial.print(":"); // hour

 Serial.print(t.min);Serial.print(":"); // minute

 Serial.print(t.sec);Serial.print("\t"); // second

 Serial.print(rtc.getTemp(),1); // temperature to 1DP

 Serial.println(" C");

 delay (1000);

}

 Logging Weather Station Data
Listing 12-3 extends Listing 12-1, which stored temperature and light intensity

measurements on an SD card, by including humidity measurements and

recording the date and time of measurement (see Figure 12-4 and Table 12-3).

The sketch has four phases: (1) load libraries for the SD card, the real-

time clock (RTC), and the DHT11 sensor; define the Arduino connection

pins; initialize the real-time clock and DHT11 sensor; and define variables

(2) check the presence of the SD card; create a new data.csv file; and write

Chapter 12 SD CarD MoDule

229

a header to the file (3) read the light intensity, temperature, and humidity

sensors; get the date and time components from the real-time clock; create

a data string of the date and time and the sensor measurements to be

written to the data file and (4) write data to the file on the SD card.

There are several libraries for the DHT11 sensor and the dht library

(DHTlib) by Rob Tilllaart is recommended. The dht library is contained

within a .zip file available at https://github.com/RobTillaart/Arduino.

Use installation method 1 or method 2 to install the dht library, as outlined

in Chapter 3.

Figure 12-4. SD card, RTC with sensors

Chapter 12 SD CarD MoDule

https://github.com/RobTillaart/Arduino

230

Table 12-3. Connections for SD Card, RTC with Sensors

Component Connect to

DS3231 GND arduino GND

DS3231 VCC arduino VCC

DS3231 SDA arduino pin a4

DS3231 SCL arduino pin a5

LDR left arduino 5V

LDR right arduino pin a3

LDR right 4.7kΩ resistor

4.7kΩ resistor arduino GND

PCB DHT11 GND arduino GND

PCB DHT11 VCC arduino 5V

PCB DHT11 OUT arduino pin 6

SD card SCS arduino pin 10

SD card SCK arduino pin 13

SD card MOSI arduino pin 11

SD card MISO arduino pin 12

SD card VCC arduino 5V

SD card GND arduino GND

Listing 12-4. Weather Station

#include <SD.h> // include SD library

File file; // associate file with SD library

String filename = "data.csv"; // filename

#include <DS3231.h> // include DS3231 library

Chapter 12 SD CarD MoDule

231

DS3231 rtc(SDA, SCL); // associate rtc with DS3231 library

#include <dht.h> // include dht library

dht DHT; // associate DHT with dht library

int CSpin = 10; // chip select pin for SD card

int lightPin = A3; // light dependent resistor pin

int PCBpin = 6; // PCB mounted DHT11 pin

int i = 0; // data record counter

int check, light, temp, humid;

String data, date, time;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 rtc.begin(); // start rtc

 Serial.println("checking SD card"); // check for presence of SD card

 if(SD.begin(CSpin) == 0)

 {

 Serial.println("Card fail"); // return to void setup() if SD card not found

 return;

 }

 Serial.println("Card OK");

 if(SD.exists(filename)>0) SD.remove(filename); // delete old file

 file = SD.open(filename, FILE_WRITE); // create new file

 if(file == 1)

 { // column headers

 String header = "record, time, light, temp, humid, on ";

 header = header + String(rtc.getDateStr()); // date

 file.println(header); // write column headers to file

 file.close(); // close file after writing to SD card

 }

 else Serial.println("Couldn't access file"); // file not opened

}

Chapter 12 SD CarD MoDule

232

void loop()

{

 i++; // increase data record counter

 Serial.print("record ");Serial.println(i); // print record number

 light= analogRead(lightPin); // light intensity reading

 check = DHT.read11(PCBpin);

 temp = DHT.temperature; // temperature reading

 humid = DHT.humidity; // humidity reading

 time = rtc.getTimeStr(); // time stamp

 // combine measurements into a string

 data = String(i) + "," + String(time) + "," + String(light);

 data = data + "," + String(temp)+ "," + String(humid);

 file = SD.open(filename, FILE_WRITE); // open data file before writing

 file.println(data); // write data string to file

 file.close(); // close file after writing to SD card

 delay(1000); // delay 1s before next reading

}

 Increment File Name for Data Logging
A file name for writing data to an SD card can be incremented within a

sketch to create a new file, rather than deleting the existing file. For example,

a new file data4.csv is created if the file data3.csv already exists. Listing 12-5

illustrates incrementing the file name and then writing to the new file on the

SD card. In the sketch, the base file name is data.csv, which is incremented

to data1.csv, data2.csv, and so forth, with the following instruction.

filename = basefile + String(filecount) + ".csv"

filecount increments the file name.

Listing 12-5. Incrementing File Name

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

File file; // associate file with SD library

Chapter 12 SD CarD MoDule

233

int CSpin = 10; // chip select pin for SD card

String filename;

String basefile = "data"; // default filename is data.csv

bool filefound = false;

int filecount = 0; // for incrementing filename

int count = 0;

String data; // data to write to SD card

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 if(SD.begin(CSpin) == 0)

 {

 Serial.println("Card fail"); // return to void loop() if SD card not found

 return;

 }

 Serial.println("Card OK");

 filename=basefile + ".csv"; // generate filename

 while (filefound == 0) // search for file with filename

 {

 if(SD.exists(filename)>0) // if filename exists on SD card,

 { // then increment filename counter

 filecount++; // generate new filename

 filename = basefile + String(filecount) + ".csv";

 }

 else filefound = true; // flag file with filename located on SD card

 }

 file = SD.open(filename, FILE_WRITE); // open file on SD card

 if(file == 1)

 {

 Serial.print(filename);Serial.println(" created");

 data = "Count"; // column header

Chapter 12 SD CarD MoDule

234

 file.println(data); // write column header to file

 file.close(); // close file after writing to SD card

 }

 else Serial.println("Couldn't access file"); // file not opened

}

void loop()

{

 count = count + 1; // incremental counter

 data = String(count); // convert counter to string

 File file = SD.open(filename, FILE_WRITE); // open file on SD card

 if(file == 1) file.println(data); // write data string to file on SD card

 file.close(); // close file on SD card

 delay(1000); // delay 1s before next count

}

 Listing Files on an SD Card
Details of the file names and sizes, in bytes, on an SD card are displayed

with Listing 12-6. The list() function checks if a file is a directory and

displays the directory name, and if the file is not a directory, then details of

the files within the directory are displayed.

Listing 12-6. Display Contents of SD Card

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

File file; // associate file with SD library

int CSpin = 10; // chip select pin

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

Chapter 12 SD CarD MoDule

235

 if(SD.begin(CSpin) == 0) // check for presence of SD card

 {

 Serial.println("Card fail"); // return to void setup() if SD card not found

 return;

 }

 Serial.println("Card OK");

 file = SD.open("/"); // open SD directory of file information

 list(file, 0); // function to display file information

}

void loop() // nothing in void loop() function

{}

void list(File direct, int nfiles) // function to display file information

{

 while (1) // list function only runs once

 {

 File entry = direct.openNextFile(); // next file in directory

 if (entry == 0) break; // stop at end of directory

 if (entry.isDirectory()) // check is file is a directory

 {

 Serial.print(entry.name()); // display directory name

 Serial.println("\tis a directory");

 list(entry, nfiles+1); // only list details of files

 }

 else

 {

 Serial.print(entry.name());Serial.print("\t"); // display file name

 Serial.println(entry.size()); // display file size (bytes)

 }

 entry.close();

 }

}

Chapter 12 SD CarD MoDule

236

 Summary
Data from a real-time clock module and sensors was written to an SD card

for date-stamped data logging. File names were automatically incremented

rather than overwriting files. The content of a given file and information on

the file structure of the SD card were displayed.

 Components List
• Arduino Uno and breadboard

• Micro SD card module

• Real-time clock module: DS3231

• Temperature sensors: LM35DZ and DHT11

• Light dependent resistor (or photoresistor)

• Resistor: 4.7kΩ

• Capacitor: 10μF

Chapter 12 SD CarD MoDule

237© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_13

CHAPTER 13

Screen Displays
Displaying information on the serial monitor has

limitations on mobility with the Arduino connected to a

computer screen, and the LCD screen displays only 16×4

characters and does not display images. The TFT (thin-

film transistor) LCD screen offers both mobility and flexibility in a display.

 TFT LCD Screen
The ST7735 1.8-inch TFT LCD screen with resolution 160×128 pixels used

in this chapter has an SD card module for reading files to display.

The two rows of pins on the ST7735 are connections to the TFT LCD

screen, eight pins, and to an SD card, four pins (see Figure 13-1 and

Table 13-1). The ST7735 display screen communicates with the Arduino

using the Serial Peripheral Interface (SPI), as outlined in Chapter 11.

238

Figure 13-1. ST7735 TFT LCD screen

SPI requires the three lines: MOSI, MISO, and serial clock (SCK). The TFT

LCD screen does not use MISO, as the TFT LCD screen does not transmit

to the Arduino. The SD card module also uses MOSI, MISO, and SCK, as

information from the SD card can be transmitted to the Arduino to display

an image on the TFT LCD screen. MOSI, MISO, and SCK connections are

to Arduino pins 11, 12, and 13, with the SD card module CS connection

generally to Arduino pin 10. In Chapter 19, Arduino pin 8 must be used

for GPS transmission, so the ST7735 TFT CS, RESET, and DC (data or

instruction) pins are connected to Arduino pins 6, 7, and 9, respectively.

Note that the ST7735 A0 pin does not refer to Arduino analog pin A0.

Chapter 13 SCreen DiSplayS

239

Table 13-1. Connections for the ST7735 TFT LCD Screen with an SD

Card Module

TFT screen VCC GND TFT CS RESET DC or A0 MOSI or SDA SCK LED

Arduino pin 5V GnD 6 7 9 11 13 3.3V

SD card SD CS MOSI MISO SCK

Arduino pin 10 11 12 13

Connection of the TFT LCD screen VCC pin to Arduino 5V is only

required when the SD card module is required, as the TFT LCD screen LED

connection to Arduino 3.3V is sufficient for the ST7735 TFT LCD screen.

Two libraries: Adafruit ST7735 and Adafruit GFX must be installed

using the Arduino IDE, as outlined in Chapter 3 using installation method 3.

When using example sketches from the Adafruit ST7735 library, pin

connections for ST7735 TFT CS, RESET, and DC pins should be changed

from Arduino pins 10, 9, and 8 to Arduino pins 6, 7, and 9, respectively.

The ST7735 1.8-inch TFT LCD screen has 160 rows and 128 columns

of pixels. The top-left corner of the screen is position (0,0). The cursor is

moved to position (x, y) by the setCursor(x, y) instruction. The default

font size is 5×8 pixels per character, which can be increased to 5N×8N with

the setTextSize(N) instruction for N equal to 1, 2, 3, and so forth. Text

color is defined as setTextColor(color), where color is the HEX code for

a color, with default values given in Listing 13-1. Text is printed with the

print(text) instruction.

Rectangles are defined by the position of the top-left corner, the

width, and the height of the rectangle, with the drawRect(x, y, width,

height, color) instruction or fillRect(x, y, width, height, color)

instruction when the rectangle is to be filled in.

Circles are defined by the position of the center and radius of the

circle, with the drawCircle(x, y, radius, color) instruction and the

corresponding fillCircle(x, y, radius, color) instruction to fill-in

the circle.

Chapter 13 SCreen DiSplayS

240

Triangles are defined by the three corner points from left to right, with

the drawTriangle(x0, y0, x1, y1, x2, y2, color) instruction or to

fill-in the triangle by fillTriangle(x0, y0, x1, y1, x2, y2, color).

A point and line are defined by drawPixel(x, y, color) and

drawLine(x0, y0, x1, y1, color), respectively.

The screen orientation can be set as portrait or landscape with the

setRotation(N) instruction with values of 0 or 1, respectively, or the

values of 2 or 3 to rotate the image by 180° for portrait and landscape,

respectively.

The setTextColor(text_color, background_color) instruction

ensures that new text overwrites existing text, so it is not necessary to draw

a background rectangle over the existing text.

To illustrate positioning the cursor, printing text, and drawing shapes

on the ST7735 TFT LCD screen, Listing 13-1 prints the names of colors and

draws rectangles, circles, and triangles in each color.

Listing 13-1. Display Shapes and Colors

#include <Adafruit_ST7735.h> // include ST7735 library

#include <Adafruit_GFX.h> // include GTX library

int TFT_CS = 6; // screen chip select pin

int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

 // associate tft with Adafruit_ST7735 library

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

unsigned int BLACK = 0x0000;

unsigned int BLUE = 0x001F;

unsigned int RED = 0xF800;

unsigned int GREEN = 0x07E0;

unsigned int CYAN = 0x07FF; // HEX codes for colors

unsigned int MAGENTA = 0xF81F;

unsigned int YELLOW = 0xFFE0;

unsigned int WHITE = 0xFFFF;

unsigned int GREY = 0xC618;

Chapter 13 SCreen DiSplayS

241

String texts[] =

 {"BLUE","RED","GREEN","CYAN","MAGENTA","YELLOW","WHITE","GREY"};

String text;

unsigned int colors[] =

 {BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW, WHITE, GREY};

unsigned int color;

void setup()

{

 tft.initR(INITR_BLACKTAB); // initialize screen

 tft.fillScreen(BLACK); // fill screen in black

 tft.drawRect(0,0,128,160,WHITE); // draw white frame line

 tft.drawRect(1,1,126,158,WHITE); // and second frame line

 tft.setTextSize(2); // set text size

}

void loop()

{

 tft.fillRect(2,2,124,156,BLACK); // clear screen apart from frame

 for (int i=0; i<8; i++) // for each color

 {

 color = colors[i]; // set color

 text = texts[i]; // set text

 tft.setTextColor(color); // set text color

 tft.setCursor(20, 20 * i + 2); // position cursor

 tft.print(text); // print color name

 delay(250); // delay 250ms between colors

 }

 delay(500);

 for (int i=0; i<8; i++) // for each color

 {

 tft.fillRect(2,2,124,156,BLACK); // clear screen apart from frame

 color = colors[i];

 text = texts[i];

Chapter 13 SCreen DiSplayS

242

 tft.setCursor(20,25); // move cursor position to (20, 25)

 tft.setTextColor(color); // set text color

 tft.print(text); // print color name

 if ((i+1) % 3 == 0) // draw filled-in triangle

 tft.fillTriangle(20,134,64,55,107,134,color);

 // draw open rectangle

 else if ((i+1) % 2 == 0) tft.drawRect(20,55,88,80,color);

 else tft.fillCircle(64,95,39,color); // draw filled-in circle

 delay(500);

 }

 tft.fillRect(2,2,124,156,BLACK); // clear screen apart from frame

 tft.drawLine(2,78,125,78,RED); // draw horizontal line (x0,y) to (x1, y)

 tft.drawLine(2,80,125,80,RED);

 tft.drawLine(62,2,62,157,RED); // draw vertical line (x,y0) to (x, y1)

 tft.drawLine(64,2,64,157,RED);

 delay(500);

}

 Displaying Images from an SD Card
Images stored on an SD card, formatted with file system FAT32, can be

displayed on the ST7735 1.8-inch TFT LCD screen, with images saved

as 160×128 pixels in Bitmap format of bit depth 24 and the file extension

.bmp. The ST7735 TFT LCD screen VCC and LED pins are connected to

Arduino 5V and 3.3V pins, respectively, to power the SD card module and

the LCD screen.

The spitftbitmap sketch in the Adafruit ST7735 library displays, on the

ST7735 TFT LCD screen, images stored on an SD card. To retain the same

pin connections between the ST7735 TFT LCD screen and the Arduino as

in Listing 13-1, the pin numbers of the following lines must be changed:

Chapter 13 SCreen DiSplayS

243

#define TFT_CS 10 // Chip select line for TFT display change to 6

#define TFT_RST 9 // Reset line for TFT (or see below...) change to 7

#define TFT_DC 8 // Data/command line for TFT change to 9

#define SD_CS 4 // Chip select line for SD card change to 10

In the void setup() function of the spitftbitmap sketch, after the

tft.initR(INITR_BLACKTAB) instruction, add the tft.setRotation(1)

instruction for landscape orientation. For each image to be displayed with

the file name image_filename.bmp, add the following instructions.

bmpDraw("image_filename.bmp", 0, 0); // display image_filename.bmp

delay(5000) // time delay to view image

 Screen, Servo Motor, and Ultrasonic
Distance Sensor
An HC-SR04 ultrasonic distance sensor can be secured to the top of a servo

motor for scanning distances through a 180° arc. The scanned image, which

is analogous to a “radar” effect, but using sound waves rather than radio

waves, can be displayed on the ST7735 TFT LCD screen (see Figure 13-2),

with the green points indicating the positions of two objects perpendicular

to each other. Listing 13-2 uses Listing 3-5 for the HC- SR04 ultrasonic

distance sensor from Chapter 3, Listing 8-1 for the servo motor from

Chapter 8, and Listing 13-1 for the screen from this chapter. The schematic

in Figure 13-3 has the ultrasonic distance scanner on a breadboard to

illustrate connection to the Arduino, but for the project, the ultrasonic

distance scanner is secured to the top of the servo motor. As noted in

Chapter 8, the servo motor requires an external power supply. The L4940V5

voltage regulator reduces the external 9V supply to 5V for the servo motor.

The ST7735 TFT LCD screen is connected to Arduino 3.3V with the LED

connection, as the SD card module is not required (see Table 13-2). Note

that the GND connections for all devices must be connected together.

Chapter 13 SCreen DiSplayS

244

Figure 13-2. ST7735 TFT screen “radar”

Figure 13-3. Screen, servo motor, and ultrasonic scanner

Chapter 13 SCreen DiSplayS

245

Table 13-2. Connections for Screen, Servo Motor, and Ultrasonic

Scanner

Component Connect to and to

ST7735 TFT GND arduino GnD

ST7735 TFT CS arduino pin 6

ST7735 TFT RESET arduino pin 7

ST7735 TFT A0 arduino pin 9

ST7735 TFT SDA arduino pin 11

ST7735 TFT SCK arduino pin 13

ST7735 TFT LED arduino 3.3V

HC-SR04 scanner VCC arduino 5V

HC-SR04 scanner Trig arduino pin a1

HC-SR04 scanner Echo arduino pin a2

HC-SR04 scanner GND arduino GnD

Servo VCC l4940V5 output 22μF capacitor positive

Servo GND arduino GnD

Servo signal arduino pin a0

9V battery positive l4940V5 input 100nF capacitor positive

9V battery negative arduino GnD

22μF capacitor negative arduino GnD

100nF capacitor negative arduino GnD

Chapter 13 SCreen DiSplayS

246

Listing 13-2 sets up the screen image with text and scan arcs in the

setup() and radar1() functions, measures the distance to an object in the

scan() function, and calculates the scan line and the points indicating an

object to draw on the screen in the radar2() function (see Figure 13-2).

The majority of the sketch is defining variables and setting up the “radar”

screen with instructions for scanning and calculating the scan line only

accounting for a small part of the sketch.

The maximum measureable scanning distance, maxdist, the

incremental change in scan angle, increment, and the time interval

between scans, speed, can be readily changed in the first section of the

sketch. The interval between scans should be at least 20ms to allow the

servo motor time to move to the new position. Distances displayed in the

screen are scaled based on the radius of the large scan arc of the ST7735

TFT LCD screen and the maximum scanning distance.

The scan line from the middle of the bottom of the screen to the end

point (x, y) is calculated from the scan angle, θ, and the radius of the scan

arc, r. Formula for the horizontal, x, and vertical, y, components of the

scan line are given in Figure 13-4. When drawing a scan line on the ST7735

TFT LCD screen, the angle is defined in radians, so the angle, measured in

degrees, is converted to radians by the formula: radian = angle×π/180. In

the sketch, the PI variable is predefined in the Arduino IDE with the value

of π = 3.14159. The vertical component of the scan line, 128-y, moves the

end point of the scan line up the screen with increasing distance.

Figure 13-4. Calculating the scan line

Chapter 13 SCreen DiSplayS

247

There are several libraries for the HC-SR04 ultrasonic distance sensor

and the NewPing library by Tim Eckel is recommended. The NewPing

library can be installed within the Arduino IDE using installation method 3,

as outlined in Chapter 3.

Listing 13-2. Screen, Servo Motor, and Ultrasonic Scanner

#include <Adafruit_ST7735.h> // include the ST7735 library

#include <Adafruit_GFX.h> // include the GFX library

int TFT_CS = 6; // screen chip select pin

int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

 // associate tft with Adafruit_ST7735 library

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

#include <NewPing.h> // include ultrasonic sensor library

int trigPin = A1; // ultrasonic sensor pins

int echoPin = A2;

int maxdist = 50; // maximum scanning distance in cm

NewPing sonar(trigPin, echoPin, maxdist); // associate sonar with

 // NewPing library

#include <Servo.h> // include the servo motor library

Servo servo; // associate servo with Servo library

int servoPin = A0; // servo motor pin

float radius = 110.0; // radius of displayed scan arc

int increment = 3; // incremental change of scan angle

int speed = 30; // interval (ms) between scans

unsigned int BLACK = 0x0000;

unsigned int YELLOW = 0xFFE0;

unsigned int LITEYEL = 0xFFF5; // HEX codes for colors

unsigned int GREEN = 0x07E0;

unsigned int WHITE = 0xFFFF;

int angle, x, y, distance, duration;

Chapter 13 SCreen DiSplayS

248

void setup()

{

 servo.attach(servoPin); // initialize servo motor

 tft.initR(INITR_BLACKTAB); // initialize ST7735 TFT LCD screen

 tft.fillScreen(BLACK); // clear screen

 tft.setRotation(3); // orientate ST7735 TFT LCD screen

 tft.setTextColor(WHITE, BLACK); // text color with over-write

 tft.drawRect(0,0,160,128,WHITE); // draw white frame line

 tft.drawRect(1,1,158,126,WHITE); // and second frame line

 tft.setTextSize(1); // set text size

 tft.setCursor(3,3); // move cursor to position (3, 3)

 tft.print("Distance"); // print text on screen

 tft.setCursor(95,3);

 tft.print("Radius ");

 tft.setCursor(135,3);

 tft.print(maxdist); // display value of large arc

}

void loop()

{

 radar1(); // set up screen with anti-clockwise scan

 for (int angle=10; angle<170; angle=angle+increment) radar2(angle);

 radar1(); // set up screen with clockwise scan

 for (int angle=170; angle>10; angle=angle-increment) radar2(angle);

}

void radar1()

{

 tft.fillRect(2,12,156,114,BLACK); // clear screen apart from frame

 tft.drawCircle(80,128,radius/2,YELLOW); // draw arc to assist reading

 tft.drawCircle(80,128,radius,YELLOW); //image and second arc

}

Chapter 13 SCreen DiSplayS

249

void radar2(int angle)

{

 servo.write(angle); // move servo motor to angle

 scan(); // function to measure distance

 delay(speed); // interval between scans

 x = radius*cos(angle*PI/180); // calculate scan line

 y = radius*sin(angle*PI/180);

 tft.drawLine(80,128,80+x,128-y,LITEYEL); // draw line from baseline to arc

 x = x*distance/maxdist; // calculate position of object

 y = y*distance/maxdist;

 tft.fillCircle(80+x,128-y,2,GREEN); // draw circle when object detected

}

void scan()

{

 duration = sonar.ping(); // duration of echo

 distance = (duration/2)*0.0343; // distance measured in cm

 char printOut[4]; // array of characters

 String dist = String(distance); // convert distance to string

 if(distance<10) dist = " " + dist; // leading a space for values < 10

 dist.toCharArray(printOut, 4); // convert string to characters

 tft.setCursor(60,3); // move cursor

 tft.print(printOut); // display distance on screen

}

 OLED Display
OLED (organic-light emitting diode) displays contain an

organic carbon-based film that emits light in response to a

current. OLED displays do not require a backlight and are low

power devices. OLED displays are used in mobile phones,

digital cameras, and laptops. There are many varieties of

OLED displays and a 128×32–pixel display based on the SSD1306 chip is

used in this chapter. The OLED display logic operates at 3.3V.

Chapter 13 SCreen DiSplayS

250

The Adafruit SSD1306 and Adafruit GFX libraries are used in this chapter,

although there are several libraries for OLED displays. The libraries are

installed in the Arduino IDE with installation method 3, as outlined in Chapter

3. The hexadecimal I2C address of the OLED display is required by the

microcontroller for communication with the OLED display. With the Adafruit

SSD1306 library, the I2C address is 0x3C or 0x3D for 128×32 or 128×64 OLED

displays, respectively. Listing 4-3 of Chapter 4, scans for I2C devices and

provides the I2C addresses. OLED connections are given in Table 13-3.

If the OLED display has a Reset pin, then the Reset pin is defined as

int OLED_RESET = 4; // OLED reset pin = 4

Adafruit_SSD1306 oled(OLED_RESET);

Otherwise, the Reset pin is not defined as in the Adafruit_SSD1306

oled(-1) instruction.

Table 13-3. Connections for an OLED Screen

Component Connect to

OLED GND arduino GnD

OLED VCC arduino3.3V

OLED SCK arduino pin a5

OLED SDA arduino pin a4

A character and spacing requires 6×8 pixels and a text size of N

requires 6N×8N pixels, so four, two or one lines of text are possible with

text sizes 1, 2, or 4 on a 128×32 pixel OLED display screen.

Listing 13-3 illustrates some OLED display instructions that must

be followed with the oled.display() instruction to activate the display

instructions.

Chapter 13 SCreen DiSplayS

251

Listing 13-3. OLED Display

#include <Adafruit_GFX.h> // include Adafruit GFX library

#include <Adafruit_SSD1306.h> // include Adafruit SSD1306 library

 // associate oled with Adafruit_SSD1306 library

Adafruit_SSD1306 oled(-1); // no need to define Reset pin

void setup()

{

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // OLED display and I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(2); // set font size (1, 2, 3 or 4)

 oled.setCursor(0,0); // position cursor at (0, 0)

 oled.println("Arduino"); // print text with carriage return

 oled.print("Applied"); // starting on new line print text

 oled.display(); // start display instructions

 delay(2000); // delay 2s

 oled.clearDisplay();

 oled.setTextSize(1); // font size 1 characters 6×8 pixels

 oled.setCursor(0,0);

 oled.println("Arduino");

 oled.print("Applied");

 oled.setCursor(45,16); // position cursor at (x, y)

 oled.print("Arduino"); // at top left hand corner of text

 oled.setCursor(45,24);

 oled.print("Applied");

 oled.display();

 delay(2000);

Chapter 13 SCreen DiSplayS

252

 oled.clearDisplay();

 oled.setTextSize(3); // font size 3 characters 18×24 pixels

 oled.setCursor(0,8); // maximum of 7 characters per row

 oled.print("1234567");

 oled.display();

}

void loop() // nothing in void loop() function

{}

 Touch Screen
The 2.4-inch ILI9341 SPI TFT LCD touch screen with

240×320 pixels enables text and shapes to be drawn with

different colors on the screen. The ILI9314 TFT LCD screen

operates at 3.3V, so an 8-channel or two 4-channel logic

level converters should be used to reduce the voltage of the transmitted

signal from the Arduino, which operates at 5V (see Figure 13-5 and

Table 13-4). Logic level converters were outlined in Chapter 4.

Chapter 13 SCreen DiSplayS

253

Figure 13-5. ILI9341 TFT LCD screen with 8-channel logic level
converter and voltage dividers

Table 13-4. Connections for ILI9341 TFT LCD Screen with Logic

Level Converter

ILI9314 TFT Screen Connect with Arduino Uno

VCC 3.3V 3.3V

GND GnD

CS chip select logic level pin 10

RESET reset 10kΩ resistor pin 8

DC data command logic level pin 9

(continued)

Chapter 13 SCreen DiSplayS

254

An alternative to logic level converters is voltage dividers based on

1kΩ and 2.2kΩ resistors between the Arduino and the ILI9314 TFT LCD

screen, with the reduced voltage at the junction between the two resistors

(see Figure 13-5). A logic level converter is preferable to a voltage divider,

as the signal capacitance and the voltage divider resistors form a resistor-

capacitor filter (outlined in Chapter 2) that rounds the edge of the digital

signal, which can impact performance of the device receiving the signal.

If 1kΩ and 2.2kΩ resistors are used voltage dividers, then Arduino

pins 3, 5 to 11 and 13 are each connected to a 1kΩ resistor, which is

connected to a 2.2kΩ resistor, which is connected to GND. The junction

between the 1kΩ and 2.2kΩ resistors is connected to the corresponding

pin on the ILI9314 TFT LCD screen (see Figure 13-5).

The Adafruit_ILI9341 and Adafruit_GFX libraries are required, which

are available from the Arduino IDE and installed using installation method 3,

as outlined in Chapter 3. The URTouch library by Henning Karlsen is

ILI9314 TFT Screen Connect with Arduino Uno

MOSI logic level pin 11

SCK serial clock logic level pin 13

LED 3.3V

MISO pin 12

“touch”

T_CLK serial clock logic level pin 7

T_CS chip select logic level pin 6

T_DIN data input logic level pin 5

T_DO data output pin 4

T_IRQ interrupt logic level pin 3

Table 13-4. (continued)

Chapter 13 SCreen DiSplayS

255

required for the touch functionality, which can be downloaded from

www.rinkydinkelectronics.com and installed using installation method 1.

The screen orientation can be set as portrait or landscape with the

setRotation(N) instruction with values of 0 or 1, respectively, or the

values of 2 or 3 to rotate the image by 180° for portrait and landscape.

The setRotation(N) instruction is contained in the Adafruit_GFX library,

which impacts coordinate referencing by the URTouch library, so the

(x,y) coordinates of the touch screen must be transformed, depending on

the screen orientation. Table 13-5 shows the transformation of the (x,y)

coordinates for each setRotation(N) setting, with the orientation of the

ILI9341 TFT LCD screen relative to the screen pins.

Table 13-5. ILI9341 TFT LCD Screen Orientation

Coordinates Transformation

setRotation(N) Screen Pins Top-Left Top-Right x y

0 bottom (320,240) (320,0) 240 - y 320 - x

1 right (320,0) (0,0) 320 - x y

2 top (0,0) (0,240) y x

3 left (0,240) (320,240) x 240-y

Listing 13-4 enables drawing on the ILI9341 TFT LCD screen with a

palette of colors. The screen is cleared by clicking the bottom-left corner of

the screen. The precision options of the URTouch library are PREC_LOW,

PREC_MEDIUM, PREC_HI, and PREC_EXTREME, with the last two taking

longer to read, which can impact drawing with a fast-moving cursor.

Color codes available in the Adafruit ILI9341 library are BLACK, NAVY,

DARKGREEN, DARKCYAN, MAROON, PURPLE, OLIVE, LIGHTGREY,

DARKGREY, BLUE, GREEN, CYAN, RED, MAGENTA, YELLOW, WHITE,

ORANGE, GREENYELLOW, and PINK. Colors are defined by prefixing with

ILI9341_, such as ILI9341_GREEN, which is more convenient than defining

HEX codes for each color, as listed in the Adafruit_ILI9341.h file.

Chapter 13 SCreen DiSplayS

http://www.rinkydinkelectronics.com

256

After defining variables, the sketch calls the clear() function to

clear the screen and display the available colors in the palette, which are

selected by touching the screen within a specified region, such as else

if(ty>100 && ty<120) color = ILI9341_YELLOW for the yellow color.

When the screen is touched outside the palette area, a point is

displayed in the chosen color by the if(tx>20) tft.fillCircle(tx, ty,

radius, color) instruction. Note that the coordinates (tx, ty) refer to

the transformed coordinates after taking account of the screen orientation,

due to the different coordinate referencing of the Adafruit_GFX and

URTouch libraries.

Listing 13-4. Drawing on ILI9341 TFT LCD Screen

#include <Adafruit_GFX.h> // include Adafruit GFX library

#include <Adafruit_ILI9341.h> // include Adafruit ILI9341 library

#include <URTouch.h> // include URTouch library

int tftCLK = 13; // clock (SCL)

int tftMISO = 12; // MISO (SDA/SDO - serial data output)

int tftMOSI = 11; // MOSI (SDI - serial data input)

int tftCS = 10;

int tftDC = 9;

int tftRST = 8;

 // associate tft with Adafruit ILI9341 library and define pins

Adafruit_ILI9341 tft =

 Adafruit_ILI9341(tftCS, tftDC, tftMOSI, tftCLK, tftRST, tftMISO);

int tsCLK = 7;

int tsCS = 6;

int tsDIN = 5; // data input (~MOSI)

int tsD0 = 4; // data output (~MISO)

int tsIRQ = 3;

URTouch ts(tsCLK, tsCS, tsDIN, tsD0, tsIRQ); // associate ts with

 // URTouch library

int radius = 2; // radius of "paintbrush"

Chapter 13 SCreen DiSplayS

257

int setRot = 3; // portrait 0 or 2, landscape = 1 or 3

unsigned int color;

int x, y, tx, ty;

void setup()

{

 tft.begin(); // initialise TFT LCD screen

 tft.setRotation(setRot); // set touch screen orientation

 ts.InitTouch(); // initialise touch screen

 ts.setPrecision(PREC_MEDIUM); // set touch screen precision

 clear(); // function to clear screen

}

void loop()

{

 while(ts.dataAvailable()) // when touch screen pressed

 {

 ts.read(); // read (x,y) co- ordinates

 x = ts.getX();

 y = ts.getY();

 if(x != -1 && y != -1) // when contact with screen (-1 is no contact)

 { // transform (x,y) co-ordinates

 if(setRot == 0) {tx = 240-y; ty = 320-x;}

 else if(setRot == 1) {tx = 320-x; ty = y;}

 else if(setRot == 2) {tx = y; ty = x;}

 else if(setRot == 3) {tx = x; ty = 240-y;}

 if(tx<20 && tx>0) // choose color from palette

 {

 if(ty>75 && ty<95) color = ILI9341_RED;

 else if(ty>100 && ty<120) color = ILI9341_YELLOW;

 else if(ty>125 && ty<145) color = ILI9341_GREEN;

 else if(ty>150 && ty<170) color = ILI9341_BLUE;

 else if(ty>175 && ty<195) color = ILI9341_WHITE;

Chapter 13 SCreen DiSplayS

258

 else if(ty>215) clear(); // clear screen

 // display chosen color

 if(ty>75 && ty<195) tft.fillCircle(10, 50, 10, color);

 } // paint color on touch screen

 if(tx>20) tft.fillCircle(tx, ty, radius, color);

 }

 }

}

void clear()

{ // available colors listed in Adafruit_ILI9341.h

 tft.fillScreen(ILI9341_BLACK);

 tft.setTextColor(ILI9341_GREEN); // set text color

 tft.setTextSize(2); // set text size

 tft.setCursor(110,5); // position cursor middle-top

 tft.print("Paintpot");

 tft.fillRect(0,75,20,20,ILI9341_RED); // display color palette

 tft.fillRect(0,100,20,20,ILI9341_YELLOW);

 tft.fillRect(0,125,20,20,ILI9341_GREEN);

 tft.fillRect(0,150,20,20,ILI9341_BLUE);

 tft.fillRect(0,175,20,20,ILI9341_WHITE);

 tft.drawCircle(10,225,10,ILI9341_WHITE); // draw "clear" circle

 tft.setCursor(25,217);

 tft.setTextColor(ILI9341_WHITE);

 tft.print("clear");

 color = ILI9341_WHITE; // default color

}

 Summary
The TFT LCD screen was used to display shapes and digital images stored

on an SD card. An ultrasonic distance sensor and servo motor were

combined to create a “radar” image of surrounding objects. Images were

Chapter 13 SCreen DiSplayS

259

displayed on an OLED screen, which uses I2C communication. Images

were drawn on the SPI TFT LCD touch screen with a screen-pen.

 Components List
• Arduino Uno and breadboard

• TFT LCD screen: ST7735 1.8-inch

• OLED display: 128×32pixels or 128×64 pixels

• SPI TFT LCD touch screen: ILI9341 2.4-inch

• Ultrasonic distance sensor: HC-SR04

• Servo motor: SG90

• Voltage regulator: L4940V5

• Battery: 9V

• Logic level converter: 1×8 channel or 2×4 channel

• Capacitors: 0.1μF and 22μF

• Resistor: 1×10kΩ or 9×1kΩ and 9×2.2kΩ

Chapter 13 SCreen DiSplayS

261© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_14

CHAPTER 14

Sensing Colors
A color can be defined as a combination of red, green, and blue

components, as shown in Figure 14-1. One byte or 8 bits is used to store

each of the red, green, and blue values with 28 = 256 possible values for

each of the red (R), green (G), and blue (B) components of the compound

color. For example, magenta has a (255, 0, 255) RGB format.

Figure 14-1. RGB color values

262

 Red Green Blue (RGB) LED
An RGB LED consists of three combined LEDs:

a red, a green, and a blue LED. An RGB LED is

activated with the analogWrite(pin, value)

instruction with pin defined as the Arduino

pulse width modulation (PWM) pin for the red,

green, or blue LEDs and value is the light intensity. The RGB LED used in

Listing 14-1 has a common cathode, which has the longest leg.

Listing 14-1 defines the RGB combinations for each of 14 colors,

ranging from white to navy. For example, the RGB combination for

magenta is (255, 0, 255). A color is then randomly selected by the

random(14) instruction, for a number between 0 and 13, inclusive.

The number of increments, 63, corresponds to step sizes 2 or 4, which

minimizes the difference between the pixel value of one color and any

other color in the R, G, and B matrices. The magnitude of the incremental

change, for each of the RGB components, between the current and new

color is the RGB component difference divided by number of increments.

The delay() determines the rate of change in color. To best visualize the

color change, place a ping-pong ball on top of the RGB LED.

The three instructions at the start of Listing 14-1 detail connections

between the Arduino pins and an RGB LED (see Figure 14-2), with the

Arduino GND connected the common pin of the RGB LED. A 220Ω resistor

is connected between each of the RGB LEDs and the Arduino PWM

pins. The RGB LED module includes a 150Ω resistor for each LED, so no

additional resistors are required.

Chapter 14 SenSing ColorS

263

Listing 14-1. RGB LED

int redLED = 6; // LEDs on PWM pins

int greenLED = 5;

int blueLED = 3;

int steps = 63; // number of increments

int oldR = 0; // pixel value difference = 255 or 128

int oldG = 0; // so steps of size 4 or 2

int oldB = 0;

int incR, incG, incB; // incremental changes

String color[] =

 {"White","Red","Lime","Blue","Yellow","Cyan","Magenta","Grey",

 "Maroon","Olive","Green","Purple","Teal","Navy"};

int R[] = {255,255, 0, 0,255, 0,255,128,128,128, 0,128, 0, 0};

int G[] = {255, 0,255, 0,255,255, 0,128, 0,128,128, 0,128, 0};

int B[] = {255, 0, 0,255, 0,255,255,128, 0, 0, 0,128,128,128};

Figure 14-2. RGB LED

Chapter 14 SenSing ColorS

264

void setup()

{

 pinMode(redLED, OUTPUT); // define LED pins as output

 pinMode(greenLED, OUTPUT);

 pinMode(blueLED, OUTPUT);

}

void loop()

{

 int i = random(14); // select next color, between 0 and 13

 incR = (R[i]-oldR)/steps; // calculate the incremental amount

 incG = (G[i]-oldG)/steps;

 incB = (B[i]-oldB)/steps;

 for (int n = 0; n<steps; n++) // for each incremental change

 {

 analogWrite(redLED, oldR + n*incR); // change the LED intensity

 analogWrite(greenLED, oldG + n*incG);

 analogWrite(blueLED, oldB + n*incB);

 delay(5000/steps); // time delay between color increments

 }

 oldR = R[i]; // update the current color

 oldG = G[i];

 oldB = B[i];

}

 565 Color Format
Each R, G, and B component has 28 = 256 possible values as a component

is stored as an 8 bit number, so the number of possible RGB colors is about

17 million (= 2563). Color liquid crystal display (LCD) screens, such as the

ST7735 TFT LCD screen described in Chapter 13, use 16-bit color definition,

with the R, G, and B components converted from three 8 bit numbers into

a single 16-bit number, resulting in 216 = 65536 possible colors. The last

three bits of the R and B components are dropped, but only the last two bits

Chapter 14 SenSing ColorS

265

of the G component are dropped, as the human eye is more sensitive to

graduations of green compared to red and blue. The 16-bit number has 5 bits

for the red component, 6 bits for the green component, and 5 bits for the blue

component—the 565 format.

For example, the pale green color in Figure 14-3 has RGB format of

(95, 153, 66). The 8-bit binary representation for the R component of 95

is 01011111. When the last three bits of the R component are dropped,

the remaining 5-bit representation is 01011. Similarly, the last three bits

of the B component of 01000010 are dropped resulting in the 5-bit binary

number of 01000. Only the last two bits of the G component are dropped

leaving 100110. When the 5-, 6-, and 5-bit R, G, and B components are

combined into a 16-bit number, the combined value is 0101110011001000.

Figure 14-3. Color palette

Chapter 14 SenSing ColorS

266

The decimal representation of the 16-bit 565-formatted RGB number is

23752 equal to

28 × [(0×27) + (1×26) + (0×25) + (1×24) + (1×23) + (1×22) + (0×21) + (0×20)]

+ [(1×27) + (1×26) + (0×25) + (0×24) + (1×23) + (0×22) + (0×21) + (0×20)]

= 28 × 92 + 200

= 28 × [(5×24) + 12] + [(12×24) + 8]

Given that the numbers 10, 11, 12, 13, 14 and 15 have hexadecimal

representation of A, B, C, D, E and F, then the 16 bit 565 formatted RGB

number corresponds to a hexadecimal representation of 0x5CC8.

A color is generally represented in 565 format as hexadecimal with

the example of the Adafruit_ILI9341.h file in the Adafruit ILI9341 library,

as noted in Chapter 13. An advantage of the hexadecimal system is that a

color, defined as a 16-bit binary number in 565 format, can be represented

by four alphanumeric characters and that the number can easily be split

into two hexadecimal components. For example, in the pale green color in

Figure 14-3, the two components are 0x5C and 0xC8. As a comparison, the

hexadecimal representation of the original 24-bit number describing the

three RGB color components in Figure 14-3 is 0x5F9942, consisting of

the three hexadecimal numbers—5F, 99, and 42—that correspond to the

decimal numbers 95, 153, and 66.

To obtain the 5, 6 and 5-bit values, the three 8-bit R, G, and B

components are divided by 23, 22, and 23, respectively, which are then

multiplied by 211, 25, and 20 to shift the values 11, 5, and 0 places “to the

left” and generate the 16-bit number.

The instruction is ((r/8) << 11) | ((g/4) << 5) | (b/8), as used

in Listing 14-1.

Chapter 14 SenSing ColorS

267

 Color-Recognition Sensor
The color-recognition sensor TCS230 has an array of

64 photodiodes with red, blue, green, and clear color filters.

There are 16 photodiodes for each color filter and the

color-recognition sensor produces a square wave with the

frequency proportional to the light intensity of the relevant color.

The color-recognition sensor has two pairs of control pins with pin

states HIGH or LOW that determine which filter is activated and the scaling

of the output frequency (see Table 14-1). The output frequency scaling can

be set to 100% by connecting color-recognition sensor control pins S0 and

S1 to 5V (see Table 14-2). The status of color-recognition sensor control

pins S2 and S3 to activate a color filter is determined in the sketch.

Table 14-1. Control Pins of the Color-Recognition Sensor

Control Pins Control Pins

S2 S3 Photodiode Filter S0 S1 Output Scalar

loW loW red loW loW power down

loW high Blue loW high 2%

high loW Clear high loW 20%

high high green high high 100%

Chapter 14 SenSing ColorS

268

In Listing 14-2, the color-recognition sensor is calibrated by scanning

a white object and then a black object. Entering a <carriage return> at

the serial monitor signifies when each of the two calibration scans are

made. The color-recognition sensor output values, with the red, green,

or blue filters, for a white and a black image are of the order of 5 and 50,

respectively. An object is then scanned using the scan() function and the

color-recognition sensor output values with the red, green, and blue filters

are scaled to the range (0, 255) based on the calibration values. The three

scaled RGB components are combined and converted into a 16- bit

number representing the RGB compound color in the convertRGB()

function. A rectangle is then displayed on the ST7735 TFT LCD screen

filled with the RGB color (see Figure 14-4 and Table 14-3).

Table 14-2. Connections of the Color-Recognition Sensor

Color Sensor Pin Arduino Pin Color Sensor Pin Arduino Pin

GND ground gnD S3 photodiode a5

OE output enable not connected S2 photodiode a4

S1 output freq. 5V OUT output a3

S0 output freq. 5V VCC 5V

Chapter 14 SenSing ColorS

269

Figure 14-4. Color-recognition sensor and TFT LCD screen

Chapter 14 SenSing ColorS

270

Table 14-3. Connections for Color- recognition

Sensor and TFT LCD Screen

Component Connect to

ST7735 TFT GND arduino gnD

ST7735 TFT CS arduino pin 6

ST7735 TFT RESET arduino pin 7

ST7735 TFT A0 arduino pin 9

ST7735 TFT SDA arduino pin 11

ST7735 TFT SCK arduino pin 13

ST7735 TFT LED arduino 3.3V

TCS230 GND arduino gnD

TCS230 S1 arduino 5V

TCS230 S0 arduino 5V

TCS230 S3 arduino pin a5

TCS230 S2 arduino pin a4

TCS230 OUT arduino pin a3

TCS230 VCC arduino 5V

Listing 14-2. Color-recognition Sensor

#include <Adafruit_ST7735.h> // include ST7735 library

#include <Adafruit_GFX.h> // include GFX library

int TFT_CS = 6; // screen chip select pin

int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

 // associate tft with Adafruit_ST7735 library

Chapter 14 SenSing ColorS

271

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

unsigned int BLACK = 0x0000; // HEX code for black color

int S2 = A4; // color sensor pins

int S3 = A5;

int OUT = A3;

int calibrate = 0;

byte R, G, B, Rlow, Rhigh, Glow, Ghigh, Blow, Bhigh;

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 pinMode(S2, OUTPUT); // sensor pins S2 and S3 as output

 pinMode(S3, OUTPUT);

 pinMode(OUT, INPUT); // sensor pin OUT as input

 tft.initR(INITR_BLACKTAB); // initialize screen

 tft.fillScreen(BLACK); // fill screen in black

 // print instructions to Serial Monitor

 Serial.println("Select Newline option on Serial Monitor");

 Serial.println("Calibrate WHITE, <enter> when ready");

}

void loop()

{

 if (calibrate == 0) // calibrate white image

 {

 while (Serial.available()>0) // wait for <enter> to be pressed

 {

 if(Serial.read() == '\n') // white calibration on <enter>

 {

 Rlow = scan(LOW, LOW); // red filter scan of white image

 Glow = scan(HIGH, HIGH); // green filter scan of white image

 Blow = scan(LOW, HIGH); // blue filter scan of white image

Chapter 14 SenSing ColorS

272

 Serial.println("WHITE calibration complete");

 Serial.println("to calibrate BLACK, <enter> when ready");

 calibrate = 1; // flag WHITE has been calibrated

 }

 }

 }

 else if (calibrate == 1) // calibrate black image

 {

 while (Serial.available()>0) // wait for <enter> to be pressed

 {

 if(Serial.read() == '\n') // black calibration on <enter>

 {

 Rhigh = scan(LOW, LOW); // red filter scan of black image

 Ghigh = scan(HIGH, HIGH); // green filter scan of black image

 Bhigh = scan(LOW, HIGH); // blue filter scan of black image

 Serial.println("BLACK calibration complete");

 calibrate = 2; // flag BLACK has been calibrated

 Serial.println("<enter> when ready for color scan");

 }

 }

 }

 else if(calibrate == 2)

 {

 while (Serial.available()>0) // wait for <enter> to be pressed

 {

 if(Serial.read() == '\n') // start scan on <enter>

 {

 R = scan(LOW, LOW); // red filter scan of image

 R = map(R, Rlow, Rhigh, 255, 0); // scale red filter scan to

 // low-high range

 G = scan(HIGH, HIGH); // green filter scan of image

 G = map(G, Glow, Ghigh, 255, 0); // scale green filter scan to

 // low-high range

Chapter 14 SenSing ColorS

273

 B = scan(LOW, HIGH); // blue filter scan of image

 B = map(B, Blow, Bhigh, 255, 0); // scale blue filter scan to

 // low-high range

 unsigned int RGB = convertRGB(R,G,B); // convert to 16bit color

 tft.fillRect(20,60,88,80,RGB); // fill screen rectangle with scanned color

 // *** INSERT Listing 14-3 HERE

 }

 }

 }

}

int scan(int level2, int level3) // function to scan image

{

 digitalWrite(S2, level2); // set color sensor pins

 digitalWrite(S3, level3);

 unsigned int val = 0; // 1000 scans of image

 for (int i=0; i<1000; i++) val = val + pulseIn(OUT, LOW);

 val = val/1000.0; // average of 1000 scans

 return val;

}

unsigned int convertRGB(byte r, byte g, byte b)

{ // convert three 8 bit numbers to 16 bit number

 return ((r / 8) << 11) | ((g / 4) << 5) | (b / 8);

}

The sketch can be extended by displaying the calibration values on the

serial monitor and using the scaled RGB components to activate an RGB

LED to reproduce the scanned color, with the following instructions:

analogWrite(redLED, R);

analogWrite(greenLED, G);

analogWrite(blueLED, B);

Chapter 14 SenSing ColorS

274

The color name of the scanned object can be predicted based on the

RGB components of the scanned image, and displayed on the ST7735 TFT

LCD screen with an appropriately filled rectangle. For example, if the RGB

components satisfied the following condition:

if (R>200 && G>200) {color = 0xFFE0; text = "YELLOW";}

tft.setTextColor(color);

tft.print(text);

Then, the text “YELLOW” in a yellow color is displayed beside a yellow-

filled rectangle on the ST7735 TFT LCD screen. The unsigned int color

and String text variables are defined at the start of the sketch. HEX codes

for colors were listed in Chapter 13. Listing 14-3 contains instructions for

predicting colors that are included in Listing 14-1 after the instruction.

tft.fillRect(20,60,88,80,RGB); // fill screen rectangle with scanned color.

Listing 14-3. Predicting Color with the Color-Recognition Sensor

 if (R>220 && G<150) {color = 0xF800; text = "RED ";}

else if (G>120 && R<100) {color = 0x07E0; text = "GREEN ";}

else if (B>170 && R<150) {color = 0x001F; text = "BLUE ";}

else if (R>200 && G>170) {color = 0xFFE0; text = "YELLOW ";}

else if (R>200 && B>200) {color = 0xF81F; text = "MAGENTA ";}

else if (G>170 && B>200) {color = 0x07FF; text = "CYAN ";}

else {color = 0xFFFF; text = "no color";}

tft.setTextSize(2);

tft.setCursor(20,20);

tft.setTextColor(color, BLACK);

tft.print(text);

The setTextColor(text_color, background_color) instruction

ensures that new text overwrites existing text, so it is not necessary to draw

a background rectangle over the existing text before writing the new text,

which must be at least as long as the existing text.

Chapter 14 SenSing ColorS

275

The angle of a servo motor can be based on the predicted color, so

that a pointer moves to indicate the color on a color arch. For example,

the color names and corresponding angles can be defined in the arrays

texts[] and angles[], respectively, and the angle that the servo motor

moves through is determined by the predicted color (see Listing 14-4).

Listing 14-4. Move Servo According to Predicted Color

String texts[] = {"RED","GREEN","BLUE","YELLOW","MAGENTA","CYAN"};

int angles[] = {0, 36, 72, 108, 144, 180};

for (int i=0; i<6; i++)

 {

 if(text == texts[i]) servo.write(angles[i]);

 }

 Summary
Red, green, and blue components of color are described and illustrated

with a RGB LED. The color-recognition sensor was used to scan a pattern

and reproduce the color of the pattern. The scanned color was categorized

by the sensor as belonging to one of a range of standard colors.

 Components List
• Arduino Uno and breadboard

• RGB LED module

• Color-recognition sensor: TCS230

• TFT LCD screen: ST7735 1.8-inch

Chapter 14 SenSing ColorS

277© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_15

CHAPTER 15

Camera
The Arduino can support a camera, such as the OV7670

module, and display images on an ST7735 TFT LCD screen

(see Figure 15- 1) with a frame transfer rate of 10 frames per

second (fps). The resolutions of the OV7670 camera and

ST7735 TFT LCD screen are 640×480 and 160×128 pixels,

respectively.

This chapter uses the LiveOV7670 library by Indrek Luuk. To access

the library, download the .zip file from github.com/indrekluuk/

LiveOV7670. Unzip the file and copy the LiveOV7670-master ➤ src ➤ lib

➤ LiveOV7670Library folder to the default Arduino libraries folder. The

Adafruit GFX library must be also installed using the Arduino IDE, as

outlined in Chapter 3, with installation method 3.

A sketch to capture digital images is accessed by copying the

LiveOV7670-master ➤ src ➤ LiveOV7670 folder to the desktop. Within the

Arduino IDE, compile and load the Desktop ➤ LiveOV7670 ➤ LiveOV7670.

ino sketch to display OV7670 camera images at 10fps on the ST7735

TFT LCD screen. Prior to displaying the camera images, a green screen

indicates correct connections between the OV7670 camera module and

the Arduino; otherwise, a red screen is displayed.

http://github.com/indrekluuk/LiveOV7670
http://github.com/indrekluuk/LiveOV7670

278

Figure 15-1. OV7670 camera and ST7735 TFT LCD screen

Chapter 15 Camera

279

Table 15-1. Connections for OV7670 Camera Module

Arduino OV7670 camera module Arduino

3.3V GND

A5 – 10kΩ I2C clock I2C data A4 – 10kΩ

Pin 2 Vertical sync horizon ref

Pin 12 pixel clock System clock Pin 3

Pin 7 Pin 6

Pin 5 Video parallel Video parallel Pin 4

Pin A3 Output Output Pin A2

Pin A1 Pin A0

3.3V reset power down GND

Magnified OV7670 camera images at 1fps can be displayed with the

sketch LiveOV7670 after a change to the tab setup.h. To locate the tab

setup.h, select the triangle below the serial monitor button, on the right-

hand side of the Arduino IDE to reveal a drop-down list of tabs. On line 31

of setup.h, change #define EXAMPLE 1 to #define EXAMPLE 2, then

compile and load the sketch LiveOV7670.

Pin connections of the OV7670 camera module to the Arduino

are given in Table 15-1. Note that the OV7670 camera module and

the ST7735 TFT LCD screen are both connected to 3.3V. The HREF

(horizontal reference) pin on the OV7670 camera module is not

connected, as VSYNC (vertical synchronized output) indicates the

start of a new frame and the number of pixels depends on the image

resolution. The OV7670 camera module SIOD (I2C data) and SIOC (I2C

clock) pins are connected to Arduino I2C pins A4 (SDA) and A5 (SCL)

with 10kΩ pull-up resistors to 3.3V.

Chapter 15 Camera

280

Figure 15-2. Red and blue ST7735 TFT LCD screens

Pin connections between the ST7735 TFT LCD screen and the

Arduino depend on the particular ST7735 TFT LCD screen. The ST7735

TFT LCD screen used in this chapter and in Chapter 13 is denoted the

red screen in Table 15-2. Connections between another ST7735 TFT LCD

screen (denoted the blue screen in Figure 15-2) and the Arduino are also

shown in Table 15-2. The pin layout of the blue TFT LCS screen is given

in Table 15- 3.

Chapter 15 Camera

281

 Camera Image Capture Setup
The sketch LiveOV7670 has an image capture function, but a larger image

can be captured with code available at https://github.com/Kanaris/OV7670.

Both approaches require Java, with the 32-bit Java version used by the

github.com/Kanaris/OV7670 code and the 64-bit Java version used by

LiveOV7670. It is important not to mix 32-bit and 64-bit software.

Table 15-2. Connections for Red and Blue ST7735 TFT LCD Screens

Arduino Red Screen Arduino Blue Screen

GND LeD-

3.3V LeD 3.3V LeD+

Pin 9 CS

Pin 13 SCK Pin 13 SCK

Pin 11 SDa Pin 11 SDa

Pin 8 a0 or DC Pin 8 a0 or DC

Pin 10 reSet Pin 10 reSet

Pin 9 CS

GND GND

--- VCC

Table 15-3. Pin Layout of the Blue TFT LCD Screen

SD Card

LeD- LeD+ CS mOSI mISO SCK

ST7735 TFT LCD Screen

CS SCK SDa a0 reSet NC NC NC VCC GND

Chapter 15 Camera

https://github.com/Kanaris/OV7670

282

To determine if a computer has a 32-bit or a 64-bit operating system,

select Control Panel ➤ System and Security ➤ System. The system type

is displayed. Note that 32-bit programs are stored in C: ➤ Program Files

(x86), while 64-bit programs are stored in C: ➤ Program Files.

In the setup instructions for the 32-bit version of Java, the Java version

number was 192, which was released in October 2018 (see Release Notes

on www.oracle.com/technetwork/java/javase/documentation/index.

html). If a different Java version number is installed, then replace the 192

version number in file names with the appropriate version number.

Download and install the Java SE Development Kit for Windows x86

from www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads- 2133151.html.

The extracted files are saved in C: ➤ Program Files (x86) ➤ Java ➤

jdk1.8.0_192 and in C: ➤ Program Files (x86) ➤ Java ➤ jre1.8.0_192.

Download the .zip file from github.com/Kanaris/OV7670. The grabber

folder contains the win32com.dll file. The src and lib folders contain the

comm.jar and javax.comm.properties files, respectively.

Copy win32com.dll to C: ➤ Program Files (x86) ➤ Java ➤ jdk1.8.0_192

➤ jre ➤ bin.

Copy comm.jar to C: ➤ Program Files (x86) ➤ Java ➤ jdk1.8.0_192 ➤

jre ➤ lib ➤ ext.

Copy javax.comm.properties to C: ➤ Program Files (x86) ➤ Java ➤

jdk1.8.0_192 ➤ jre ➤ lib.

The src folder contains the com ➤ epam folders, which contain BMP.

java and SimpleRead.java. Paste the com folder to the desktop. The default

communication (COM) port in SimpleRead.java is set at COM9 and must

be changed to the appropriate port.

The COM port can be determined in the Arduino IDE by selecting

Tools ➤ port.

Chapter 15 Camera

https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://github.com/Kanaris/OV7670

283

Or from the computer,

 1. Select Control Panel ➤ Hardware and Sound ➤

Device Manager under Ports (COM & LPT).

 2. Open the Desktop ➤ com ➤ epam ➤ SimpleRead.

java file with a text editor.

 3. On line 32,

if (portId.getName().equals("COM9")) {

change COM9 to the appropriate port; for example COM3.

 4. Save the file.

The SimpleRead.java file is compiled in the Windows instruction

environment.

 1. Right-click the Windows symbol at the bottom

left-hand side of the screen and select Run.

 2. Enter cmd in the instruction line.

 3. Select OK.

 4. In the Window instruction environment, enter cd c:\.

 5. Enter the desktop address; for example,

cd c:\Users\username\Desktop.

 6. Enter javac com\epam\SimpleRead.java. This

creates the BMP.class and SimpleRead.class files in

the com ➤ epam folder.

Chapter 15 Camera

284

 7. Save the com folder in C: ➤ Program Files (x86) ➤

Java ➤ jdk1.8.0_192 ➤ bin.

 8. Create a folder named new on the C drive to store images.

Table 15-4 illustrates differences in the connections between the

OV7670 camera module and the Arduino if images are viewed on an

ST7735 TFT LCD screen (see Figure 15-1) or if images are stored in the new

folder on the C drive of the connected computer (see Figure 15-3).

A 4.7kΩ pull-down resistor is also required for the system clock, XCLK,

with a second 4.7kΩ resistor between the system clock and Arduino pin 11.

In Figure 15-3, changes to connections between the OV7670 camera

module and the Arduino, relative to Figure 15-1 are colored orange.

Table 15-4. Connections Between the OV7670 Camera Module and

Arduino

OV7670 Camera Module Images on Screen Images Stored

Connect to Arduino Connect to Arduino

VSYNC pin 2 pin 3

PCLK pin 12 pin 2

HREF --- pin 8

XCLK pin 3 pin 11

Chapter 15 Camera

285

 Capturing Camera Images
The .zip file downloaded from https://github.com/Kanaris/OV7670

contains the OV7670 ➤ arduino folder with the arduino_uno_ov7670.ino

sketch by Siarhei Charkes. Compile and load the arduino_uno_ov7670

sketch. The built-in LED on pin 13 is turned on. After a short delay, the

Arduino TX LED flickers in pulses.

Figure 15-3. Image capture with OV7670 camera

Chapter 15 Camera

https://github.com/Kanaris/OV7670

286

Image captures from the OV7670 camera is managed by the Windows

instruction environment.

 1. Right-click the Windows symbol at the bottom left-

hand side of the screen. Select Run.

 2. Enter cmd in the instruction line.

 3. Select OK.

 4. In the Window instruction environment, enter cd c:\.

 5. Next, enter cd C:\Program Files (x86)\Java\

jdk1.8.0_192\bin.

 6. Then, enter java com.epam.SimpleRead.

The Arduino TX LED is turned off, then after a short delay, the Arduino

TX LED is turned on in pulses, as images are captured.

Open the new folder on the C drive, which was created to store images.

The 240×320 pixel images with 24-bit depth are available to view as they

are captured. The first few images can be disregarded as the OV7670

camera module adjusts to the surrounding light. Figure 15-4 shows the

Windows commands to save images on the C drive, with an example image

shown in Figure 15-5.

Chapter 15 Camera

287

Figure 15-5. Example image

Figure 15-4. Capturing OV7670 camera images

Chapter 15 Camera

288

Two changes to the arduino_uno_ov7670 sketch may improve the

quality of the captured images. On line 602 of the sketch, wrReg(0x11, 12),

the second parameter can be changed from 12 to 9, 10, 11, or 13. Also, on

line 549, increasing the time delay between image captures from 3000ms to

5000ms can improve the quality of captured images.

 Summary
Digital images at 10 frames per second were displayed on a TFT LCD

screen using the OV7670 camera module. Digital images from the camera

module were stored on a computer connected to the Arduino, which

required the installation of Java files.

 Components List
• Arduino Uno and breadboard

• Camera module: OV7670

• TFT LCD screen: ST7735 1.8-inch

• Resistors: 2× 4.7kΩ and 2× 10kΩ

Chapter 15 Camera

289© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_16

CHAPTER 16

Bluetooth
Communication

Bluetooth is a wireless technology for short distance

communication between devices with short

wavelength radio waves and operating at 2.4GHz.

Bluetooth is used for hands-free car phones,

streaming audio to headphones, data transfer, and communication

between devices. The HC-05 Bluetooth module mounted on a breakout

board is recommended, as the module itself does not have connecting

pins. The HC-05 module communicates by Bluetooth Serial Port Profile

(SPP) with a coverage distance of up to 10m.

The HC-05 Bluetooth module can be powered from 3.6V to 6V,

given the HC-05’s 5V to 3.3V voltage regulator, but the transmit (TXD)

and receive (RXD) serial data communication function at 3.3V. The

Arduino receiver pin (RX) interprets a voltage of 3.3V as HIGH, so the

HC-05 TXD pin can be directly connected to the Arduino RX pin. The

Arduino transmit pin (TX) has a 5V output, so a logic level converter

or a voltage divider, as outlined in Chapter 3 using 4.7kΩ and 10kΩ

resistors, reduces the voltage to the HC-05 RXD pin to 3.4V. Both

options, a logic level converter or a voltage divider, are displayed in

Figure 16-1 and given in Tables 16-1 and 16-2. A logic level converter

is preferable to a voltage divider, as the signal capacitance and the

290

Figure 16-1. HC-05 Bluetooth module, logic level converter, and
voltage divider

voltage divider resistors form a resistor-capacitor filter that rounds the

edge of the digital signal, which can impact performance of the device

receiving the signal.

The Arduino uses serial communication to upload a compiled sketch.

During uploading, the Arduino RX pin must be disconnected, or uploading

fails and the message is displayed.

Remember to reconnect the Arduino RX pin after the sketch has

compiled.

Chapter 16 Bluetooth CommuniCation

291

Table 16-1. Connections for Bluetooth Module with Logic Level

Converter (LLC)

Component Connect to High side LLC Connect to

Bluetooth VCC arduino 3.3V

Bluetooth GND arduino GnD

Bluetooth TXD llC low voltage tX llC high voltage tX arduino pin 0 rX

Bluetooth RXD llC low voltage rX llC high voltage rX arduino pin 1 tX

LLC low voltage arduino 3.3V

LLC high voltage arduino 5V

LLC GND arduino GnD

LED long legs arduino pins 3, 4

LED short legs 220Ω resistors arduino GnD

Table 16-2. Connections for Bluetooth Module with

Voltage Divider

Component Connect to and to

Bluetooth VCC arduino 5V

Bluetooth GND arduino GnD

Bluetooth TXD arduino pin 0 rX

Bluetooth RXD 4.7kΩ resistor arduino pin 1 tX

Bluetooth RXD 10kΩ resistor arduino GnD

LED long legs arduino pins 3, 4

LED short legs 220Ω resistors arduino GnD

Chapter 16 Bluetooth CommuniCation

292

There are several Bluetooth communication applications that can

be downloaded from Google Play for an Android tablet to communicate

with an Arduino using Bluetooth. The Bluetooth Terminal HC-05

app, by Memighty, and the ArduDroid app, by Hazim Bitar, are

both recommended. The two apps have similar functions, with the

ArduDroid app also having a PWM facility. Examples are given of

the two apps to control LEDs and display text on the tablet or serial

monitor, with the ArduDroid app also controlling LED brightness

with PWM.

After compiling a sketch, the HC-05 module LED flashes five times

a second, waiting to be paired to a device. Turn on the Android tablet’s

Bluetooth, open the Bluetooth Terminal HC-05 or ArduDroid app and scan

for new devices. Pair the HC-05 module with the Android tablet, using

the password of either 1234 or 0000. When paired with the Android tablet,

the HC-05 module’s LED flashes every two seconds, indicating that the

module is paired with a device.

 Bluetooth Terminal HC-05 App
In the Bluetooth Terminal HC-05 app, button settings can be configured

with a long press to enter the Button Name and the corresponding ASCII

Command letter. For example, Button names of Red LED on, Green LED

on, and Both LEDs off can be configured with Command letters R, G, and

O, respectively (see Figure 16-2). Pressing a Bluetooth Terminal HC-05

app button turns LEDs on or off, with a corresponding message displayed

on the Bluetooth Terminal HC-05 app. If the serial monitor is open, then

the message is also displayed on the serial monitor. Command letters can

also be typed into the Enter ASCII Command box followed by Send ASCII.

The Send ASCII button (see Figure 16-3) must be configured, with a long

press, to end the sent data with a line feed, \n, character, so that text can be

entered with the Send ASCII button.

Chapter 16 Bluetooth CommuniCation

293

Listing 16-1 turns LEDs on or off using Bluetooth communication

between an Android tablet with the Bluetooth Terminal HC-05 app and the

Arduino. Use of switch case instructions rather than if else instructions

is outlined in Chapter 6. The default case is included for Command letters

other than R, G, and O.

Figure 16-2. Bluetooth Terminal HC-05

Figure 16-3. Bluetooth Terminal HC-05 button setup to control LEDs

Chapter 16 Bluetooth CommuniCation

294

Listing 16-1. Bluetooth Terminal HC-05 App

int redLED = 3; // LED pins

int greenLED = 4;

char c; // command letter input

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 pinMode(redLED, OUTPUT); // define LED pins as OUTPUT

 pinMode(greenLED, OUTPUT);

}

void loop()

{

 while (Serial.available()>0) // when data in Serial buffer

 {

 c = Serial.read(); // read character from Serial buffer

 switch (c) // use switch...case for options

 {

 case 'R':

 digitalWrite(redLED, HIGH); // red LED on

 Serial.println("red LED on"); // and print message to Serial

 break;

 case 'G':

 digitalWrite(greenLED, HIGH); // green LED on

 Serial.println("green LED on");

 break;

 case 'O':

 digitalWrite(redLED, LOW); // both LEDs off

 digitalWrite(greenLED, LOW);

 Serial.println("both LEDs off");

 break;

Chapter 16 Bluetooth CommuniCation

295

 default: break; // instruction letter not R, G or O

 }

 }

}

 ArduDroid App
The ArduDroid app has 12 buttons consistent with Arduino digital pins 2

to 13 and six sliders matching Arduino PWM pins 3, 5, 6, 9, 10, and 11.

The SEND DATA and GET DATA panels allow alphanumeric characters

to be sent from or received by the ArduDroid app (see Figure 16-4). A

baseline sketch accompanying the ArduDroid app can be downloaded

from www.techbitar.com.

Figure 16-4. ArduDroid

Chapter 16 Bluetooth CommuniCation

http://www.techbitar.com

296

When an ArduDroid app button is pressed, or a slider is changed,

or the SEND DATA button pressed, a control sequence is sent by the

ArduDroid app to the Arduino using Bluetooth communication (see

Table 16-3). The control sequence is the command number, prefixed by

the * character, the Arduino pin number, the pin value, the alphanumeric

text and the end character #. Control variables are separated by the |

character. For example, pressing the ArduDroid app button 03 has the

control sequence *10|03|02# or *10|03|03#, changing the ArduDroid app

slider for PWM pin 06 to position 125 has the control sequence *11|06|125#

and sending the text “ABC123” with SEND DATA has control sequence

*12|99|99|ABC123#.

Listing 16-2 displays the control sequences of the ArduDroid app and

has a 5ms delay between reading character input, so the sliders should be

“pressed” rather than “slid.”

Table 16-3. Control Sequence of ArduDroid App

ArduDroid App Command Arduino Pin Value Alphanumeric

Button 10 Digital pin 2 or 3

Slider 11 pWm pin 0-255

SEND DATA 12 99 99 text

Listing 16-2. Control Sequence of ArduDroid App

int val[3]; // command, Arduino pin and pin value

const int bufferSz = 30; // const int required to define array size

char data[bufferSz]; // alphanumeric data including | and #

char c;

int flag = 0;

int index;

Chapter 16 Bluetooth CommuniCation

297

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

}

void loop()

{

 readSerial(); // function to read control sequence

 if(flag == 1) // if control sequence read

 {

 for (int i=0; i<3; i++)

 { // display three control variables

 Serial.print(val[i]);Serial.print(" ");

 } // display alphanumeric data

 for (int i=0; i<bufferSz; i++) Serial.print(data[i]);

 Serial.println("");

 }

 flag = 0; // reset flag for new control sequence

 // overwrite data with null character

 for (int i=0; i<bufferSz; i++) data[i]='\0';

 index = 0; // reset data index to zero

}

void readSerial() // function to read control sequence

{

 while (Serial.available()>0) // when character in Serial buffer

 {

 if(flag == 0) // new control sequence

 {

 c = Serial.read(); // read character from Serial buffer

 // parse three control variables

 for (int i=0; i<3; i++) val[i]=Serial.parseInt();

 flag = 1; // control sequence read

 }

Chapter 16 Bluetooth CommuniCation

298

 c = Serial.read(); // read character from Serial buffer

 delay(5); // delay 5ms between characters

 // increment data and add next character

 if(c != '|' && c != '#') data[index++] = c;

 }

}

The ArduDroid app is used to control the brightness of the LED

on pin Arduino 3 using ArduDroid slider 3 and control the LEDs on

Arduino pins 3 and 4 using the ArduDroid app buttons or alphanumeric

text (R for red LED on, G for green LED on and O for both LEDs off).

The sketch builds on Listing 16-2, with the LED pins defined at the start

of the sketch.

int redLED = 3; // red and green LED pins

int greenLED = 4;

The LED pin OUTPUT status in the void setup() function.

pinMode(redLED, OUTPUT); // define LED pins as output

pinMode(greenLED, OUTPUT);

Listing 16-3 contains the updated void loop() function.

Listing 16-3. ArduDroid App (2)

void loop()

{

 readSerial(); // function to read control sequence

 if(flag == 1) // if control sequence read

 {

 switch (val[0]) // switch ... case based on instruction

 {

 case 10: // turn red or green LED on or off

 digitalWrite(val[1],!digitalRead(val[1]));

 break;

Chapter 16 Bluetooth CommuniCation

299

 case 11: // change red LED brightness

 analogWrite(val[1],val[2]);

 break;

 case 12: // R: turn red LED on

 if(data[0] == 'R') digitalWrite(redLED, HIGH);

 // G: turn green LED on

 else if (data[0] == 'G') digitalWrite(greenLED, HIGH);

 else if (data[0] == 'O') // O: turn both LEDs off

 {

 digitalWrite(redLED, LOW);

 digitalWrite(greenLED, LOW);

 }

 break;

 default: break; // default case

 }

 }

 flag = 0; // reset flag to zero

 for (int i=0; i<10; i++) data[i]='\0'; // overwrite previous data

 index = 0; // reset data index to zero

}

Additional functionality can be allocated to the ArduDroid app pins

by editing the relevant switch case section of the sketch. For example,

to flash the green LED several times when the ArduDroid app pin 5 is

pressed, Listing 16-4 includes the changes to case 10 of Listing 16-3.

Listing 16-4. ArduDroid App (3)

case 10:

 if(val[1] == 3 || val[1] == 4) // turn LED 3 or 4 on or off

 digitalWrite(val[1],!digitalRead(val[1]));

 else if(val[1] == 5)

 {

 for (int i=0;i<10;i++)

 { // turn green LED on and off five times

Chapter 16 Bluetooth CommuniCation

300

 digitalWrite(greenLED, !digitalRead(greenLED));

 delay(500); // delay 500ms

 }

 }

 break;

 Message Scrolling with MAX7219 Dot
Matrix Module

The MAX7219 dot matrix module manages the

8×8 dot matrix display for turning LEDs on and

off to display alphanumeric characters and scroll

messages. Displaying and scrolling characters on

an 8×8 dot matrix display with two 74HC595 shift registers was described

in Chapter 7. Several MAX7219 dot matrix modules can be daisy-chained

to make longer LED displays, while still only requiring three connections

between the 8×8 dot matrix displays and the Arduino. The MAX7219

module uses Serial Peripheral Interface (SPI), outlined in Chapter 11,

and modules are daisy chained by connecting the Chip Select (CS or SS

or LOAD), MOSI (DATA or DIN), and serial clock (SCK or CLK) pins at

the OUT end of one module to the IN end of the next module. Two daisy-

chained MAX7219 modules are shown in Figure 16-5, with connections in

Table 16-4.

Chapter 16 Bluetooth CommuniCation

301

Table 16-4. Connections for MAX7219 Modules

Component Connect to

MAX7217 VCC external 5V

MAX7219 GND arduino GnD

MAX7219 DIN arduino pin 11

MAX7219 CS arduino pin 10

MAX7219 CLK arduino pin 13

Figure 16-5. MAX7219 modules

The MAX7219 module contains a 10kΩ SMD (surface-mounted

device) resistor to restrict LED brightness. Displaying text and patterns on

four MAX7219 modules requires currents of at least 140mA, so MAX7219

modules must be powered by an external power source and not by the

Arduino. In Figure 16-5, the MAX7219 modules are externally powered

with 5V. The L4940V5 voltage regulator, as described in Chapter 8, reduces

the external 9V supply from a battery to 5V to power the MAX7219 modules.

Alternatively, a 5V powerbank can be used as the external 5V supply.

Chapter 16 Bluetooth CommuniCation

302

 MAX7219 and Bluetooth Terminal
HC-05 App
The MAX7219 display libraries: MD_Parola and MD_MAX72XX by Majic

Designs are available through the Arduino IDE, using installation method 3,

as outlined in Chapter 3. MD_Parola and MD_MAX72XX library version

3.0.0 were used in the sketches. The MAX7219 display module must be

defined in a sketch, with the options being PAROLA_HW, GENERIC_HW,

ICSTATION_HW, and FC16_HW. For the MAX7219 display module used in

the chapter, the FC16_HW option was appropriate.

The MD_MAX72xx_Test example sketch in the MD_MAX72X library

provides a comprehensive display of the MAX7219 module functionality.

Before compiling the sketch, the hardware type and number of MAX7219

modules must be defined in lines 25 and 26.

#define HARDWARE_TYPE MD_MAX72XX::FC16_HW

#define MAX_DEVICES 4

Listing 16-5 scrolls a message on four daisy-chained 8×8 dot matrix

displays with the message transferred from the Bluetooth Terminal

HC-05 app to the Arduino with Bluetooth communication. The Send

ASCII button must be configured, with a long press, to end the sent

data with a line feed, \n, character, so that text can be entered with the

Send ASCII button (see Figure 16-3). When a new message is available,

the current message is replaced with the null character, \0, to avoid a

shorter new message including the non-overlapping part of the current

message. The tidyUp variable ensures that new messages are updated,

but not when a change display speed character is received by the

Arduino.

Note that in Listings 16-5 and 16-7, characters are bracketed with a

single apostrophe ('), while strings have a double apostrophe (").

Chapter 16 Bluetooth CommuniCation

303

The display speed is the inverse of the frame delay time, with a

longer frame delay time resulting in a slower message display speed.

The message display speed is changed using buttons on the Bluetooth

Terminal HC-05 app configured with button names slow and fast to

send characters - and + with no carriage return nor line feed characters

selected (see Figure 16-6).

Figure 16-6. Bluetooth Terminal HC-05 button setup to control
display speed

Listing 16-5. Message Scrolling with MAX7219 Modules and

Bluetooth Terminal HC-05 App

#include <SPI.h> // include SPI library

#include <MD_Parola.h> // include MD_Parola library

#include <MD_MAX72xx.h> // include MAX72xx library

#define HARDWARE_TYPE MD_MAX72XX::FC16_HW // MAX7219 module type

int devices = 4; // number of MAX7219 modules

int CSpin = 10; // chip select pin for SPI

 // associate parola with MD_Parola library

MD_Parola parola = MD_Parola(HARDWARE_TYPE, CSpin, devices);

int frameDelay = 20; // initial frame speed

const int bufferSz = 60; // array must be sized with a const

char message[bufferSz]; // message currently displayed

Chapter 16 Bluetooth CommuniCation

304

char newMessage[bufferSz]; // new message to be displayed

char c; // character input

int index; // number of characters in message

int flag = 0;

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 parola.begin(); // start MD_Parola

 parola.displayClear();

 parola.displaySuspend(false);

 parola.displayScroll(message, PA_LEFT, PA_SCROLL_LEFT, frameDelay);

 strcpy(message, "Enter message"); // copies text to message

 // use buttons to change message speed

 Serial.println("Send + to speed up or - to slow down");

 Serial.println("\nType a message to scroll"); // display message on Serial

}

void loop()

{

 readSerial(); // function to get new message

 if(flag == 1) // new message

 { // replace with null character

 for (int i=index;i<bufferSz-1;i++) newMessage[i]= '\0';

 strcpy(message, newMessage); // copy newMessage to message

 Serial.print("Message: ");Serial.println(message); // display message

 flag = 0; // reset flag and index

 index = 0;

 } // scroll message

 if (parola.displayAnimate()) parola.displayReset();

}

Chapter 16 Bluetooth CommuniCation

305

void readSerial() // function to get new message

{

 while (Serial.available()>0) // when data in Serial buffer

 {

 c = Serial.read(); // read character from Serial buffer

 // new line at end of new message

 if ((c == '\n') || (index >= bufferSz-2)) flag = 1;

 else if(c == '+')

 { // increase speed by reducing frame delay

 frameDelay=parola.getSpeed()-5;

 if(frameDelay < 20) frameDelay = 20;

 Serial.print("Reduce delay to "); // display faster "speed"

 Serial.println(frameDelay);

 parola.setSpeed(frameDelay); // change display speed

 flag = 0; // message unchanged

 }

 else if(c == '-')

 { // decrease speed by increasing frame delay

 frameDelay=parola.getSpeed()+5;

 Serial.print("Increase delay to "); // display slower "speed"

 Serial.println(frameDelay);

 parola.setSpeed(frameDelay);

 flag = 0;

 }

 else

 {

 delay(5); // delay 5ms between characters

 newMessage[index++] = c; // save next char to new message

 flag = 0;

 }

 }

}

Chapter 16 Bluetooth CommuniCation

306

 Message Speed and Potentiometer
An alternative to controlling the speed of the display with a command

from the Bluetooth Terminal HC-05 app is to use the output voltage from

a potentiometer. The newSpeed() function is called from within the void

loop() function and the potentiometer pin declared as int potPin = A0,

for example. Listing 16-6 includes the newSpeed() function for controlling

display speed with a potentiometer.

The two else sections of the readSerial() function in Listing 16-5,

else if(c == '+') and else if(c == '-') are deleted. The

potentiometer signal pin is connected to Arduino pin A0, with the

other potentiometer pins connected to Arduino 5V and GND (see

Figure 16-7).

Figure 16-7. MAX7219 speed and potentiometer

Chapter 16 Bluetooth CommuniCation

307

Listing 16-6. MAX7219 Speed and Potentiometer

void newSpeed() // function to set the speed

{

 frameDelay = map(analogRead(potPin), 0, 1023, 20, 100);

 frameDelay = constrain(frameDelay, 20, 100); // constrain speed: 20 to 100

 parola.setSpeed(frameDelay); // speed is the delay between frames

}

The constrain() function follows the map() function to ensure that

the value of frameDelay is constrained within the limits of 20 and 100.

If the value of frameDelay was less than 20 or greater than 100 following

the map() function, then the constrain() function would set the value of

frameDelay to 20 or 100, respectively.

 MAX7219 and ArduDroid App
As noted at the start of the chapter, the ArduDroid app sends a control

sequence to the Arduino by Bluetooth communication, which includes

the message to be displayed. Listing 16-7 is similar to Listing 16-5 for the

Bluetooth Terminal HC-05 sketch, with the main difference in the parsing

of commands.

Listing 16-7. Message Scrolling with MAX7219 Modules and

ArduDroid App

#include <SPI.h> // include SPI library

#include <MD_Parola.h> // include MD_Parola library

#define HARDWARE_TYPE MD_MAX72XX::FC16_HW

int devices = 4; // number of MAX7219 modules

int CSpin = 10; // chip select pin for SPI

 // associate parola with MD_Parola library

MD_Parola parola = MD_Parola(HARDWARE_TYPE, CSpin, devices);

Chapter 16 Bluetooth CommuniCation

308

int val[3];

int frameDelay = 20; // initial frame speed

const int bufferSz = 60; // array must be sized with a const

char message[bufferSz]; // message currently displayed

char newMessage[bufferSz]; // new message to be displayed

char c; // character input

int index; // number of characters in message

int flag = 0;

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 parola.begin(); // start MD_Parola

 parola.displayClear();

 parola.displaySuspend(false);

 parola.displayScroll(message, PA_LEFT, PA_SCROLL_LEFT, frameDelay);

 strcpy(message, "Enter message"); // copies text to message

 // use buttons to change message speed

 Serial.println("Send + to speed up or - to slow down");

 // display message on Serial Monitor

 Serial.println("\nType a message to scroll");

}

void loop()

{

 readSerial(); // function to get new message

 if(flag == 1) // new message

 { // replace with null character

 for (int i=index;i<bufferSz-1;i++) newMessage[i]= '\0';

 strcpy(message, newMessage); // copy newMessage to message

 // display message on Serial Monitor

 Serial.print("Message: ");Serial.println(message);

 flag = 0; // reset flag and index

 index = 0;

 } // scroll message

Chapter 16 Bluetooth CommuniCation

309

 if (parola.displayAnimate()) parola.displayReset();

}

void readSerial() // function to get new message

{

 while (Serial.available()>0) // when data in Serial buffer

 {

 if(flag == 0) // new control sequence

 {

 c = Serial.read(); // read character in Serial buffer

 // parse 3 integers 12, 99 and 99

 for (int i=0;i<3;i++) val[i] = Serial.parseInt();

 flag = 1; // control sequence read

 }

 c = Serial.read(); // read character from Serial buffer

 delay(5); // delay 5ms between characters

 if(c == '+') // increase speed

 {

 c = Serial.read(); // read end of control sequence

 frameDelay=parola.getSpeed()-5; // reduce frame delay

 if(frameDelay < 20) frameDelay = 20;

 Serial.print("Reduce delay to "); // display faster "speed"

 Serial.println(frameDelay);

 parola.setSpeed(frameDelay); // change display speed

 flag = 0; // message unchanged

 }

 else if(c == '-') // decrease speed

 {

 c = Serial.read(); // read end of control sequence

 frameDelay=parola.getSpeed()+5; // increase frame delay

 Serial.print("Increase delay to "); // display slower "speed"

 Serial.println(frameDelay);

 parola.setSpeed(frameDelay);

 flag = 0;

 } // save next char to new message

Chapter 16 Bluetooth CommuniCation

310

 else if((c != '|') && (c != '#')) newMessage[index++] = c;

 }

}

 Summary
The Bluetooth HC-5 module was used to communicate between the

Arduino and an Android tablet using the Bluetooth Terminal HC-05

and ArduDroid apps. Devices can be controlled through Bluetooth

communication, such as controlling LEDs and changing the LED

brightness. Text entered on the Android tablet was scrolled across

several MAX7219 dot matrix modules, with the scrolling speed

controlled as a command within the Bluetooth Terminal HC-05

and ArduDroid apps or by converting the output voltage from a

potentiometer to the scrolling speed.

 Components List
• Arduino Uno and breadboard

• Bluetooth module: HC-05

• LED

• Resistor: 220Ω

• Potentiometer: 10kΩ

• Logic level converter

• Dot matrix 4-unit module: MAX7219

• Battery: 9V

• Voltage regulator: L4940V5

• Capacitors: 0.1μF and 22μF

Chapter 16 Bluetooth CommuniCation

311© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_17

CHAPTER 17

Wireless
Communication

While Bluetooth communication is used between devices

less than 10m apart, communication over longer distances

is possible using wireless transceiver modules. The greater

distance between wireless transceiver modules or between a wireless

transceiver module and the Arduino enables access to remote sensors

and control of remote devices. The nRF24L01 radio transceiver module

operates at 2.4GHz, the same frequency as Bluetooth, with 126 available

channels and baud rates of 250kbps, 1Mbps, and 2Mbps. The lower baud

rate may be more suitable for longer distances.

The nRF24L01 transceiver module communicates with the Arduino

using serial peripheral interface (SPI). The nRF24L01 module and

connections to Arduino pins are shown in Figure 17-1, with the GND

pin indicated by a square surround. The CE (transmit/receive) and

CSN (standby/active mode) pins can be connected to any Arduino pin,

but pins 7 and 8 are used in the sketches. The IRQ (interrupt) pin is not

connected. The nRF24L01 module must be connected to 3.3V and not

to 5V. Connections between the nRF24L01 module and the Arduino are

also given in Table 17-2.

312

The RF24 library by J Coliz is required and installed using the Arduino

IDE with installation method 3, as outlined in Chapter 3. Communication

between nRF24L01 transceiver modules is through data pipes that require

an address, such as “Node1” or “12” for each data pipe; a channel number

between 0 and 125; and a baud rate of 250kbps, 1Mbps, or 2Mbps. The

default address length is five characters, the default channel is 76, and the

default baud rate is 1Mbps.

Reception of transmissions from an nRF24L01 radio transceiver

module is improved if activity on the transmission channel is low. A low

activity channel can be identified by scanning all available channels for

carrier activity. In Listing 17-1, the carrier activity on each channel, over

several scans, is displayed on the serial monitor. A low activity channel can

then be selected with the setChannel() instruction, rather than using the

default channel.

Listing 17-1. Channel Scanning

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

const int nChan = 126; // 126 channels available

int chan[nChan]; // store counts per channel

int nScan = 100; // number of scans per channel

int scan;

Figure 17-1. nRF24L01 pin connections

Chapter 17 Wireless CommuniCation

313

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 radio.begin(); // start radio

}

void loop()

{

 for (int i=0;i<nChan;i++) // for each channel

 {

 chan[i] = 0; // reset counter

 for (scan=0; scan<nScan; scan++) // repeat scanning

 {

 radio.setChannel(i); // define channel

 radio.startListening();

 delayMicroseconds(128); // listen for 128μs

 radio.stopListening();

 if(radio.testCarrier()>0) chan[i]=chan[i]+1; // carrier on channel

 }

 } // format HEX for values <16 rather than <10

 for (int i=0; i<nChan; i++) Serial.print(chan[i], HEX);

 Serial.print("\n"); // carriage return

}

The channel number, baud rate, and power amplifier level are set

using the following instructions.

setChannel() channel number between 0 and 125 inclusive

setDataRate() values RF24_250KBPS, RF24_1MBPS or RF24_2MBPS

setPALevel() values RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH or

RF24_PA_MAX

The default power amplifier level is RF24_PA_MAX.

The default or currently set channel number, baud rate and power

amplifier level are obtained using the following instructions.

Chapter 17 Wireless CommuniCation

314

getChannel() channel number

getDataRate() 2, 0 or 1 for RF24_250KBPS, RF24_1MBPS or RF24_2MBPS

getPALevel() 0, 1, 2 or 3 for RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH

 or RF24_PA_MAX

On one channel, the nRF24L01 radio transceiver module can receive

data simultaneously from up to six different transmitting nRF24L01 radio

transceiver modules, with each data pipe having a different address.

Information transmitted by the nRF24L01 transceiver can be an

integer, a real number, text or a data structure containing a combination

of the three data types. To provide some generality, the sketches include a

data structure. The maximum size of a data structure is 32 bytes, with an

integer, real number or a character requiring 2, 4, and 1 bytes, respectively.

The named components of a data structure are defined and the data

structure is named.

For example, a data structure, named test, consists of two integers, a

real number, and a character string. The character string can be up to

24 characters, as the two integers and the real number account for eight of

the available 32 bytes. Listing 17-2 includes the instructions to define the

example data structure.

Listing 17-2. Example Data Structure

typedef struct // define data structure to include

{

 int count; // an integer: count

 int level = 5; // an integer: level defined as 5

 float value; // a real number: value

 char text[24] = "text"; // a string defined as "text"

} dataStruct;

dataStruct test; // name the data structure as test

Chapter 17 Wireless CommuniCation

315

Each component can be individually accessed in the main sketch, for

example test.value = 2.3. The data structure is transmitted or received

using the name of the data structure with the radio.write(&test,

sizeof(test)) or radio.read(&test, sizeof(test)) instructions. The

parameters are equal to the data structure reference, &test, and the size of

the data structure.

 Transmit or Receive
Table 17-1 contains two sketches—one for the transmitter and one

for the receiver nRF24L01 module—to allow side-by-side comparison

of the sketches. The sketches transceive a data structure with an

incrementing integer and real number and a character string, to be

displayed on the serial monitor. The two sketches are similar except

for the openWritingPipe() and openReadingPipe() instructions, the

startListening() instruction for the receiving module and the write()

and read() instructions. Instructions in bold indicate the differences in

transmission related instructions between the transmitter and receiver

sketches. The maximum length of the character string is 26 characters,

given that the integer and real number account for 6 bytes of the data

structure, which has maximum size of 32 bytes.

Chapter 17 Wireless CommuniCation

316

Table 17-1. Transmit or Receive

Transmit nRF24L01 Receive nRF24L01

#include <spi.h> #include <spi.h>

#include <rF24.h> #include <rF24.h>

rF24 radio(7, 8); rF24 radio(7, 8);

byte addresses[][6] = {"12"}; byte addresses[][6] = {"12"};

typedef struct typedef struct

{ {

 int number; int number;

 float value; float value;

 char text[26] = "transmission"; char text[26];

} datastruct; } datastruct;

datastruct data; datastruct data;

void setup() void setup()

{ {

 serial.begin(9600);

 radio.begin(); radio.begin();

 radio.openWritingPipe(addresses[0]); radio.openReadingPipe(0, addresses[0]);
 radio.startListening();

} }

void loop() void loop()

{ {

 if(radio.available())
 data.number = data.number+1;

 data.value = data.value+0.1; {

 radio.write(&data, sizeof(data)); radio.read(&data, sizeof(data));
 delay(1000); serial.print(data.text);serial.print("\t");

 serial.print(data.number);serial.print("\t");

 serial.println(data.value);

 }

} }

Chapter 17 Wireless CommuniCation

317

Information about the transmitted data structure can be displayed on

the serial monitor by defining the printf library, which is included in the

RF24 library, at the start of the sketch.

#include <printf.h> // include the printf library

Initializing the printf library and serial monitor in the void setup()

function.

printf_begin(); // initialise the printf library

Serial.begin(9600); // set baud rate for Serial Monitor

With the print instruction included in the void loop() function.

radio.printDetails(); // display data structure information

 Transmit and Receive
Bidirectional communication with nRF24L01 transceiver modules

requires two data pipes and two addresses with one address for writing

and reading on one nRF24L01 transceiver module and one address for

reading and writing on the second nRF24L01 transceiver module. Prior

to one nRF24L01 transceiver module writing, the stopListening()

instruction must be issued and the startListening() instruction must

be issued to the second nRF24L01 transceiver module prior to reading.

The situation is reversed with the second nRF24L01 transceiver module

writing and the first nRF24L01 transceiver module reading. An nRF24L01

transceiver with an LED is shown in Figure 17-2, with connections given

in Table 17-2.

Chapter 17 Wireless CommuniCation

318

Figure 17-2. nRF24L01 transceiver module with LED

Table 17-2. Connections nRF24L01 Transceiver Module with LED

Component Connect to and to

nRF24L01 GND arduino GnD

nRF24L01 CE arduino pin 7

nRF24L01 SCK arduino pin 13

nRF24L01 MISO arduino pin 12

nRF24L01 VCC arduino 3.3V

nRF24L01 CSN arduino pin 8

nRF24L01 MOSI arduino pin 11

LED long leg arduino pin 5

LED short leg 220Ω resistor arduino GnD

Chapter 17 Wireless CommuniCation

319

The sketches included in Table 17-3 build on the sketches in

Table 17- 1. While the first nRF24L01 transceiver transmits the data

structure, data, the second nRF24L01 transceiver module transmits

an integer variable, led, with values 0 or 1, which the first nRF24L01

transceiver module uses to turn on or off the LED. Note that using

LED_BUILTIN on pin 13 for the LED is not possible, as pin 13 is used

by the Serial Clock (SCK) for SPI communication. Sketches to transmit

and receive a data structure or only a variable by the two nRF24L01

transceiver modules are again presented side-by-side for comparison in

Table 17-3, with instructions in bold indicating the transceiver related

differences between the transmit then receive or the receive then

transmit sketches.

Table 17-3. Transmit and Receive

Transmit then receive Receive then transmit

#include <spi.h> #include <spi.h>

#include <rF24.h> #include <rF24.h>

rF24 radio(7, 8); rF24 radio(7, 8);

byte addresses[][6] = {“12”, “14”}; byte addresses[][6] = {“12”, “14”};

typedef struct typedef struct

{ {

 int number; int number = 1;

 float value; float value;

 char text[26] = “transmission”; char text[26];

} datastruct; } datastruct;

datastruct data; datastruct data;

int led; int led = 1;

int ledpin = 5;

(continued)

Chapter 17 Wireless CommuniCation

320

Table 17-3. (continued)

Transmit then receive Receive then transmit

void setup() void setup()

{ {

 serial.begin(9600);

 radio.begin(); radio.begin();

 radio.openWritingPipe(addresses[0]); radio.openReadingPipe(1, addresses[0]);
 radio.openReadingPipe(1,
addresses[1]);

 radio.openWritingPipe(addresses[1]);

 pinmode(ledpin, output); }

}

void loop() void loop()

{ {

 radio.stopListening(); radio.startListening();
 data.number = data.number+1; if(radio.available())
 data.value = data.value+0.1; {

 radio.write(&data, sizeof(data)); radio.read(&data, sizeof(data));
 serial.print(data.text);serial.print(“\t”);

 serial.print(data.number);

 serial.print(“\t”);

 serial.println(data.value);

 }

 delay(500); delay(500);

 radio.startListening(); radio.stopListening();
 while(!radio.available()); led = 1 – led;

 radio.read(&led, sizeof(led)); radio.write(&led, sizeof(led));
 if(led == 1) digitalWrite(ledpin, hiGh);

 else digitalWrite(ledpin, loW);

 delay(500); delay(500);

} }

Chapter 17 Wireless CommuniCation

321

A pair of nRF24L01 transceiver modules enable a sensor to be read by

one Arduino with the reading transmitted to a second Arduino to display

information on an LCD display or to activate a device. For example,

internal and external temperature can be simultaneously monitored with

one temperature sensor and the Arduino connected with an externally

positioned transmitting nRF24L01 module, and a second temperature

sensor and the Arduino connected to an internally positioned receiving

nRF24L01 module.

A different type of example uses the output voltage from a

potentiometer, which is converted to an angle and is transmitted to

an nRF24L01 receiver module connected to an Arduino. This moves a

servo motor through the required angle. The servo motor was described

in Chapter 8 (see Figure 8-1, Table 8-1, and Listing 8-1). Extending the

sketches in Table 17-3, the data structure incorporates the integer angle,

which requires 2 bytes, so the maximum size of the character array in

Table 17-3 is reduced by 2 bytes. The updated instructions to define the

data structures are shown in Table 17-4.

Table 17- 4. Transmit and Receive (2)

Transmit then receive Receive then transmit

typedef struct typedef struct

{ {

 int number; int number = 1;

 int angle; int angle;

 float value; float value;

 char text[24] = “transmission”; char text[24];

} datastruct; } datastruct;

datastruct data; datastruct data;

Chapter 17 Wireless CommuniCation

https://doi.org/10.1007/978-1-4842-3960-5_8#Tab1

322

In the “transmit then receive” sketch, the potentiometer reading on

Arduino pin A0 is mapped to the corresponding angle in the void loop()

function.

int potent = analogRead(A0); // read potentiometer value

data.angle = map(potent, 0, 1023, 0, 180); // convert to angle

data.angle = constrain(data.angle, 0, 180); // constrain angle value

In the “receive then transmit” sketch, the Servo library is installed, and

the servo pin is defined at the start of the sketch.

#include <Servo.h> // include the servo motor library

Servo servo; // associate servo with Servo library

int servoPin = 11; // servo motor pin = 11

The servo motor initialized in the void setup() function with the

servo.attach(servoPin) instruction, and the servo motor rotated

in the void loop() function with the servo.write(data.angle)

instruction.

 Summary
Wireless communication of numbers and text between transmitting and/

or receiving nRF24L01 modules was used to control devices, with the

examples of turning on or off an LED or remotely moving a servo motor

through an angle based on the transmitted output of a potentiometer.

Chapter 17 Wireless CommuniCation

323

 Components List
• Arduino Uno and breadboard: 2×

• Wireless transceiver module: 2× nRF24L01

• LED

• Resistor: 220Ω

• Servo motor: SG90

• Potentiometer: 10kΩ

• Battery: 9V

• Voltage regulator: L4940V5

• Capacitors: 0.1μF and 22μF

Chapter 17 Wireless CommuniCation

325© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_18

CHAPTER 18

Build Arduino
In this chapter, we’ll review the ATmega328P-PU 8-bit

microcontroller. It has three types of memory: 32kB ISP

(in-system programming) flash memory where sketches are

stored, 1kB EEPROM (electrically erasable programmable read-only

memory) for long-term data storage and 2kB SRAM (static random-

access memory) for storing variables when a sketch is running.

Information in flash memory and EEPROM is retained when power to

the microcontroller is removed.

There are three communication modes: a serial programmable USART

(universal synchronous and asynchronous receiver-transmitter), an SPI

(Serial Peripheral Interface) serial port, and a two-wire serial interface.

USART takes bytes of data and transmits the individual bits sequentially,

which requires transmit (TX) and receive (RX) communication lines.

SPI (outlined in Chapter 11) uses four communication lines: master-out

slave-in (MOSI), master-in slave-out (MISO), and serial clock (SCK), with

a separate slave select (SS) line for each device. The I2C communication

(outlined in Chapter 11) Two Wire Interface (TWI) bus uses two signal

lines: serial data (SDA) and serial clock (SCL).

326

The microcontroller has 13 digital general-purpose input/output

(GPIO) lines and six 10-bit (values between 0 and 210–1 = 1023)

analogue to digital converter (ADC) GPIO lines to convert the voltage

on a pin to a digital value. There are three timers with two 8-bit timers,

with values between 0 and 28–1 = 255, and one 16-bit timer, with values

between 0 and 216–1 = 65535, which are used by the delay() function

in a sketch or by pulse width modulation (PWM), as outlined in

Chapter 1.

The programmable watchdog timer with an internal oscillator

(outlined in Chapter 20) checks that the microcontroller is active, and it

resets the microcontroller if there is a malfunction. Internal and external

interrupts allow the main sketch to stop, while the interrupt service routine

(ISR) is completed, and then the main sketch continues.

There are five software selectable power-saving modes (outlined in

Chapter 21) and the microcontroller operates between 1.8V and 5.5V.

 ATmega328P Pin Layout
The pin layout of the ATmega328P-PU, shown in Figure 18-1, is available

on the Arduino website (www.arduino.cc). There are three groups of

ports: PB, PC, and PD with 8, 7, and 8 pins, respectively, (see Table 18-1)

plus two ground (GND) pins, a 5V pin (VCC) with supply voltage (AVCC),

and analog reference voltage (AREF) pins for the analog-to-digital

converter (ADC).

Chapter 18 Build arduino

http://www.arduino.cc

327

The ATmega328P-PU pin nomenclature indicates the function of

each pin (see Figure 18-1). For example, pin change interrupts (PCINT0

to PCINT23) detect a change of pin state, as in a rising or a falling signal,

interrupt pins (INT0 and INT1), analog-to-digital conversion pins (ADC0

to ADC5), serial communication (RXD and TXD), SPI communication

pins (SS, MOSI, MISO, and SCK), I2C communication pins (SCL and SDA),

timer0 (OC0A and OC0B), timer1 (OC1A and OC1B), and timer2 (OC2A

and OC2B) (see Table 18-2), and Reset.

Figure 18-1. ATmega328P pin layout

Table 18-1. ATmega328P-PU pins and Mapped Arduino Pins by Port

Port pins ATmega328P- PU Arduino pin Function of Arduino pins

PB0 - PB7 14 to 19, 9, 10 digital 8 to 13 pWM - 9, 10, 11, Spi - 10 to 13

PC0 - PC6 1, 23 to 28 reset, a0 to a5 adC - a0 to a5, i2C - a4, a5

PD0 - PD7 2 to 6, 11 to 13 digital 0 to 7 pWM - 3, 5, 6, Serial - 0, 1,

interrupt 2, 3

Chapter 18 Build arduino

328

From Tables 18–1 and 18–2, the dual functionality of some pins means

that analogWrite() on Arduino PWM pins 9 and 10 is disabled by the

Servo library, on Arduino PWM pins 10 and 11 by SPI communication and

on Arduino PWM pins 3 and 11 by the tone() function.

 Building an Arduino
Building an Arduino provides a portable microcontroller

for projects not connected to a laptop and the low power

consumption of the microcontroller ensures that a project can run

for a long time on a battery. The required parts are an ATmega328P-

PU microcontroller, two 22pF ceramic capacitors, a clock crystal with

frequency 16MHz and a USB to serial UART (Universal Asynchronous

Receiver Transmitter) interface, such as the FT232R FTDI, which has a

switch to control the serial communication voltage to 3.3V or 5V.

The ATMega328P-PU microcontroller pin 1 has a semicircle indent

on the end and a dot on the left-hand side. The 16MHz clock crystal is

connected to the microcontroller with two 22pF ceramic capacitors, which

enable the crystal to start oscillating and microcontroller circuitry converts

the crystal into an oscillator (see Figure 18-2 and Table 18-3). A 10kΩ pull-

up resistor is connected between microcontroller pin 1 and 5V to prevent

the microcontroller resetting, as Reset is active LOW. A switch is also

connected to microcontroller pin 1 for resetting the microcontroller.

Table 18-2. ATmega328P-PU Timers

Timer ATmega328P Bits Arduino PWM Frequency Functions

0 pd5, pd6 (11, 12) 8 5 and 6 ~976hz delay, millis,

micros

1 pB1, pB2 (15, 16) 16 9 and 10 ~490hz Servo library

2 pB3, pd3 (17, 5) 8 11 and 3 ~490hz tone

Chapter 18 Build arduino

329

Figure 18-2. Microcontroller setup

Table 18-3. Connections for Building an Arduino

Component Connect to and to

ATMega328P-PU pin 1 10kΩ resistor Battery 5V

ATMega328P-PU pin 7 Battery 5V

ATMega328P-PU pin 8 Gnd

ATMega328P-PU pins 9, 10 16Mhz clock crystal

ATMega328P-PU pins 9, 10 22pF capacitor Gnd

ATMega328P-PU pins 20, 21 Battery 5V

ATMega328P-PU pin 22 Gnd

Switch right leg atMega328p-pu pin 1

Switch left leg Gnd

Chapter 18 Build arduino

330

A USB to serial UART interface connects the microcontroller to

a computer or laptop for downloading a sketch. A 0.1μF electrolytic

capacitor is connected between the DTR (Data Terminal Ready) pin

on the USB to serial UART interface and the microcontroller Reset,

which resets the microcontroller to synchronize with the USB to serial

UART interface. Microcontroller serial communication RX and TX pins

are connected to the USB to serial UART interface TXD and RXD pins,

respectively. USB to serial UART interface and microcontroller VCC and

GND pins are connected (see Figure 18-3 and Table 18-4). The CTS (Clear

to Send) pin on the USB to serial UART interface is not connected to the

microcontroller.

Figure 18-3. Downloading a sketch

Chapter 18 Build arduino

331

To download a sketch onto the microcontroller, in the Arduino

IDE, from the Tools ➤ Port menu, select the relevant communication

(COM) port and from the Tools ➤ Board menu select Arduino/Genuino

Uno. The sketch is compiled in the Arduino IDE and then loaded to

the microcontroller with the USB to serial UART interface. When the

sketch is downloaded, the green and red LEDs of the USB-to-serial UART

interface TXD and RXD flicker.

The USB to serial UART interface can be removed and a 5V power

supply connected to the microcontroller (see Figure 18-4). An LED and

220kΩ resistor are connected to microcontroller pin 19, equivalent to

Arduino pin 13, to run the blink sketch.

Table 18-4. Connections for Building an Arduino (2)

Component Connect to and to

0.1μF capacitor positive uSB to serial uart dtr

0.1μF capacitor negative atMega328p-pu pin 1

USB to serial UART RXD atMega328p-pu pin 3

USB to serial UART TXD atMega328p-pu pin 2

USB to serial UART VCC atMega328p-pu pin 7

USB to serial UART GND atMega328p-pu pin 22

LED long leg 220Ω resistor atMega328p-pu pin 19

LED short leg Gnd

Chapter 18 Build arduino

332

Figure 18-4. Stand-alone microcontroller with LED

 Installing the Bootloader
ATmega238P-PU microcontrollers require a bootloader for uploading and

running sketches from the Arduino IDE. When power is applied to the

microcontroller, the bootloader determines if a sketch is being uploaded,

and then loads the sketch into the microcontroller memory. If a sketch is

not being uploaded, then the bootloader instructs the microcontroller to

run the loaded sketch.

If the ATmega328P-PU microcontroller is not supplied with a

bootloader, then the bootloader must be uploaded. An Arduino can

upload the bootloader using SPI communication (see Figure 18-5 and

Table 18-5).

Chapter 18 Build arduino

333

Figure 18-5. Installing bootloader

Table 18-5. Connections for Installing a Bootloader

Component Connect to

Arduino pin 11 atMega328p-pu pin 17

Arduino pin 12 atMega328p-pu pin 18

Arduino pin 13 atMega328p-pu pin 19

Arduino pin 10 atMega328p-pu pin 1

Arduino 5V atMega328p-pu pin 7

arduino Gnd atMega328p-pu pin 22

Chapter 18 Build arduino

334

The Atmega_Board_Programmer by Nick Gammon is

recommended.

 1. Download the arduino_sketches-master .zip file from

github.com/nickgammon/arduino_sketches.

 2. Extract the Atmega_Board_Programmer folder to the

desktop of a computer/laptop.

 3. Connect an Arduino Uno to the computer or laptop.

 4. In the Arduino IDE, from the Tools ➤ Port menu,

select the relevant COM port.

 5. From the Tools ➤ Board menu, select Arduino/

Genuino Uno.

 6. Open the serial monitor and select Both NL & CR

and 115200 baud.

 7. Open the Atmega_Board_Programmer sketch and

select Compile and Load.

The serial monitor displays the following.

Atmega chip programmer.

Written by Nick Gammon.

Version 1.38

Compiled on May 22 2018 at 10:17:57 with Arduino

IDE 10805.

Attempting to enter ICSP programming mode ...

Entered programming mode OK.

Signature = 0x1E 0x95 0x0F

Chapter 18 Build arduino

http://github.com/nickgammon/arduino_sketches

335

Processor = ATmega328P

Flash memory size = 32768 bytes.

LFuse = 0xFF

HFuse = 0xDE

EFuse = 0xFD

Lock byte = 0xCF

Clock calibration = 0x9D

Type ‘L’ to use Lilypad (8 MHz) loader, or ‘U’ for Uno

(16 MHz) loader ...

Enter U and the serial monitor displays:

Using Uno Optiboot 16 MHz loader.

Bootloader address = 0x7E00

Bootloader length = 512 bytes.

Type ‘Q’ to quit, ‘V’ to verify, or ‘G’ to program the

chip with the bootloader ...

Enter G and the serial monitor displays:

Erasing chip ...

Writing bootloader ...

Committing page starting at 0x7E00

Committing page starting at 0x7E80

Committing page starting at 0x7F00

Committing page starting at 0x7F80

Written.

Chapter 18 Build arduino

336

Verifying ...

No errors found.

Writing fuses ...

LFuse = 0xFF

HFuse = 0xDE

EFuse = 0xFD

Lock byte = 0xEF

Clock calibration = 0x9D

Done.

Programming mode off.

Type ‘C’ when ready to continue with another chip ...

The bootloader is now loaded onto the microcontroller, which

is ready to receive a sketch after changing the COM port in the

Tools ➤ Port menu.

 Summary
The ATmega328P-PU microcontroller, which drives the Arduino

Uno, is described. An Arduino is built and a sketch is downloaded

to the microcontroller. Installation of the bootloader program to the

microcontroller is described.

Chapter 18 Build arduino

337

 Components List
• Arduino Uno and breadboard

• Microcontroller: ATmega328P-PU

• USB to UART interface: FT232R FTDI

• Clock crystal: 16MHz

• Capacitor: 2× 22pF ceramic

• Resistor: 220Ω and 10kΩ

• Switch: tactile

• LED

Chapter 18 Build arduino

339© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_19

CHAPTER 19

Global Navigation
Satellite System

Longitude, latitude, and altitude can be determined

from the global navigation satellite system (GNSS)

using radio signals transmitted by line-of-sight

satellites. GNSS includes the American GPS, Russian

GLONASS, European Union Galileo, Chinese

BeiDou, Japanese Quasi-Zenith, and satellite-based

augmentation satellite systems. The u-blox NEO-7M module used in this

chapter can receive signals from the GPS and GLONASS systems.

 GNSS Messages on Serial Monitor
Signal reception by the u-blox NEO-7M module can be demonstrated

by connecting the u-blox NEO-7M module to a computer or laptop with

a USB to serial UART (Universal Asynchronous Receiver-Transmitter)

interface (see Figure 19-1 and Table 19-1), with the output voltage of

the USB to serial UART interface set at 3.3V for the u-blox NEO-7M

module. After loading the Arduino IDE, select a communication (COM)

port and open the serial monitor, at 9600 Baud, which displays the

GNSS messages.

340

An example series of the National Marine Electronics Association

(NMEA) GNSS messages is

$GPRMC,162436.00,A,5595.0000,N,00317.0000,W,0.378,,221017,,,A

$GPVTG,,T,,M,0.378,N,0.701,K,A

$GPGGA,162436.00, 5595.0000,N, 00317.0000,W,1,04,2.55,97.0,M,49.8,M,,

$GPGSA,A,3,09,06,07,05,,,,,,,,,6.66,2.55,6.16

$GPGSV,3,1,11,02,50,268,27,03,00,114,,05,24,290,27,06,43,203,33

$GPGSV,3,2,11,07,44,150,31,09,66,080,31,16,14,056,,23,34,071,14

$GPGSV,3,3,11,26,12,028,,29,16,326,18,30,20,176,11

$GPGLL, 5595.0000,,N, 00317.0000,W,162436.00,A,A

Figure 19-1. GNSS receiver with USB to UART

Table 19-1. Connections for GNSS

Receiver with USB to UART

Component Connect to

NEO-7M VCC USB to UART VCC

NEO-7M GND USB to UART GND

NEO-7M TX USB to UART RXD

NEO-7M RX USB to UART TXD

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

341

The example messages are prefixed with $GP followed by the message

name—such as RMC, GGA, and GLL—to provide information on time,

latitude, and longitude. The GSV message provides positional information

on each satellite or space vehicle (SV). Speed over ground, altitude, and

date are provided by the VTG, GGA, and RMC messages, respectively.

 u-blox u-center
The u-blox u-center GNSS evaluation software provides real-time

displays of GNSS message information. It can be downloaded from

www.u-blox.com/en/product/u-center. The u-blox u-center GNSS

evaluation display version 18.10 is illustrated in Figure 19-2. The position

and signal strength of each satellite can be displayed along with speed

over ground; 3D location of longitude, latitude, and altitude; and date and

time. The u-blox u-center GNSS evaluation display identifies satellites

from the GPS, GNSS, SBAS, and QZSS systems by the letters G, R, S, and Q,

respectively. NMEA message names are prefixed by $GP for GPS, $GL for

GLONASS, and $GN for a combination of GS and GLONASS.

Figure 19-2. u-blox u-center GNSS evaluation display

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

http://www.u-blox.com/en/product/u-center

342

A 2D or 3D location requires at least three or four satellites with

position and motion data and a carrier to noise density ratio (C/N0) of

34dB-Hz to obtain a fix in 30 to 40 seconds. If the C/NO ratio is between

25 and 34dB-Hz, then it can take up to five minutes to obtain a valid 3D

location.

To communicate between the u-blox u-center GNSS evaluation

display and the GNSS receiver, the USB to serial UART interface TXD

(transmit) must also be connected to u-blox NEO-7M module RX (receive)

(see Figure 19-3). Close the Arduino IDE serial monitor. In the u-blox

u-center GNSS evaluation display menu, select Receiver ➤ Connection ➤

COMport and select View ➤ Sky View to display satellite position.

Figure 19-3. GNSS receiver, USB to UART for u-blox u-center

Information on the NMEA message content is available within the

u-blox u-center GNSS evaluation display. From the View menu, select

Messages View and click the required message.

Information from the GSS/QZSS or GLONASS satellite systems is

obtained through the View menu.

 1. Select Messages View.

 2. Select UBX.

 3. Select CFG (Config).

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

343

 4. Select Enable for either GPS and QZSS or GLONASS.

 5. Select Send at the bottom left of the u-blox u-center

GNSS evaluation display.

Instructions on the u-blox u-center GNSS evaluation software are

available on the u-blox website at www.u-blox.com/en/product/u-center.

 Arduino and GNSS
NMEA messages from the GNSS module can be displayed on the u-blox

u-center GNSS evaluation display by selecting View ➤ Text console. The

following is the order of messages.

• RMC – recommended minimum data

• VTG – course over ground

• GGA – global positioning data

• GSA – active satellites

• GSV – satellites in view

• GLL – latitude and longitude

Information on the NMEA 0183 message structure is available from

several sources, such as www.u-blox.com/en/product-resources.

An example RMC message is

$GPRMC, 083559.00, A, 4717.11437, N, 00833.91522, E, 0.004, 77.52, 091202, , , A*57

It has a comma-separated structure (see Table 19-2).

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

http://www.u-blox.com/en/product/u-center
http://www.u-blox.com/en/product-resources

344

The GNSS module is connected to the Arduino using software serial

with GNSS module TX (transmit) and RX (receive) connected to Arduino

pins 8 and 9, respectively. The library AltSoftSerial by Paul Stoffregen

can be installed within the Arduino IDE using installation method 3, as

outlined in Chapter 3.

The u-blox NEO-7M module operates at 3.3V and the module RX

(receive) should not be connected to the Arduino TXD (transmit) pin,

which operates at 5V. A logic level converter ensures that the GNSS

Table 19-2. RMC Message Structure

Example Description Name Format

$GPRMC RmC message iD xxRmC

083559.00 UTC time time hhmmss.ss

A Status (A:valid) status

4717.11437 latitude (degrees and minutes) lat ddmm.mmmmm

N North/South indicator NS

00833.91522 longitude long ddmm.mmmmm

E east/West indicator eW

0.004 Speed over ground spd knots

77.52 Course over ground cog degrees

091202 Date date ddmmyy

blank mv

blank mveW

A mode indicator posmode

*57 Checksum cs

<CR><LF> Carriage return and line feed

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

345

module TX signal has sufficient voltage for the Arduino RXD pin as

well as protecting the GNSS module (see Figure 19-4 and Table 19-3).

Alternatively, a voltage divider, with a 4.7kΩ and a 10kΩ resistor, between

the Arduino TXD and GNSS module RX as outlined in Chapter 3, would

suffice.

Figure 19-4. Logic level converter and GNSS module

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

346

In Listing 19-1, information from two NMEA messages, RMC and

GGA, is extracted, so the other NMEA messages are turned off by message

settings. Within the u-blox u-center GNSS evaluation display, the

UTX–CFG–MSG message settings are located by selecting the View menu

➤ Messages View ➤ UBX ➤ CFG (Config) ➤ MSG (Messages). Choose the

required message from the drop-down menu, for example F0-04 NMEA

GxRMC, and deselect all options except UART1. At the bottom of the

screen, the message setting is displayed (see Figure 19-5).

Table 19-3. Logic Level Converter and GNSS Module

Component Connect to and to and to

NEO-7M VCC Arduino 3.3V

NEO-7M GND Arduino GND

NEO-7M TX llC low voltage TX llC high voltage TX Arduino pin 8

NEO-7M RX llC low voltage RX llC high voltage RX Arduino pin 9

LLC high voltage Arduino 5V

LLC low voltage Arduino 3.3V

LLC GND Arduino 5GND

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

347

For example, the message setting in HEX, but without the 0x prefix, for

the NMEA-RMC message is

B5 62 06 01 08 00 F0 04 00 01 00 00 00 01 05 45 that can be converted to

decimal, 181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69

to make the message setting more manageable in the sketch.

The default setting of the u-blox NEO-7M module receives GPS

satellite signals. The u-blox NEO-7M module can be set to receive GPS

or GLONASS satellite signals, using the UTX–CFG–GNSS (GNSS Config)

satellite settings in the same manner as the UTX–CFG–MSG message

settings.

The UTX–CFG–MSG message settings indicate the message type,

column eight in bold in Listing 19-1, and the message on/off state, column

ten in bold in Listing 19-1. In the sketch, all messages are initially switched

off and then the required messages are switched on, column 15 in bold in

Listing 19-1.

Given the structure of NMEA messages, specific variables can be

readily selected to record time, location, and speed, which can be

subsequently input to Google Maps for route marking. The sketch

Figure 19-5. UTX - CGF - MSG message settings

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

348

extracts measurement time; location of latitude, longitude, and

altitude; speed from the RMC and GGA messages, with satellite

position; and signal strength extracted from the GSV messages. The

NMEA message labels and setting for GLONASS satellite data are

commented out in the sketch.

The switch case function allocates the information to be extracted

from each message, with the .toInt() and .toFloat() functions

converting message text into integers and real numbers, respectively.

The GSV message contains satellite data for up to four satellites, with

the first three variables being the number of GSV messages, the number

of the current GSV message, and the number of visible satellites. The

three temp[1...3] variables are used to format the Serial.print()

instructions. The replace() function is useful for replacing one character

in a string with another, as in the void parseMessage() function.

Listing 19-1. Reading GNSS Messages

#include <AltSoftSerial.h> // include AltSoftSerial library

AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

String NMEAdata, nmea, val[6], temp[19]; // define string to store data

int rec, lastRow;

 String message[3]={"$GPRMC","$GPGGA","$GPGSV"}; // GPS message labels

//String message[3]={"$GLRMC","$GLGGA","$GLGSV"}; // GLONASS

 // message labels

 // matrix of UTX – CFG – MSG message settings

const unsigned char ublox[] PROGMEM = {

181,98,6,1,8,0,240,0,0,0,0,0,0,1,0,36, // GGA message off

181,98,6,1,8,0,240,1,0,0,0,0,0,1,1,43, // GLL message off

181,98,6,1,8,0,240,2,0,0,0,0,0,1,2,50, // GSA message off

181,98,6,1,8,0,240,3,0,0,0,0,0,1,3,57, // GSV message off

181,98,6,1,8,0,240,4,0,0,0,0,0,1,4,64, // RMC message off

181,98,6,1,8,0,240,5,0,0,0,0,0,1,5,71, // VTG message off

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

349

181,98,6,1,8,0,240,0,0,1,0,0,0,1,1,41, // GGA message set on

181,98,6,1,8,0,240,3,0,1,0,0,0,1,4,62, // GSV message set on

181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69, // RMC message set on

 181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GPS and

 0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,163,9, // GLONASS off

 181,98,6,62,36,0,0,0,22,4,0,4,255,0,1,0,0,1,1,1,3, // GPS on

 0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,164,37 // GPS on

//181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GLONASS on

//0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,1,0,0,1,164,13 // GLONASS on

};

void setup()

{

 Serial.begin(9600); // baud rate for Serial Monitor

 AltSoft.begin(9600); // serial connection to GNSS module

 for(int i = 0; i < sizeof(ublox); i++)

 {

 AltSoft.write(pgm_read_byte(ublox+i)); // send message settings to GNSS

 delay(5);

 } // column headers

 Serial.println("time, lat, long, altitude, speed, satellite data");

 delay(1000);

}

void loop()

{

 NMEAdata = AltSoft.readStringUntil('\n'); // read data until a carriage return

 nmea = NMEAdata.substring(0, 6); // first 6 characters are message name

 if(nmea == message[0]) rec = 0; // message name equals $GLRMC

 else if(nmea == message[1]) rec = 1; // or $GLGGA

 else if(nmea == message[2])rec = 2; // or $GLGSV

 switch (rec) // use switch ... case

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

350

 {

 case 0:

 parseMessage(NMEAdata, 7); // parse GPRMC message, 7 values

 val[0]=temp[0].toInt(); // time

 val[1]= temp[2].toFloat()/100.0; // latitude

 val[2]= temp[4].toFloat()/100.0; // longitude

 if(temp[5]="W") val[2]="-"+val[2];

 val[4]= String(temp[6].toFloat()*1.852); // convert speed in

 // knots to kmph

 break;

 case 1:

 parseMessage(NMEAdata, 9); // parse GPGGA message, 9 values

 val[3]=temp[8]; // altitude (m)

 val[5]=temp[6]; // number of satellites for fix

 break;

 case 2:

 parseMessage(NMEAdata,19); // parse GLGSV message

 if(temp[1]=="1")

 {

 val[6]=temp[2]; // number of visible satellites

 for (int i=0; i<6; i++)

 {Serial.print(val[i]);Serial.print(",");}

 Serial.println();

 for (int i=0;i<6;i++) val[i]="";

 }

 if(temp[1].toInt()<temp[0].toInt()) // not the last line of data

 {

 for (int i=3;i<19;i++)

 {Serial.print(temp[i]);Serial.print(",");}

 Serial.println();

 }

 else // last line of data

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

351

 {

 lastRow = 4*(temp[2].toInt()-(temp[1].toInt()-1)*4)+3;

 for (int i=3;i<lastRow;i++)

 {Serial.print(temp[i]);Serial.print(",");}

 Serial.println();

 }

 break;

 default: break;

 }

}

void parseMessage(String data, int nval) // function to parse message

{

 data.replace('*', ','); // replace asterisk, *, with comma

 int istart, iend;

 iend = 0;

 for (int i=0; i<nval; i++)

 {

 istart = data.indexOf(",", iend); // istart is location before value

 iend = data.indexOf(",", istart+1); // iend is location after value

 temp[i] = data.substring(istart+1, iend);

 }

}

An alternative to extracting information directly from the NMEA

messages is to use a library, such as the NeoGPS library by Slash Devin,

which can be installed within the Arduino IDE using installation

method 3, as outlined in Chapter 3. Information about the NeoGPS

library and the structure of extracted data from the NMEA messages

is available at github.com/SlashDevin/NeoGPS. Version 4.2.9 of

the NeoGPS library uses AltSoftSerial as the default software serial

connection, so the u-blox NEO- 7M module TX pin is connected to

Arduino pin 8.

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

http://github.com/SlashDevin/NeoGPS

352

The NMEAorder sketch, which is included in the NeoGPS library,

checks the configuration of the LAST SENTENCE variable and displays the

result on the serial monitor. The definition of LAST SENTENCE is changed

by editing the NMEAGPS_cfg.h file located in the NeoGPS library. The

default is the Documents ➤ Arduino ➤ libraries folder, with the location

of the default library folder for the Arduino IDE confirmed by selecting

File ➤ Preferences within the Arduino IDE.

 1. Open the Arduino ➤ libraries ➤ NeoGPS ➤

NMEAGPS_cfg.h file to change line 48 from

#define LAST_SENTENCE_IN_INTERVAL NMEAGPS::NMEA_RMC

to have the required value; for example,

#define LAST_SENTENCE_IN_INTERVAL NMEAGPS::NMEA_GLL

 2. Save the NMEAGPS_cfg.h file and then re-run

the sketch NMEAorder to ensure that the change

is correctly incorporated and the serial monitor

should display

SUCCESS: LAST_SENTENCE_IN_INTERVAL is correctly set to

NMEAGPS::NMEA_GLL

 3. If information on individual satellites is required, then edit

the NMEAGPS_cfg file, within the src folder of the NeoGPS

library, and uncomment the lines in Listing 19-2.

Listing 19-2. Individual Satellite Settings

#define NMEAGPS_PARSE_GGA // on line 33

#define NMEAGPS_PARSE_GLL // on line 34

#define NMEAGPS_PARSE_GSV // on line 36

#define NMEAGPS_PARSE_RMC // on line 38

#define NMEAGPS_PARSE_SATELLITES // on line 209

#define NMEAGPS_PARSE_SATELLITE_INFO // on line 210

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

353

Listing 19-3, which uses the NeoGPS library, provides the same satellite

information as Listing 19-1 without having to parse NMEA messages or

define UTX–CFG–MSG message settings.

Listing 19-3. Reading GNSS Messages Using the NeoGPS Library

#include <AltSoftSerial.h> // include AltSoftSerial library

AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

#include <NMEAGPS.h> // include NeoGPS library

NMEAGPS nmea; // associate nmea with NMEAGPS library

gps_fix gps; // associate gps with NMEAGPS library

int GPS, SBAS, Nsat, count;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 AltSoft.begin(9600); // serial connection to GNSS module

 Serial.println("time, lat, long, altitude, speed, satellite data");

 delay(500); // column headers

}

void loop()

{

 if (nmea.available(AltSoft)) // GNSS data available

 {

 gps = nmea.read(); // latest satellite message

 if(gps.valid.time) // validated time – every second

 { // leading zeros for

 if(gps.dateTime.hours < 10) Serial.print("0"); // time

 Serial.print(gps.dateTime.hours); Serial.print(":");

 if(gps.dateTime.minutes < 10) Serial.print("0");

 Serial.print(gps.dateTime.minutes); Serial.print(":");

 if(gps.dateTime.seconds < 10) Serial.print("0");

 Serial.print(gps.dateTime.seconds); Serial.print(", ");

 }

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

354

 if(gps.valid.location) // validated location

 { // latitude and longitude

 Serial.print(gps.latitude(), 3); Serial.print(", ");

 Serial.print(gps.longitude(), 3); Serial.print(", ");

 }

 if(gps.valid.altitude) // altitude

 {Serial.print(gps.altitude(), 1);Serial.print(", ");}

 if(gps.valid.speed) // speed

 {Serial.print(gps.speed_kph(), 1);Serial.print(", ");}

 if(gps.valid.satellites)

 {

 Serial.print(gps.satellites); // number of satellites for fix

 Serial.print(",");

 GPS = 0;

 SBAS = 0;

 Nsat = 0;

 for (int i=0; i<16; i++) // max number of visible satellites

 {

 if (nmea.satellites[i].tracked)

 {

 Nsat++; // number of tracked satellites

 if (nmea.satellites[i].id <= 32) GPS++;

 else if (nmea.satellites[i].id >32 &&

 nmea.satellites[i].id <= 64) SBAS++;

 }

 }

 Serial.print(Nsat);Serial.print(","); // display satellite numbers

 Serial.print(GPS);Serial.print(",");

 Serial.println(SBAS);

 count = 0;

 for (int i=0; i<16; i++)

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

355

// if (nmea.satellites[i].tracked) // display only tracked satellites

 if (nmea.satellites[i].id>0) // display all visible satellites

 {

 Serial.print(nmea.satellites[i].id);Serial.print(",");

 Serial.print(nmea.satellites[i].elevation);

 Serial.print(",");

 Serial.print(nmea.satellites[i].azimuth);Serial.print(",");

 Serial.print(nmea.satellites[i].snr);Serial.print(",");

 count++;

 if(count%4==0) Serial.println();

 }

 if(count%4!=0) Serial.println();

 }

 }

}

If a sketch using the NeoGPS library (such as Listing 19-3) follows a

sketch defining the UTX–CFG–MSG message settings (such as Listing 19-1),

then message settings should be reset using Listing 19-4.

Listing 19-4. Reset GNSS Message Settings

#include <AltSoftSerial.h> // include AltSoftSerial library

AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

 // matrix of UTX – CFG – MSG message settings

const unsigned char ublox[] PROGMEM = {

181,98,6,1,8,0,240,0,0,0,0,0,0,1,0,36, // GGA message off

181,98,6,1,8,0,240,1,0,0,0,0,0,1,1,43, // GLL message off

181,98,6,1,8,0,240,2,0,0,0,0,0,1,2,50, // GSA message off

181,98,6,1,8,0,240,3,0,0,0,0,0,1,3,57, // GSV message off

181,98,6,1,8,0,240,4,0,0,0,0,0,1,4,64, // RMC message off

181,98,6,1,8,0,240,5,0,0,0,0,0,1,5,71, // VTG message off

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

356

181,98,6,1,8,0,240,0,0,1,0,0,0,1,1,41, // GGA message on

181,98,6,1,8,0,240,1,0,1,0,0,0,1,2,48, // GLL message on

181,98,6,1,8,0,240,2,0,1,0,0,0,1,3,55, // GSA message on

181,98,6,1,8,0,240,3,0,1,0,0,0,1,4,62, // GSV message on

181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69, // RMC message on

181,98,6,1,8,0,240,5,0,1,0,0,0,1,6,76, // VTG message on

 181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GPS and

 0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,163,9, // GLONASS off

 181,98,6,62,36,0,0,0,22,4,0,4,255,0,1,0,0,1,1,1,3, // GPS on

 0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,164,37, // GPS on

//181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GLONASS on

//0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,1,0,0,1,164,13 // GLONASS on

};

void setup()

{

 Serial.begin(9600); // baud rate for Serial Monitor

 AltSoft.begin(9600); // serial connection to GNSS module

 for(int i = 0; i < sizeof(ublox); i++)

 {

 AltSoft.write(pgm_read_byte(ublox+i)); // send message settings to GNSS

 delay(5);

 }

 Serial.println("NMEA messages all on");

}

void loop() // nothing in void loop function

{}

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

357

 GNSS Data Logging to SD Card
Satellite data written to an SD card forms the basis of a mobile GNSS

tracker (see Figure 19-6 and Table 19-4). Listing 19-5 builds on Listing 19-3

by including data logging with an SD card, as described in Chapter 12 in

the “Logging Weather Station Data” and “Increment File Name for Data

Logging” sections.

Figure 19-6. Logging GNSS data with an SD card

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

358

Table 19-4. Logging GNSS Data

with an SD Card

Component Connect to

NEO-7M VCC Arduino 5V

NEO-7M GND Arduino GND

NEO-7M TX Arduino pin 8

SD card GND Arduino GND

SD card VCC Arduino 5V

SD card MISO Arduino pin 12

SD card MOSI Arduino pin 11

SD card SCK Arduino pin 13

SD card SCS Arduino pin 10

Listing 19-5. Logging GNSS Data with an SD Card

#include <AltSoftSerial.h> // include AltSoftSerial library

AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

#include <NMEAGPS.h> // include NeoGPS library

NMEAGPS nmea; // associate nmea with NMEAGPS library

gps_fix gps; // associate gps with NMEAGPS library

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

File file; // associate file with SD library

String filename = "data.csv"; // filename

int CSpin = 10; // chip select pin for SD card

int i = 0; // data record counter

String header, data, hr, mn, s;

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

359

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 if(SD.begin(CSpin) == 0) // check for presence of SD card

 {

 Serial.println("Card fail"); // return if SD card not found

 return;

 }

 Serial.println("Card OK");

 if(SD.exists(filename)) SD.remove(filename); // delete existing file

 file = SD.open(filename, FILE_WRITE); // create new file

 if(file == 1) // file opened

 { // column headers

 header = "Time, Latitude, Longitude, Altitude, Speed, Satellites";

 file.println(header); // write column headers to SD card

 file.close(); // close file after writing to SD card

 }

 else Serial.println("Couldn't access f ile"); // file not opened

 AltSoft.begin(9600); // serial connection to GNSS

}

void loop()

{

 while (nmea.available(AltSoft)) // GNSS data available

 {

 i++; // increase data record counter

 Serial.print("record ");Serial.println(i); // print record number

 gps = nmea.read(); // latest satellite message

 hr = String(gps.dateTime.hours); // leading zeros for time

 if(gps.dateTime.hours<10) hr = "0"+hr;

 mn = String(gps.dateTime.minutes);

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

360

 if(gps.dateTime.minutes<10) mn="0"+mn;

 s = String(gps.dateTime.seconds);

 if(gps.dateTime.seconds<10) s="0"+s;

 data = hr + mn+ s; // create string of readings

 data =data+","+String(gps.latitude(),4)+","+

String(gps.longitude(),4);

 data =data+","+String(gps.altitude(),1)+","+

String(gps.speed_kph(), 1);

 data = data + "," + String(gps.satellites);

 file = SD.open(filename, FILE_WRITE); // open file on SD card

 file.println(data); // write data to SD card

 file.close(); // close file on SD card

 }

}

 GNSS and ST7735 Screen
The mobile GNSS tracker is completed by including a

ST7735 TFT LCD (Thin Film Transistor Liquid Crystal

Display) screen to display current location and time, while

simultaneously writing GNSS data to an SD card (see Figure 19-7 and

Table 19-5). The ST7735 TFT LCD screen has an SD card module on the

rear of the screen. Listing 19-6 uses code for the SD card from Chapter 12,

for the ST7735 TFT LCD screen from Chapter 13, and for the GNSS

module from this chapter. The stand-alone microcontroller is built and

programmed as described in Chapter 18.

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

361

The sketch uses the NeoGPS library to access positional data rather

than having to parse NMEA messages. The sketch first checks the status of

the SD card and opens a new dataN.csv file with the file name incremented

rather than overwriting the existing data file. The ST7735 TFT LCD screen

is cleared and headers for the speed, location, and number of satellites

are displayed on the screen. Every second, the ST7735 TFT LCD screen is

updated with speed, satellite number, and location of altitude, latitude,

and longitude, with satellite number and location only updated if there

are new values. Every five seconds, data on the time, latitude, longitude,

altitude, speed, and number of satellites is written to the SD card.

Figure 19-7. Mobile GNSS with screen

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

362

Table 19-5. Mobile GNSS with Screen

Component Connect to and to

L4940V5 supply Battery 9V 0.1μF capacitor positive

L4940V5 GND GND rail 0.1μF capacitor negative

22μF capacitor negative

L4940V5 demand 5V rail 22μF capacitor positive

LD33V supply 5V rail

LD33V GND GND rail

ATMega328P-PU pin 1 10kΩ resistor 5V rail

ATMega328P-PU pins 9, 10 16mhz clock crystal

ATMega328P-PU pins 9, 10 16mhz clock crystal

ATMega328P-PU pins 9, 10 22pF capacitor GND

ATMega328P-PU pin 7 5V rail

ATMega328P-PU pin 22 GND rail

NEO-7M VCC 5V rail

NEO-7M GND GND rail

NEO-7M TX ATmega328p-pU pin 14

ST7735 TFT VCC 5V rail

ST7735 TFT GND GND rail

ST7735 TFT CS ATmega328p-pU pin 12

(continued)

Values from GNSS messages are converted to strings and then to

characters for display on the ST7735 TFT LCD screen with the String()

and .toCharArray() functions. Prior to the valid NMEA messages being

obtained, values of 96, 97, 98, and 99 are written to the SD card for location

and satellite number.

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

363

The schematic in Figure 19-7 starts with 9V

from the battery reduced to 5V by the L4940V5

voltage regulator, which powers the NEO-7M

module, the ATMega328P-PU microcontroller

and the SD card module. The 5V output from the L4940V5 voltage

regulator is reduced to 3.3V by the LD33V voltage regulator to supply the

ST7735 TFT LCD screen. Note the voltage regulator pins are different with

supply, GND and demand for the L4940V5 regulator and GND, demand

and supply for the LD33V regulator.

The ATMega328P-PU microcontroller is connected to the NEO-7M

module, ST7735 TFT LCD screen, and SD card module. Downloading the

complied sketch with a USB to serial UART interface connected to the

microcontroller was outlined in Chapter 18, with the USB to serial UART

connections shown in Table 19-6.

Component Connect to and to

ST7735 TFT RESET ATmega328p-pU pin 13

ST7735 TFT A0 ATmega328p-pU pin 15

ST7735 TFT SDA ATmega328p-pU pin 17 SD card module moSi

ST7735 TFT SCK ATmega328p-pU pin 19 SD card module SCK

ST7735 TFT LED lD33V output 3.3V

SD card module CS ATmega328p-pU pin 16

SD card module MISO ATmega328p-pU pin 18

Table 19-5. (continued)

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

364

Listing 19-6. Mobile GNSS with Screen

#include <AltSoftSerial.h> // include AltSoftSerial library

AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

#include <NMEAGPS.h> // include NeoGPS library

NMEAGPS nmea; // associate nmea with NMEAGPS library

gps_fix gps; // associate gps with NMEAGPS library

#include <SPI.h> // include SPI library

#include <SD.h> // include SD library

String filename;

String basefile = "data"; // default filename is data.csv

bool filefound = false; // checks if filename exists

int filecount = 0; // adds number to filename

int SDcount = 0; // counter to write to SD card

int nsat = 0; // last number of satellites

float oldlat = 0; // last latitude

float oldlong = 0; // last longitude

#include <Adafruit_ST7735.h> // include the ST7735 library

#include <Adafruit_GFX.h> // include the GFX library

int TFT_CS = 6; // screen chip select pin

int RSTpin = 7; // screen reset pin

int DCpin = 9; // screen DC pin

Table 19-6. USB to Serial UART Interface

Component Connect to

100nF capacitor positive USB to serial UART DTR

100nF capacitor negative ATmega328p-pU pin 1

USB to serial UART RXD ATmega328p-pU pin 3

USB to serial UART TXD ATmega328p-pU pin 2

USB to serial UART VCC 5V rail

USB to serial UART GND GND rail

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

365

int SD_CS = 10; // SD card chip select pin

 // associate tft with Adafruit_ST7735 library

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

String fill;

String data; // GNSS output converted to string

char text[6]; // string converted to characters

void setup()

{

 tft.initR(INITR_BLACKTAB); // initialize ST7735 TFT LCD screen

 tft.fillScreen(ST7735_BLACK); // clear screen

 tft.setTextColor(ST7735_WHITE, ST7735_BLACK); // text colour with over-write

 AltSoft.begin(9600); // serial connection to GNSS module

 if(SD.begin(SD_CS) == 0) // check for presence of SD card

 {

 printScreen("Card fail", 10, 5, 2); // return if SD card not found

 return;

 }

 printScreen("Card OK", 10, 5, 2);

 delay(1000);

 filename=basefile+".csv"; // option to delete and replace file

 //if(SD.exists(filename)>0) SD.remove(filename);

 while (filefound == 0) // search for file with filename

 {

 if(SD.exists(filename)) // if filename already exists on SD card

 {

 filecount++; // then increment filename counter

 filename = basefile + String(filecount) + ".csv"; // new filename

 }

 else filefound = true; // file with filename located on SD card

 } // column headers

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

366

 data = "Time, Latitude, Longitude, Altitude, Speed, Satellites";

 File file = SD.open(filename, FILE_WRITE); // open file on SD card

 if(file == 1) file.println(data); // write header to SD card

 file.close();

 tft.fillScreen(ST7735_BLACK); // clear screen

 printScreen("Speed & satellites", 9, 5, 1); // print fixed text

 printScreen("Altitude", 8, 50, 1);

 printScreen("Latitude & longitude", 8, 95, 1);

}

void loop()

{

 while (nmea.available(AltSoft)) // GNSS data available

 {

 gps = nmea.read();

 if(gps.valid.time) data = String(gps.dateTime.hours) + ":" +

 String(gps.dateTime.minutes)+ ":" +

 String(gps.dateTime.seconds);

 else data ="99:99:99";

 if(gps.valid.location) data = data + "," +

 String(gps.latitude(), 4) + "," +

 String(gps.longitude(), 4);

 else data = data +",,96"; // default values while waiting for position

 if(gps.valid.altitude) data = data +","+

 String(gps.altitude(), 1);

 else data = data +",97";

 if(gps.valid.speed) data = data +","+ String(gps.speed_kph(), 4);

 else data = data +",98";

 if(gps.satellites>0) data = data +","+ String(gps.satellites);

 else data = data +",99";

 SDcount++;

 if(SDcount>4) // write to SD card every 5 seconds

 {

 File file = SD.open(filename, FILE_WRITE); // write to SD card

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

367

 if(file) file.println(data); // write data string to file on SD card

 file.close(); // close file on SD card

 SDcount = 0; // reset counter

 }

 if(gps.speed_kph()<10) // print speed (kmph)

 {

 fill = " "+ String(gps.speed_kph(), 1); // convert number to string

 fill.toCharArray(text,6); // convert string to characters

 }

 else String(gps.speed_kph(), 1).toCharArray(text,6);

 printScreen(text, 10, 20, 3);

 if(nsat != gps.satellites)

 {

 if(nsat<10) fill = " "+ String(gps.satellites);

 else fill = String(gps.satellites); // print number of

 // satellites to screen

 fill.toCharArray(text,6);

 printScreen(text, 100, 20, 2);

 nsat = gps.satellites; // current number of satellites

 }

 if(gps.altitude()<100)fill = " "+ String(gps.altitude(), 1);

 else fill = String(gps.altitude(), 1); // print altitude to screen

 fill.toCharArray(text,6);

 printScreen(text, 10, 65, 3);

 if(abs(oldlat-gps.latitude())>0.1 || abs(oldlat-gps.latitude())>0.1)

 { // update latitude and longitude

 String(gps.latitude(), 1).toCharArray(text,6);

 printScreen(text, 10, 110, 2); // print latitude to screen

 String(gps.longitude(), 1).toCharArray(text,6);

 printScreen(text, 70, 110, 2); // print longitude to screen

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

368

 oldlat = gps.latitude(); // c urrent latitude

 oldlong = gps.longitude(); // current longitude

 }

 }

}

void printScreen(char *text, int x, int y, int textSize)

{ // function to print to screen

 tft.setCursor(x, y);

 tft.setTextSize(textSize);

 tft.print(text);

}

 Displaying GNSS Data
The route for which GNSS data was stored on the SD card can be displayed

using GPS Visualizer, developed by Adam Schneider. To display the GNSS

data, upload the GNSS data file on www.gpsvisualizer.com and select

Choose an output format. Select Google Maps, and then click Map it.

Within the map, at the top right, there is a drop-down box for map types.

Four of several map types are Google map, Google aerial, Google hybrid,

and Google terrain, which are a street map, a satellite view, a combination

of street map and satellite view, and a map similar to an Ordnance Survey

map, respectively. The chosen map can be downloaded as an HTML

document, retaining the map format option, by selecting the download

option located above the map.

Route elevations can also be displayed using GPS Visualizer.

 1. In the menu at the top of the GPS Visualizer home

page, select Look up elevations.

 2. Upload the GNSS data file and

 3. Select Draw elevation profile.

 4. The elevation profile can be saved as a .png file.

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

http://www.gpsvisualizer.com

369

An example of a Google hybrid map and a route elevation using GPS

Visualizer is shown in Figure 19-8.

Figure 19-8. Route maps from GNSS data

 Summary
The NEO-7M module accessed global navigation satellite system (GNSS)

messages to determine position and speed. GNSS information was

displayed using u-blox u-center software. Positional information was

accessed directly from the GNSS messages and by using the NeoGPS

library that parsed the NMEA message data. A battery-powered mobile

GNSS tracker was built with the current position and speed information

displayed on a TFT LCD screen and stored on an SD card. Positional data

for a route was displayed using Google Maps to show the route and its

elevation profile.

 Components List
• Arduino Uno and breadboard

• u-blox GNSS module: NEO-7M

• TFT LCD screen: 1.8-inch ST7735

• Micro SD card module

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

370

• Microcontroller: ATmega328P-PU

• USB to UART interface: FT232R FTDI

• Clock crystal: 16MHz

• Capacitor: 2× 22pF ceramic, 0.1μF, and 22μF

• Resistor: 10kΩ

• Logic level converter: 4 channel

• Voltage regulator: LD33V and L4940V5

• Battery: 9V

ChApTeR 19 GloBAl NAViGATioN SATelliTe SySTem

371© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_20

CHAPTER 20

Interrupts and Timed
Events
Interrupts allow the microcontroller to respond to an external signal,

such as the change in state of a device, while performing another task. An

interrupt pauses the sketch and implements the interrupt service routine

(ISR), then the sketch continues from the point that it was interrupted.

There are at least three approaches for scheduling an event to

occur after a certain period of time has elapsed. The simplest is the

delay() function, which pauses the sketch for the required number of

milliseconds. A second approach is to use the millis() function, which

returns the number of milliseconds that the sketch has been running.

A third approach is to use the microcontroller timers.

 Interrupts
The two advantages of an interrupt are that the microcontroller does not

have to constantly check the state of a device, known as polling, and when

the change of state occurs, the ISR is immediately implemented.

A simple example of an interrupt is the sound on a mobile phone

indicating that an email has arrived. The ISR is to read the email. The

interrupt ensures that the email account does not have to be constantly

checked to determine if an email has arrived. As noted in Chapter 9 on the

372

rotary encoder, given several tasks or delays in the void loop() function,

the microcontroller can miss detecting changes in the state of a device.

Interrupts resolve the problem by being triggered from hardware, rather

than from software, such that when a change in the state of a device

occurs, the microcontroller responds accordingly.

The Arduino’s interrupt pins are 2 and 3, which are referenced as

interrupt0 and interrupt1 or INT0 and INT1, respectively. An ISR should

not pass or return variables, should be short and should not include the

delay() instruction. Variables that are included both in the sketch and in

the ISR must be declared in the sketch as volatile. The variable is then

loaded from RAM, and not from the storage register.

An interrupt can be defined with the attachInterrupt(interrupt

number, ISR, state change) instruction. Although the attachInterr

upt(digitalPinToInterrupt(interrupt pin), ISR, state change)

instruction is more portable across Arduino devices.

For example, if the interrupt, called ISR, is activated by a state change

of a switch on Arduino pin 3, which corresponds to interrupt 1, then the

two instructions that can be used are

attachInterrupt(1, ISR, CHANGE)

and

attachInterrupt(digitalPinToInterrupt (3),ISR,CHANGE).

An example illustrates the advantage of using an interrupt. The

objective is to turn on or off an LED depending on a switch being pressed,

while displaying, every second on the serial monitor, the number of

milliseconds that the sketch has been running (see Figure 20-1 and

Table 20-1). The sketch (see Listing 20-1) does not use an interrupt, and

if the switch is pressed during the one-second delay after printing to

the serial monitor, then the microcontroller will not detect a change in

the switch state. The interval of one second between printing could be

implemented with the millis() function, as outlined later in the chapter,

which would also enable detection of changes in switch state.

Chapter 20 Interrupts and tImed events

373

Figure 20-1. Interrupt switch and LED

Table 20-1. Interrupt Switch and LED

Component Connect to and to

Switch right arduino 5v

Switch left arduino pin 3

Switch left 10kΩ resistor arduino Gnd

Capacitor positive switch right

Capacitor negative switch left

LED long leg arduino pin 7

LED short leg 220Ω resistor arduino Gnd

Chapter 20 Interrupts and tImed events

374

Listing 20-1. Switch and LED

int LEDpin = 7; // LED pin

int switchPin = 3; // switch pin

int switchState = LOW; // initial switch state

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 Serial.println(millis()); // display time (ms) on Serial Monitor

 delay(1000); // delay 1s

 if(digitalRead(switchPin) != switchState) State(); // change of switch state

}

void State() // can't use switch as a function name

{

 switchState = digitalRead(switchPin); // update switch state

 if(switchState == HIGH) digitalWrite(LEDpin, !digitalRead(LEDpin));

} // turn LED on or off

The problem of not detecting a change in the switch state during

the one-second delay is resolved by attaching an interrupt that detects a

change in the switch state (see Listing 20-2). At the start of the sketch, the

switchState variable is defined as volatile as it is used in both the main

sketch and the interrupt. In the void setup() function, the interrupt is

defined as

attachInterrupt(1, State, CHANGE)

Chapter 20 Interrupts and tImed events

375

In the void loop() function, the following instruction is deleted.

if(digitalRead(switchPin) != switchState) Switch()

Changes to Listing 20-1 are indicated in bold.

Listing 20-2. Interrupt Switch and LED

int LEDpin = 7; // LED pin

int switchPin = 3; // switch pin

volatile int switchState = LOW; // initial switch state

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 attachInterrupt(1, State, CHANGE); // define the interrupt

}

void loop()

{

 Serial.println(millis()); // display time (ms) on Serial Monitor

 delay(1000); // delay 1s

 if(digitalRead(switchPin) != switchState) State();

}

void State() // can't use switch as a function name

{

 switchState = digitalRead(switchPin); // update switch state

 if(switchState == HIGH) digitalWrite(LEDpin, !digitalRead(LEDpin));

} // turn LED on or off

When the switch is pressed, the interrupt is immediately triggered

by hardware, the sketch pauses, and the interrupt service routine (ISR) is

applied to turn on or off the LED. The sketch then returns to display, on the

serial monitor, the number of milliseconds that the sketch has been running.

Chapter 20 Interrupts and tImed events

376

 Types of Interrupt
An interrupt can be initiated by a state change on an interrupt pin from

LOW to HIGH or from HIGH to LOW (CHANGE option), from HIGH to

LOW (FALLING option), and from LOW to HIGH (RISING option). The

interrupt can also be triggered by setting the interrupt pin to LOW

(LOW option).

For example, in Listing 20-2, the switch is connected to Arduino pin 3

(see Figure 20-1), which is interrupt1. The ISR is the State() function

and the interrupt is triggered with the CHANGE option on the switch state.

The interrupt is defined by the attachInterrupt(1, State, CHANGE)

instruction.

If the switch was connected to Arduino pin 2, interrupt0, and the

interrupt only triggered when the switch state changed from LOW to

HIGH, then the interrupt would be defined with the attachInterrupt(0,

State, RISING) instruction.

The outcome of an interrupt depends on both the trigger option—

CHANGE, FALLING, RISING or LOW—and on the state of the variable used

in the ISR, such as a switch state. If the ISR turns on or off an LED when

the switch state is HIGH, then the interrupt outcomes to the four trigger

options are shown in Table 20-2.

Chapter 20 Interrupts and tImed events

377

In Table 20-2, the outcomes of the CHANGE and RISING options are the

same, while the FALLING option has no impact on the LED. With the LOW

option, the interrupt is constantly active when the switch is not pressed,

so the millis() function is halted and there is no output to the serial

monitor.

Table 20-2. Interrupt Triggers and State Changes

Trigger Press switch

state changes from LOW to HIGH

Release switch

state changes from HIGH to LOW

CHANGE interrupt active

switch state = hIGh

turn Led on or off

interrupt active

switch state = LOW

no change to Led

FALLING interrupt not active

no change to Led

interrupt active

switch state = LOW

no change to Led

RISING interrupt active

switch state = hIGh

turn Led on or off

interrupt not active

no change to Led

LOW interrupt inactive while switch pressed

if switch change occurs with digitalread,

then switch state = hIGh

turn Led on or off

millis() function resumes

display to serial monitor resumes

interrupt active

switch state = LOW

no change to Led

millis() function stops

no display to serial monitor

Chapter 20 Interrupts and tImed events

378

Conversely, if the ISR turns on or off the LED when the switch state is

LOW, the ISR outcomes are shown in Table 20-3.

Table 20-3. Interrupt Triggers and State Changes (2)

Trigger Press switch

state changes from LOW to HIGH

Release switch

state changes from HIGH to LOW

CHANGE interrupt active

switch state = hIGh

no change to Led

interrupt active

switch state = LOW

turn Led on or off

FALLING interrupt not active

no change to Led

interrupt active

switch state = LOW

turn Led on or off

RISING interrupt active

switch state = hIGh

no change to Led

interrupt not active

no change to Led

LOW interrupt inactive while switch pressed

if switch change does not occur with digitalread,

then switch state = LOW

turn Led on or off

millis() function resumes

display to serial monitor resumes

interrupt active

switch state = LOW

Led turns on and off repeatedly

with a 50% duty cycle

millis() function stops

In Table 20-3, the CHANGE and FALLING options have the same outcome,

while the RISING option has no impact on the LED. When the interrupt

is triggered by the LOW option, the LED is repeatedly turned on and off,

equivalent to a 50% duty cycle, as well as halting both the millis()

function and display to the serial monitor.

Interrupts can be stopped and restarted with the noInterrupts()

and interrupts() instructions, respectively. An example of stopping

and restarting an interrupt is when copying a volatile variable to another

Chapter 20 Interrupts and tImed events

379

variable for use in the void loop() function. If the interrupt is not

stopped, then value of the volatile variable may change while being copied

to the second variable.

 Additional Interrupt Pins
The PinChangeInterrupt library by Nico Hood enables additional Arduino

pins to be used as interrupt pins, rather than only the two interrupt0 and

interrupt1 pins. The PinChangeInterrupt library can be installed within

the Arduino IDE, using installation method 3, as outlined in Chapter 3.

Two changes are required to a sketch to define an Arduino input pin as an

additional interrupt pin.

The attachInterrupt(0 or 1, interrupt, trigger option)

interrupt instruction is replaced with either attachPCINT(digital

PinToPCINT(interPin), interrupt, trigger option) or attach

PinChangeInterrupt(PCINT_interPin, interrupt, trigger option),

where interPin is the Arduino pin to be used as an interrupt pin.

PCINT_interPin is the corresponding pin change interrupt number for the

Arduino pin.

For example, if Arduino digital pin 6 is to be used as an interrupt pin in

Listing 20-2, rather than pin 3, then interPin is 6 and PCINT_interPin is the

PCINT number of Arduino pin 6, which is 22 (PCINT22) (see Figure 18-1).

The interrupt instruction would be replaced by either attachPCINT(digital

PinToPCINT(6), State, CHANGE) or attachPinChangeInterrupt(22,

State, CHANGE).

The #include <PinChangeInterrupt.h> instruction must also be

included in the updated sketch.

Chapter 20 Interrupts and tImed events

380

 Interrupts and Rotary Encoder
Inclusion of an interrupt with a rotary encoder ensures that the

microcontroller detects all turns on the rotary encoder, even with a delay

included in the void loop() function (see Figure 20-2 and Listing 20- 3).

A few changes are required to the rotary encoder sketch of Chapter 9

(see Listing 9-1). The SW (switch) and CLK (pin A) pins are connected

to interrupt0 and interrupt1 pins, which are Arduino pins 2 and 3. The

interrupt ISRs turnOff() and encoder(), which detect a falling edge on

the SW and CLK pins, as in Listing 9-1 are defined by:

attachInterrupt(0, turnOff, FALLING)

attachInterrupt(1, encoder, FALLING)

A three second delay is included in the void loop() function to

demonstrate that the two interrupts detect all changes in the rotary

encoder.

The turnOff() ISR sets the LED brightness to zero. The encoder() ISR

requires the state of the DT pin (pin B) to determine the direction of the

rotary encoder and as the interrupt is applied on a falling edge of the CLK

pin, there is no need to check the status of the CLK pin.

Chapter 20 Interrupts and tImed events

381

Listing 20-3. Rotary Encoder with LED and Interrupt

int DTpin= 9; // pin B or data pin

int SWpin= 2; // switch pin

int LEDpin = 11; // LED on PWM pin

volatile int bright = 120; // initial LED value

int fade = 10; // amount to change LED

int rotate = 0; // number of rotary turns

volatile int SW = 0;

volatile int change;

Figure 20-2. Rotary encoder with LED and interrupt

Chapter 20 Interrupts and tImed events

382

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 pinMode(SWpin, INPUT_PULLUP); // switch pin uses internal pull-up resistor

 attachInterrupt(1, encoder, FALLING); // detect change in rotary encoder

 attachInterrupt(0, turnOff, FALLING); // detect switch change

}

void loop()

{

 rotate = rotate + abs(change); // number of turns of rotary encoder

 bright = bright + change*fade; // change LED brightness

 bright = constrain(bright, 0, 255); // constrain LED brightness

 if(change != 0)

 {

 Serial.print(rotate);Serial.print("\t"); // display number of rotary

 Serial.println(bright); // turns and LED brightness

 }

 analogWrite(LEDpin, bright); // update LED brightness

 change = 0; // reset change

 delay(3000); // delay to verify interrupt functioning

}

void encoder() // interrupt to detect rotations

{

 int newB = digitalRead(DTpin); // state of (DT) pin B

 change = change + (2*newB - 1); // number of changes and direction of rotation

}

void turnOff() // interrupt for switch

{

 bright = 0;

 analogWrite(LEDpin, bright);

}

Chapter 20 Interrupts and tImed events

383

As discussed in Chapter 2, when a switch is pressed, the springy nature

of the metal used in the contact points can cause the contact points to touch

several times; in other words, to bounce before making a permanent contact.

The Arduino clock speed of 16 MHz equates to 16 million operations per

second; so after pressing the switch, the bouncing switch contact appears to

the microcontroller as having opened and closed several times.

The hardware solution to switch bouncing is inclusion of a capacitor

across the switch and a resistor in series with the switch. The rotary

encoder CLK and DT pins are debounced by including 10kΩ (R) pull-up

resistors with 10μF (C) capacitors connected between each of the CLK

and DT pins and GND (see Figure 20-2 and Table 20-4). The debounce

delay is 69ms, equal to RC×ln(2) seconds. Some rotary encoder modules

include 10kΩ pull-up resistors on the CLK and DT pins, in which case

only the additional capacitors are required for debouncing the rotary

encoder CLK and DT pins.

Table 20-4. Rotary Encoder with LED and Interrupt

Component Connect to and to and to

Rotary encoder CLK arduino pin 3 Capacitor positive

Rotary encoder CLK 10kΩ resistor arduino 5v

Rotary encoder DT arduino pin 9 Capacitor positive

Rotary encoder DT 10kΩ resistor arduino 5v

Rotary encoder SW arduino pin 10

Rotary encoder VCC arduino 5v

Rotary encoder GND arduino Gnd

Capacitor negative arduino Gnd

LED long leg arduino pin 11

LED short leg 220Ω resistor arduino Gnd

Chapter 20 Interrupts and tImed events

384

 Timed Events: delay()
In Chapter 1, the delay(1000) function followed a digitalWrite()

instruction to turn on or off an LED, such that the LED was on or off for

one second. The disadvantage of the delay() function is that virtually all

microcontroller activity is stopped, such as checking the state of input

pins, changing the state of output pins or data processing. The delay()

function argument is an unsigned long, with a maximum delay of (232 – 1)

ms or 49.7 days.

 Timed Events: millis()
As with the delay() function, the argument is an unsigned long, equal

to (232 – 1)ms or 49.7 days. When the required time has elapsed since the

scheduled event last occurred, the scheduled event is again implemented.

For example, in Listing 20-4, the built-in LED blinks every second, which is

when the difference between the elapsed time, millis(), and the time that

the LED state was last changed, LEDtime, is equal to 1000ms.

Listing 20-4. Timed Event with millis()

int LEDpin = 7; // LED pin

unsigned long LEDtime = 0; // event time

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as OUTPUT

}

void loop()

{

 if(millis()-LEDtime > 1000) // 1000ms since event time

 {

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // turn LED on or off

Chapter 20 Interrupts and tImed events

385

 LEDtime = millis(); // reset time that event last occurred

 }

}

Two events can be scheduled with the millis() function, so that the

LED is off for two seconds and on for 100ms. The condition determines

if the required time has elapsed since the last event and implements the

changeLED() function to change the LED state. For example, in

Listing 20- 5, the following instruction

if(timeNow >= (lastEvent + Atime) && digitalRead(LEDpin) == Aevent)

 changeLED(Bevent)

turns the LED on, the Bevent, if 2000ms, the Atime, have elapsed since the

LED was off, the Aevent.

Listing 20-5. Timed Events with millis() and One LED

int Atime = 2000; // time for event A: LED off

int Aevent = LOW;

int Btime = 100; // time for event B: LED on

int Bevent = HIGH;

unsigned long lastEvent = 0; // time event last occurred

unsigned long timeNow; // elapsed time in ms

int LED = 7; // LED pin

void setup()

{

 pinMode(LED, OUTPUT); // LED pin as output

}

void loop()

{

 timeNow = millis(); // turn LED on

 if(timeNow >= (lastEvent + Atime) && digitalRead(LED) == Aevent)

 changeLED(Bevent);

Chapter 20 Interrupts and tImed events

386

 else // turn LED off

 if(timeNow >= (lastEvent + Btime) && digitalRead(LED) == Bevent)

 changeLED(Aevent);

}

void changeLED(int event) // function to turn LED on or off

{

 digitalWrite(LED, event); // change LED state

 lastEvent = timeNow; // reset time that event last occurred

}

Incorporation of a second LED (Cevent and Devent) with different

timings (Ctime and Dtime) into the sketch (see Listing 20-6) is straight

forward, with one LED briefly flashing on when the second LED turns on for

the third time. Note that in the example (Atime + Btime) = 3*(Ctime + Dtime),

so turning the second LED on (Devent) occurs three times for every time the

first LED is turned on (Bevent).

Listing 20-6. Timed Events with millis() and Two LEDs

int Atime = 2900; // time for event A: LED1 off

int Aevent = LOW;

int Btime = 100; // time for event B: LED1 on

int Bevent = HIGH;

int Ctime = 500; // time for event C: LED2 off

int Cevent = LOW;

int Dtime = 500; // time for event D: LED2 on

int Devent = HIGH;

unsigned long lastEvent[] = {0, 0}; // time event last occurred

unsigned long timeNow; // elapsed time in ms

int LED1 = 7; // LED pins

int LED2 = 8;

int LD;

Chapter 20 Interrupts and tImed events

387

void setup()

{

 pinMode(LED1, OUTPUT); // define LED pins as output

 pinMode(LED2, OUTPUT);

}

void loop()

{

 timeNow = millis(); // turn first LED on

 if(timeNow >= (lastEvent[0] + Atime) && digitalRead(LED1) == Aevent)

 changeLED(Bevent, LED1, 1);

 else // turn first LED off

 if(timeNow >= (lastEvent[0] + Btime) && digitalRead(LED1) == Bevent)

 changeLED(Aevent, LED1, 1);

 else // turn second LED on

 if(timeNow >= (lastEvent[1] + Ctime) && digitalRead(LED2) == Cevent)

 changeLED(Devent, LED2, 2);

 else // turn second LED off

 if(timeNow >= (lastEvent[1] + Dtime) && digitalRead(LED2) == Devent)

 changeLED(Cevent, LED2, 2);

}

void changeLED(int event, int LED, int LD) // function to turn LED on or off

{

 digitalWrite(LED, event); // change LED state

 lastEvent[LD-1] = timeNow; // reset time that event last occurred

}

 Timed Events: Timer1
The ATmega328P-PU microcontroller has two 8 bit timers, Timer0 and

Timer2, and a 16 bit timer, Timer1, as outlined in Chapter 18. Timer0 is used

by the delay(), millis() and micros() functions, so is not available for

triggering interrupts. Timer1 counts to 65535 (= 216 – 1), resets to zero and

Chapter 20 Interrupts and tImed events

388

starts counting again. Timer1 takes 4.10 seconds, equal to (216 – 1)/(16 × 106),

to count to 65535, given the 16MHz clock speed. With the TimerOne library,

a timer period can be defined, such that an interrupt is triggered when

Timer1 reaches the end of the timer period (see Table 20-5). The TimerOne

library by Paul Stoffregen can be installed within the Arduino IDE using

installation method 3, as outlined in Chapter 3.

Table 20-5. TimerOne Library Instructions

Instruction Explanation

Timer1.initialize(period) define the time period in

microseconds

Timer1.pwm(pin, duty) generates a pWm signal on arduino

pins 9 or 10, with a duty value

between 0 and 1023 for a duty cycle

of 0% and 100% respectively.

the instruction analogWrite() on

arduino pins 9 and 10 is disabled by

the TimerOne library.

Timer1.attachInterrupt(function) interrupt function triggered at the

end of the time period

For example, Listing 20-7 defines a cycle period of 0.05 seconds, when

the interrupt interLED is triggered to turn on or off an LED and the number

of times the LED is turned on is displayed on the serial monitor. A square

wave with frequency 20Hz, equal to the inverse of the cycle period, and a 50%

duty cycle is generated on Arduino pin 9. To ensure that the interrupt has not

incremented the number of counts, while the number of counts is being read

for displaying on the serial monitor, the interrupt is stopped, a copy of the

counter is made and then the interrupt is restarted. The number of counts is

divided by two, as turning on and off the LED is equal to one event.

Chapter 20 Interrupts and tImed events

389

Listing 20-7. Timed Events with Timer1

#include <TimerOne.h> // include TimerOne library

int LEDpin = 11; // LED pin

int PWMpin = 9; // must be pin 9 or 10

int freq = 20; // frequency of 20Hz

unsigned long sec = pow(10,6); // setup one second

unsigned long interval;

volatile int count = 0; // increment counter defined as volatile

int countCopy, oldCount;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 interval = sec/(2*freq); // define time period

 Timer1.initialize(interval); // initialize timer

 Timer1.pwm(PWMpin, 0.5*1024); // PWM duty cycle (50%)

 Timer1.attachInterrupt(interLED); // ISR as timer overflow interrupt

}

void loop()

{

 noInterrupts(); // stop the interrupt

 countCopy = count/2; // make copy of counter

 interrupts(); // restart the interrupt

 if(countCopy > oldCount) Serial.println(countCopy); // display count

 oldCount = countCopy; // update count

}

void interLED() // interrupt function

{

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // change LED status

 count = count + 1; // increment counter

}

Chapter 20 Interrupts and tImed events

390

 Timer Register Manipulation
The timer registers of the ATmega328P-PU microcontroller can be

manipulated to generate square waves with frequencies up to 200kHz

and a variable duty cycle. Timer0 is used by the delay(), millis() and

micros() functions, so is not used for generating square waves. Timer2 is

an 8-bit timer, so only counts to 255 (28 – 1) before resetting to zero. Timer1

is a 16-bit timer, providing greater resolution than Timer2, and counts to

65535 (= 216 – 1), overflows or resets to zero and starts counting again.

The time taken by Timer1 to overflow, given the 16MHz clock speed

is
2

16 10

16

6´
 = 4.10ms. The count time can be increased by including a

prescalar,
pre scalar- ´

´
2

16 10

16

6
, with values between 1 and 1024. For example,

a prescalar of 256 increases the time taken for Timer1 to overflow to

1049ms. Timer1 can start counting from an initial value, TCNT1, to alter

the time, t, taken for Timer1 to overflow. With a prescalar, the value of

TCNT1 associated with a time t for Timer1 to overflow is 2
16 10

16

6

-
´ ´()

-

t

pre scalar
.

When TCNT1 = 3036 with a prescalar of 256, Timer1 takes exactly one

second to overflow and if an interrupt is triggered when Timer1 overflows,

then the interrupt would be triggered at one-second intervals.

To generate a square wave with frequency 50Hz requires Timer1 to

overflow every 10ms, equal to the inverse of double the frequency as the

square wave has a high and low phase, which corresponds to TCNT1 values

of 45536, 63036 or 64911 with prescalars of 8, 64, or 256, respectively.

There are two Timer1 registers, TCCR1A and TCCR1B, which contain

information on comparators, the prescalar and the waveform generation

mode (see Table 20-6).

Chapter 20 Interrupts and tImed events

391

Table 20-6. Timer1 Registers

Register Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TCCR1A COm1a1 COm1B1 WGm11 WGm10

TCCR1B WGm13 WGm12 Cs12 Cs11 Cs10

The value of the prescalar is set by CS12, CS11, and CS10, with the

waveform generation mode set by WGM13, WGM12, WGM11, and

WGM10, as shown in Table 20-7.

Table 20-7. Timer1 Prescalars and Waveforms

Pre
scalar CS12 CS11 CS10 Waveform WGM13 WGM12 WGM11 WGM10

1 0 0 1 Normal 0 0 0 0

8 0 1 0 Clear timer on
compare

0 1 0 0

64 0 1 1

256 1 0 0 Fast PWM 8bit 0 1 0 1

1024 1 0 1 Fast PWM 1 1 1 1

Listing 20-8 illustrates using the Timer1 registers to turn on or off

an LED at one-second intervals, with a prescalar of 256 and waveform

generation in normal mode.

Chapter 20 Interrupts and tImed events

392

Listing 20-8. Timer1 Registers

int LEDpin = 11; // LED pin

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 TCCR1A = 0; // initialise register TCCR1A

 TCCR1B = 0; // initialise register TCCR1B

 TCNT1 = 3036; // define TCNT1 in void setup() and ISR

 TCCR1B |= (1<<CS12); // set pre-scalar to 256

 TIMSK1 |= (1<<TOIE1); // enable Timer1 overflow interrupt

}

ISR(TIMER1_OVF_vect) // interrupt at Timer1 overflow

{

 TCNT1 = 3036; // define TCNT1 in setup and ISR

 if(millis()<9000) Serial.println(millis()); // print interrupt times (ms)

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // turn LED on or off

}

void loop() // nothing in void loop() function

{}

Registers TCCR1A and TCCR1B are set to zero and the bit

corresponding to CS12, register TCCR1B bit 2, is set to one as the prescalar

equals 256.

The TCCR1B |= (1<<CS12) instruction is a compound bitwise OR

operator, equivalent to TCCR1B = TCCR1B | (1<<CS12), which results in a

bit value of 0 when bit 2 of TCCR1B and CS12 are both 0 and a bit value of 1

otherwise. For example, the binary value of B0011 | B0101 is B0111.

The TIMSK1 register enables interrupts, such as the Timer1 overflow

interrupt, TOIE1, and the compare match interrupts on Timer1: OCIE1A

and OCIE1B.

Chapter 20 Interrupts and tImed events

393

In clear timer on compare (CTC) mode, an interrupt, A, is triggered

when the Timer1 counter reaches the value in the OCR1A register and then

resets to zero. Another interrupt, B, is triggered when the counter matches

the value in the OCR1B register (see Figure 20-3). The register value to

trigger an interrupt at time t is
t

pre scalar

´ ´()
-

16 106

, so OCR1A and OCR1B register

values of 62,500 and 12,500 will trigger interrupts at one second and 200ms

later, with a prescalar of 256.

Figure 20-3. Compare interrupts and square wave

In Listing 20-9, an LED turns on at one-second intervals, interrupt A,

and turns off 200ms later, interrupt B, with the waveform generation set at

CTC mode. The LED value is HIGH when interrupt A is triggered and then

LOW when interrupt B is triggered.

Chapter 20 Interrupts and tImed events

394

Listing 20-9. Timer1 Registers and Two Events

int LEDpin = 11; // LED pin

void setup() // interrupts at 1s and 0.2s later

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 TCCR1A = 0; // initialise register TCCR1A

 TCCR1B = 0; // initialise register TCCR1B

 OCR1A = 62500; // trigger interrupt A at 1s

 OCR1B = 12500; // trigger interrupt B 200ms

 TCCR1B |= (1<<CS12) | (1<<WGM12); // set pre-scalar 256 and CTC mode

 TIMSK1 |= (1<<OCIE1A) | (1<<OCIE1B); // enable OCR1A and OCR1B

}

ISR(TIMER1_COMPA_vect) // interrupt at overflow A

{

 if(millis()<9000) {Serial.print("A ");Serial.println(millis());}

 digitalWrite(LEDpin, HIGH);

}

ISR(TIMER1_COMPB_vect) // interrupt at overflow B

{

 if(millis()<9000) {Serial.print("B ");Serial.println(millis());}

 digitalWrite(LEDpin, LOW);

}

void loop() // nothing in void loop() function

{}

Chapter 20 Interrupts and tImed events

395

 Summary
Interrupts allow the microcontroller to immediately stop performing

one task, and then perform a second task and return to the first task. An

interrupt was illustrated by detecting all turns on a rotary encoder with

a delay included in the sketch. Timed events were scheduled with the

delay function, the elapsed time between events and by manipulating the

microcontroller timer register.

 Components List
• Arduino Uno and breadboard

• Rotary encoder

• LED

• Switch: tactile

• Capacitor: 2× 10μF

• Resistor: 220Ω and 10kΩ

Chapter 20 Interrupts and tImed events

397© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_21

CHAPTER 21

Power Saving
The power demands on the Arduino are the ATmega328P microcontroller,

the ATmega16U2 microcontroller controlling the USB-to-serial interface,

the 3.3V and 5V voltage regulators, and the three LEDs: power-on, transmit

(TX), and receive (RX). There are several power-down options, but they

only apply to the ATmega328P microcontroller.

The ATmega328P microcontroller has several functions that require

power, including the three timers: Timer0, Timer1, and Timer2, and the

three communication systems: Serial Peripheral Interface (SPI), Inter-

Integrated Circuit (I2C), and serial communication (USART). The analog-

to digital-converter (ADC) converts analog voltages to digital values. The

brownout detector (BOD) monitors the microcontroller voltage supply

and powers down the microcontroller when the voltage is too low. The

watchdog timer (WDT) checks microcontroller activity and resets the

microcontroller if there is a malfunction. The ADC and the two monitor

functions: BOD and WDT also require power. If the microcontroller

is to be battery powered, then some power can be saved by reducing

microcontroller functionality, until the microcontroller is triggered by an

interrupt to perform a specific task.

Of the six power-saving options for the microcontroller, the Idle option

saves the least power, but retains most microcontroller functionality,

while the Power Down option saves the most power, but retains the least

functionality (see Table 21-1). All power-saving options maintain interrupt

functionality and the watchdog timer. The difference between the Standby

398

and Power Down options is in maintaining the oscillator, while retention of

Timer2 is the difference between the Power Save and Power Down options

and between the Extended Standby and Standby options.

Table 21-1 illustrates differences in current requirements of the

Arduino and of the ATmega328P microcontroller for the six power-saving

options.

The current to a “non-power-saving” Arduino with the built-in LED

turned off is 32.7mA, with a supply voltage of 5.18V from a laptop USB port

and a sketch consisting of

void setup() {}

void loop() {}

With the power-saving Power Down option, the current requirement

of the Arduino of 23.8mA indicates 27% power savings. The corresponding

current requirements of the ATmega328P microcontroller were 18.2mA

and 0.38mA, indicating a power saving of 98%.

Table 21-1. Power-Saving Options

Retained Functionality Current (mA)

I2C SPI USART ADC Oscillator Timers Arduino ATmega

Power Down 23.8 0.38

Power Save Timer2 24.7 1.6

Standby On 24.1 0.87

Extended
Standby

On Timer2 24.7 1.6

ADC noise
reduce

On On Timer2 25.2 9.6

Idle On On On On On All 32.1 18.2

ChApTer 21 pOwer SAving

399

The current requirements of the ATmega328P microcontroller with

the six power-saving options can be determined with a stand-alone

microcontroller (see Figure 21-1), as outlined in Chapter 18. The sketch

(see Listing 21-1) sets the sleep mode and when the switch is pressed

an interrupt is triggered for the microcontroller to leave sleep mode,

as indicated by the LED flashing. Interrupt0 on microcontroller pin 4 is

connected to the switch (see Table 21-2). After the sketch is downloaded to

the microcontroller, the USB to serial UART interface is disconnected.

Figure 21-1. ATMega328 current requirement with power-saving
options

(continued)

Table 21-2. ATMega328 Current Requirement with Power-Saving

Options

Component Connect to and to

ATMega328P-PU pin 1 10kΩ resistor 5v rail

ATMega328P-PU pin 7 5v rail

ATMega328P-PU pins 9, 10 16Mhz clock crystal

ChApTer 21 pOwer SAving

400

An interrupt can be initiated with a RISING or a FALLING trigger.

From the perspective of an interrupt named wake, a RISING trigger for

the interrupt with a default LOW switch state seems more intuitive than

a FALLING trigger with a default HIGH switch state. Schematics for both

options are displayed in Figure 21-2. Initiating the interrupt with a RISING

trigger requires a pull-down resistor connected to the switch for a LOW

default switch state.

Component Connect to and to

ATMega328P-PU pins 9, 10 22pF capacitor gnD rail

ATMega328P-PU pins 20, 21 5v rail

ATMega328P-PU pin 22 gnD rail

0.1μF capacitor positive USB to serial UArT DTr

0.1μF capacitor negative ATMega328p-pU pin 1

USB to serial UART RXD ATMega328p-pU pin 3

USB to serial UART TXD ATMega328p-pU pin 2

USB to serial UART VCC ATMega328p-pU pin 7

USB to serial UART GND ATMega328p-pU pin 22

LED long leg 220Ω resistor ATMega328p-pU pin 17

LED short leg gnD

Switch left 10kΩ resistor gnD rail

Switch left ATMega328p-pU pin 4

Switch right 5v rail

10μF capacitor negative Switch left

10μF capacitor positive switch right

Table 21-2. (continued)

ChApTer 21 pOwer SAving

401

In contrast, a HIGH default switch state requires a pull-up resistor

connected to the switch, if the interrupt is initiated with a FALLING

trigger. The difference between the schematics in Figure 21-2 is

connection of VCC and GND around the resistor-switch combination,

noting that the orientation of the capacitor is also changed (see

Table 21-3), with the different connections for the RISING and

FALLING triggers highlighted in bold.

Figure 21-2. Arduino current requirement with power-saving option

ChApTer 21 pOwer SAving

402

The power management and sleep mode are controlled by bit

manipulation of different registers to obtain specific power-saving

conditions. Further details are available at www.gammon.com.au/power.

This chapter discusses use of the avr/sleep module and LowPower library

to utilize different sleep modes for power management.

 avr/sleep Module
AVR is a class of microcontrollers developed by Atmel, which includes the

ATmega328P microcontroller of the Arduino. The AVR language is used to

program Atmel microcontrollers and the AVR library includes the avr/sleep

module for power management and sleep modes.

Table 21-3. Arduino Saving Current Requirement with Power Option

Component Rising trigger pull-down
resistor

Falling trigger pull-up
resistor

Connect to and to Connect to and to

Switch left 10kΩ resistor Arduino gnD 10kΩ resistor Arduino 5V

Switch left Arduino pin 2 Arduino pin 2

Switch right Arduino 5V Arduino GND

Capacitor
negative

Switch left Switch right

Capacitor
positive

Switch right Switch left

LED long leg Arduino pin 11 Arduino pin 11

LED short leg 220Ω resistor Arduino gnD 220Ω resistor Arduino gnD

ChApTer 21 pOwer SAving

http://www.gammon.com.au/power

403

The avr/sleep module is enabled to put the microcontroller into sleep

mode. The avr/sleep module can be deactivated (i.e., the microcontroller is

woken up) with an external interrupt on pins INT0 or INT1, as outlined in

Chapter 20. The interrupt must be defined before the avr/sleep module is

implemented; otherwise, the microcontroller will always be in sleep mode.

A sketch (see Listing 21-1) incorporating the avr/sleep module includes

two functions. The sleep() function attaches the interrupt, sets the sleep

mode, puts the microcontroller in sleep mode and detaches the interrupt.

The wake() function contains instructions for the microcontroller when

leaving sleep mode, but before re-entering the void loop() function.

Listing 21-1. Sleep Mode with avr/sleep Module

#include <avr/sleep.h> // include avr/sleep module

int LEDpin = 11;

int wakePin = 2; // pin connected to interrupt 0

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as OUTPUT

 pinMode(LED_BUILTIN, OUTPUT); // turn off built-in LED

}

void loop()

{

 delay(500);

 digitalWrite(LEDpin, LOW); // turn LED off after sleep mode

 sleep(); // function to set sleep mode

}

void sleep()

{

 attachInterrupt(0, wake, RISING); // interrupt wake function

 set_sleep_mode(SLEEP_MODE_PWR_DOWN); // define sleep mode

//sleep_enable(); // set sleep enable bit

ChApTer 21 pOwer SAving

404

//sleep_cpu(); // initiate sleep

 sleep_mode(); // set sleep enable bit, initiate sleep and reset

 // sketch resumes here on interrupt trigger

//sleep_disable(); // reset sleep enable bit

 detachInterrupt(0); // effectively debounces switch interrupt

}

void wake() // wake interrupt function

{

 digitalWrite(LEDpin, HIGH); // turn LED on

}

The sleep_mode() instruction effectively consists of the three

instructions: sleep_enable(), sleep_cpu(), and sleep_disable().

The three separate instructions, are included in Listing 21-1, in bold but

commented out, to illustrate the implicit order of the instructions. The

sleep_enable() instruction sets the sleep enable bit in the Sleep Mode

Control Register, sleep_cpu() puts the microcontroller into sleep mode,

and sleep_disable() resets the sleep enable bit. The interrupt is attached

before and detached after the microcontroller is put into sleep mode.

The following are the six sleep mode options.

SLEEP_MODE_PWR_DOWN

SLEEP_MODE_PWR_SAVE

SLEEP_MODE_STANDBY

SLEEP_MODE_EXT_STANDBY

SLEEP_MODE_ADC

SLEEP_MODE_IDLE

ChApTer 21 pOwer SAving

405

 LowPower Library
The Low-Power library by Rocket Scream Electronics provides options

for managing power to the microcontroller and the library can be

installed within the Arduino IDE using installation method 3, as outlined

in Chapter 3. Interrupts are used by the LowPower library to wake the

microcontroller, just as with the avr/sleep module.

The LowPower library instruction is

LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF)

It essentially combines the two instructions of the avr/sleep module.

set_sleep_mode(SLEEP_MODE_PWR_DOWN)

sleep_mode()

The LowPower library also enables timed interrupts of 0.5, 1, 2, 4, and 8

seconds with the following instruction.

LowPower.powerDown (sleeptime, ADC_OFF, BOD_OFF)

sleeptime takes these values: SLEEP_500MS, SLEEP_1S, SLEEP_2S,

SLEEP_4S, or SLEEP_8S.

If a longer sleep period than 8 seconds is required, then the

LowPower.powerDown() instruction can be repeated with a for()

instruction. For example, Listing 21-2 demonstrates using the void

sleep() function to achieve a sleep period of one minute.

Listing 21-2. Sleep Mode with LowPower Library

void sleep()

{ // 7×8s = 56s

 for (int i = 0; i<7; i++) LowPower.powerDown(SLEEP_8S,

ADC_OFF, BOD_OFF);

 LowPower.powerDown(SLEEP_4S, ADC_OFF, BOD_OFF); // plus 4s = 60s

 wake();

}

ChApTer 21 pOwer SAving

406

During the sleep period, the required current to the ATmega328P is

7μA (see Table 21-4), achieved with the LowPower.powerDown(SLEEP_8S,

ADC_OFF, BOD_OFF) instruction, which is significantly lower than the

current of 385μA when the avr/sleep Power Down module is implemented

(see Table 21-1). The LowPower library has the facility to separately turn

off the BOD and the ADC.

Table 21-4. Current for BOD and ADC

Combinations

Current (μA) Brownout Detector (BOD)

Analog-to-digital
converter (ADC)

On Off

On 385 360

Off 49 7

The avr/sleep Power Down module is equivalent to the LowPower.

powerDown(SLEEP_8S, ADC_ON, BOD_ON) instruction.

Further power savings can be obtained with the LowPower.

powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF) instruction, which

reduces the current requirement to just 5μA.

 Power Down and an Infrared Sensor
A practical example of combining interrupts (see Chapter 20) with

power saving is using a passive infrared (PIR) sensor to turn on a light

when movement is detected, as in a battery-powered security light

(see Figure 21-3 and Table 21-5). Listing 21-3 uses an interrupt, which

is triggered with a RISING signal from the PIR sensor, to wake the

microcontroller from sleep mode and turn on an LED for 30 seconds.

ChApTer 21 pOwer SAving

407

The stand-alone ATmega328P microcontroller was outlined in Chapter 18

and the PIR sensor in Chapter 3.

Figure 21-3. Power saving with PIR sensor interrupt

When movement is detected, the default LOW PIR signal changes

to HIGH and triggers the interrupt. As the PIR signal is RISING, the

microcontroller leaves sleep mode and the LED is turned on. An interrupt

service routine (ISR) should not include the delay() function, as noted

in Chapter 20, so a movement flag, detect, maintains the LED being on for

the required time of 30 seconds within the void loop() function. After 30

seconds, the LED is flashed on and off to indicate that the microcontroller

is again set to sleep mode. In sleep mode, the required current of only

75μA implies that the battery-operated security light can operate for a

substantial time on a battery.

ChApTer 21 pOwer SAving

408

Table 21-5. Power Saving with PIR Sensor Interrupt

Component Connect to and to

ATMega328P-PU pin 7 Battery 5v

ATmega328P pins 9, 10 16Mhz clock crystal

ATmega328P pins 8, 9 22pF capacitor

ATmega328P pins 8, 10 22pF capacitor

ATMega328P-PU pin 8 Battery gnD

PIR sensor VCC ATmega328p-pU pin 7

PIR sensor OUT ATmega328p-pU pin 4

PIR sensor GND ATmega328p-pU pin 22

LED long leg 220Ω resistor ATmega328p-pU pin 17

LeD short leg Battery gnD

Note than ATmega328P pins 4 and 17 correspond to Arduino pins 2

(interrupt0) and 11 (LED), respectively.

Listing 21-3. Power saving with PIR Sensor Interrupt

#include <LowPower.h> // include LowPower library

int LEDpin = 11; // LED pin

int PIRpin = 2; // interrupt on pin 2 (INT0)

int detect = 0; // movement flag

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

ChApTer 21 pOwer SAving

409

void loop()

{

 if(detect == 1) // if movement detected

 {

 delay(30000); // delay 30s as LED is ON

 digitalWrite(LEDpin, LOW); // turn LED off

 delay(1000); // delay 1s

 }

 detect = 0; // reset movement flag

 digitalWrite(LEDpin, LOW); // turn LED off

 for (int i = 0; i<4; i++)

 { // four steps for turning LED

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // on and off, twice

 delay(1000);

 }

 sleep(); // call sleep function

}

void sleep() // sleep function

{

 attachInterrupt(0, wake, RISING); // interrupt pin, wake function and mode

 LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF); // power down

 detachInterrupt(0); // detach interrupt

}

void wake() // wake interrupt function

{

 digitalWrite(LEDpin, HIGH); // turn LED on

 detect = 1; // set movement flag

}

ChApTer 21 pOwer SAving

410

 Summary
Power-saving options with the avr/sleep module and the LowPower library

are described with an interrupt used to wake the microcontroller from

sleep mode. Current requirement of a stand-alone microcontroller in sleep

mode can be reduced to just 5μA compared to 18mA in non-sleep mode.

A battery-powered PIR sensor activating an interrupt to turn on an LED

replicated a security light system, with the microcontroller normally in

sleep mode to save power.

 Components List
• Arduino Uno and breadboard

• Ammeter

• Microcontroller: ATmega328P-PU

• USB to UART interface: FT232R FTDI

• Clock crystal: 16MHz

• Capacitor: 2× 22pF ceramic, 0.1μF, and 10μF

• Resistor: 220Ω and 10kΩ

• Switch: tactile

• LED

• Passive infrared sensor: HR-SC501

ChApTer 21 pOwer SAving

411© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_22

CHAPTER 22

Sound and Square
Waves
Sound is the vibration of air particles. If the vibration is continuous and

regular, then the sound can be described by its frequency, as the number of

waves per second, quantified in Hertz (Hz). For the time interval in Figure 22-1,

the blue sound wave has two complete cycles, while the red sound wave has

four complete cycles, so double the frequency and half the wavelength of the

blue sound wave. For electromagnetic and sound waves, wavelength is the

speed of light and sound, respectively, divided by the frequency.

Figure 22-1. Two different frequencies

The human ear can hear sounds with frequencies of 20Hz to 20kHz

and ultrasound has frequencies above 20kHz. FM radio stations broadcast

with frequencies of 100MHz and wireless networks operate at 2.4GHz.

412

The musical note A above middle C (see Figure 22-2) has a frequency

of 440Hz and is the tuning standard for musical pitch, which is the

perception that a note is higher or lower than another note. The frequency

of a note above or below A above middle C is 440 × 2n/12, where n is the

number of notes above or below the note A above middle C. For example,

D4 is seven notes below A above middle C, and it has a frequency of 294Hz.

Figure 22-2. Note A above middle C

The number of cycles of a sound is the sound duration multiplied by

the frequency. For example, a sound with a frequency of 440Hz that lasts

50ms consists of 22 cycles. A Piezo transducer can approximate a regular,

continuous sound wave by a square wave, with the transducer switched

to HIGH, then to LOW repeatedly (see Figure 22-3). The Piezo transducer

is HIGH or LOW for 1/(2×frequency) seconds. A sound wave with

frequency 440Hz can be approximated by a square wave that is HIGH or

LOW for 1136μs.

Figure 22-3. Square wave approximation

Chapter 22 Sound and Square WaveS

413

The Piezo transducer (see Figure 22-4) produces a repeating sound

every second in Listing 22-1; it has a frequency of 440Hz and the sound

lasts 50ms.

Figure 22-4. Piezo transducer

Listing 22-1. Piezo Transducer

int piezoPin = 6; // define PWM pin for piezo transducer

float freq = 440; // sound frequency (Hz)

int duration = 50; // duration of sound (ms)

int interval = 1000; // sound duration plus pause (ms)

int pause;

int cycles = (duration*freq)/pow(10,3); // number of cycles of sound duration

Chapter 22 Sound and Square WaveS

414

int timeHigh = pow(10,6)/(2.0*freq); // time (μs) that square wave is HIGH

void setup()

{

 pinMode(piezoPin, OUTPUT); // define piezo pin as output

 pause = interval-duration; // pause between sounds

}

void loop()

{

 for (int i=0; i<cycles+1; i++) // number of cycles per sound

 { // square wave HIGH or LOW

 digitalWrite(piezoPin, !digitalRead(piezoPin));

 delayMicroseconds(timeHigh);

 }

 delay(pause);

}

Rather than having to calculate the number of cycles and the time

that the square wave is HIGH or LOW, the tone(piezoPin, frequency)

instruction generates sound of the required frequency. The tone()

function is followed by a delay() equal to the sound duration, then the

noTone(piezoPin) instruction is followed by a delay(), equal to the

interval between sounds. The tone(piezoPin, frequency) function

defines piezoPin as an OUTPUT pin, so the pinMode(piezoPin, OUTPUT)

instruction is not required.

There are two alternatives for using the tone() function. The first is

tone(piezoPin, frequency); // sound frequency

delay(duration); // sound duration

noTone(piezoPin);

delay(pause); // pause between sounds

Chapter 22 Sound and Square WaveS

415

The second alternative is the tone(piezoPin, frequency, duration)

instruction and the delay() is the sound duration plus the pause

between sounds, as the timers for the tone() and delay() functions run

simultaneously.

tone(piezoPin, frequency, duration); // sound frequency and duration

delay(duration + pause); // time(ms) between start of sound repeats

The tone(piezoPin, frequency, duration) instruction can be used

in the 4-digit 7-segment display timer sketch (see Listing 6-1) in Chapter 6

to produce a “clock ticking” effect with tone(piezoPin, 1000, 50) with

the delay(1000) instruction in the void loop() function.

Another method of generating sound uses the analogWrite()

instruction with Pulse Width Modulation (PWM) and a 50% duty cycle to

replicate the square wave (see Listing 22-2). PWM operates on a frequency

of 490.1961Hz on Arduino PWM pins 3, 9, 10 and 11 and a frequency of

976.5625Hz on Arduino PWM pins 5 and 6. The frequency values of 490Hz

and 977Hz are equal to the microcontroller clock speed of 16MHz divided

by the default scalar of 64 and a cycle length of 256 or 510 for Timer0

or Timer1 and Timer2, respectively. The tone() library uses Timer2 on

Arduino PWM pins 3 and 11, so those pins are not available for PWM when

using the tone() library.

Listing 22-2. Piezo Transducer with PWM

for (int rep=0; rep<reps; rep++) // number of cycles

{

 analogWrite(piezoPin, 128); // analogWrite with 50% duty cycle

 delay(duration); // duration of sound

 analogWrite(piezoPin, 0); // no sound

 delay(pause); // pause between sounds

}

Chapter 22 Sound and Square WaveS

416

The three methods—counting cycles, the tone() function, and

analogWrite() on PWM pins—of generating sound give the same result

for frequencies of 490Hz or 977Hz, with the appropriate Arduino PWM pin,

but for other frequencies only the first two methods are applicable.

 Piezo Transducer and Buzzer
A Piezo (passive) transducer (image on

left) requires a square wave to generate

sounds of different frequencies, while a

Piezo (active) buzzer (image on right)

contains an internal oscillator with a single preset frequency. The Piezo

transducer and buzzer look similar, but the buzzer is higher than the

transducer, due to the internal oscillator, and has substantially greater

resistance across the two pins than the transducer, 3MΩ compared to 15Ω.

Applying power to the transducer or the buzzer produces a click or a sound,

respectively. The volume of the Piezo transducer or buzzer can be reduced

by connecting a 100Ω or a 220Ω resistor in series. Note the ⊕ symbol on the

top of the Piezo buzzer and transducer indicating the positive pin.

 Musical Notes
A series of musical notes can be “played” using an Piezo transducer

with the tone() function. Information on a range of musical notes and

the corresponding frequencies can be loaded into a separate tab in

the Arduino IDE, rather than being included in the main sketch. In the

Arduino IDE, a new tab is created by selecting the triangle below the serial

monitor button in the right-hand side of the Arduino IDE and choosing

New Tab from the drop-down menu. The new tab should be titled notes.h

and frequencies are edited into the tab (see Listing 22-3). For example,

the frequency of 262Hz for middle C is int NOTE_C4 = 262. The tone

definition can also be written as #define NOTE_C4 262, which is the

Chapter 22 Sound and Square WaveS

417

format used in the sketch at www.arduino.cc/en/Tutorial/ToneMelody,

where details of musical notes and frequencies are available.

Listing 22-3. A Selection of Notes

int NOTE_C4 = 262;

int NOTE_D4 =294;

int NOTE_E4 = 330;

int NOTE_F4 = 349;

int NOTE_G4 = 392;

int NOTE_A4 = 440;

int NOTE_B4 = 494;

int NOTE_C5 = 523;

In Listing 22-4, the notes.h tab is referenced with quotation marks, as

"notes.h" and not with angular brackets, which is for a library.

Listing 22-4. A Series of Notes

#include "notes.h" // include reference to notes.h tab

int piezoPin = 12; // Piezo transducer pin

int tune[] = {NOTE_C5, NOTE_G4, NOTE_G4, NOTE_A4,

 NOTE_G4, 0, NOTE_B4, NOTE_C5};

int beats[] = {2, 1, 1, 2, 2, 2, 2, 2}; // length of note

int duration;

void setup()

{} // nothing in void setup() function

void loop()

{

 for (int i = 0; i < 8; i++) // play the 8 notes

 {

 duration = 125*beats[i]; // duration of note = 125 or 250ms

 tone(piezoPin, tune[i], duration); // generate sound

Chapter 22 Sound and Square WaveS

http://www.arduino.cc/en/Tutorial/ToneMelody

418

 delay(duration*1.25); // interval between notes 1.25×note duration

 }

 while(1); // stop the "tune" after being played once

}

Switches can be used to switch on sounds, as in a digital piano (see

Figure 22-5 and Table 22-1), with the sound produced as long as the switch is

pressed. Listing 22-5 uses the four notes: G4, A4, B4, and C5, from Listing 22-4.

Figure 22-5. Four-note piano

Chapter 22 Sound and Square WaveS

419

Listing 22-5. Four-Note Piano

int Note_G = 392; // note frequencies (Hz)

int Note_A = 440;

int Note_B = 494;

int Note_C = 523;

int piezoPin = 13; // Piezo transducer pin

int switch_G = 8;

int switch_A = 9; // define switches

int switch_B = 10;

int switch_C = 12;

void setup()

{ // pins set HIGH

 for (int i = 8; i<13; i++) pinMode(i, INPUT_PULLUP);

}

void loop()

{ // sound on switch press

 while(digitalRead(switch_A) == LOW) tone(piezoPin, Note_A);

 while(digitalRead(switch_B) == LOW) tone(piezoPin, Note_B);

 while(digitalRead(switch_C) == LOW) tone(piezoPin, Note_C);

 while(digitalRead(switch_G) == LOW) tone(piezoPin, Note_G);

 noTone(piezoPin); // switch off sound

}

Table 22-1. Four-Note Piano

Component Connect to

Piezo trans VCC arduino pin 13

Piezo trans GND arduino Gnd

Switch left arduino pins 8, 9, 10, 12

Switch right arduino Gnd

Chapter 22 Sound and Square WaveS

420

Associating the pressing of a switch with a LOW state seems intuitively

incorrect, but it has the advantage that the switch pins can use the

Arduino’s built-in pull-up 20kΩ resistors, rather than connecting 10kΩ

pull-up resistors to each switch. The pinMode(pin, INPUT_PULLUP)

instruction sets the pin state to HIGH, while pinMode(pin, INPUT) sets the

pin state to LOW. The internal pull-up resistors, on the pins for the four

notes, are initialized with the instruction in the void setup() function.

for (int i = 8; i<13; i++) pinMode(i, INPUT_PULLUP)

 Sensor and Sound
A sensor, such as a light dependent resistor (LDR), can be used to

generate a sound with the frequency of the sound dependent on the

sensor input, such as the light intensity. An LDR was used in Chapter 3

to control the brightness of an LED, as the basis of a night light. In the

example (see Figure 22-6 and Table 22-2), the frequency of the Piezo

speaker increases and the LED brightness decreases as the incident

light increases. The map() function converts the LDR reading to a

frequency for the Piezo transducer, with an analog reading of 0 to 900

corresponding to a frequency value of 262Hz to 494Hz, which are notes

C4 to B4 (see Listing 22-6). The map() function also inversely converts

the LED reading to an LED brightness value with the light intensity

class, based on the threshold values: Bright, Light, Dim, and Dark. The

LED is turned on only for low- light intensity, given an upper limit in

the map() function. Each map() function is followed by a constrain()

function to ensure that values remain within the boundary values of the

map() function.

Chapter 22 Sound and Square WaveS

421

Figure 22-6. Light sensor, sound, and LED

Table 22-2. Light Sensor, Sound, and LED

Component Connect to and to

Piezo trans VCC arduino pin 13

Piezo trans GND arduino Gnd

LDR left 4.7kΩ resistor Gnd

LDR left arduino pin a0

LDR right arduino 5v

LED long leg arduino pin 9

LED short leg 220Ω resistor Gnd

Chapter 22 Sound and Square WaveS

422

Listing 22-6. Light Sensor, Sound, and LED

int LDRpin = A0; // LDR voltage divider

int LEDpin = 9; // LED on PWM pin

int piezoPin = 13; // Piezo transducer pin

int duration = 100; // sound duration (ms)

int LED, LDR, freq;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 pinMode(piezoPin,OUTPUT); // define Piezo pin as output

}

void loop()

{

 LDR = analogRead(LDRpin); // read LDR

 LED = map(LDR, 0, 500, 255, 0); // map LED brightness inversely to LDR

 LED = constrain (LED, 0, 255); // constrain LED brightness

 freq = map(LDR, 0, 900, 262, 494); // map sound frequency to LDR

 freq = constrain (freq, 262, 494); // constrain sound frequency

 analogWrite(LEDpin, LED); // set LED brightness

 tone (piezoPin, freq, duration); // Piezo pin and frequency defined

 Serial.print("Light intensity is "); // message to Serial Monitor

 if(LDR >= 750) Serial.println("Bright");

 else if(LDR >= 500) Serial.println("Light"); // display light intensity class

 else if(LDR >= 250) Serial.println("Dim");

 else Serial.println("Dark");

 delay(1000); // delay 1s

}

Chapter 22 Sound and Square WaveS

423

The toneAC library by Tim Eckel with the toneAC() function controls

both the frequency and volume of a sound. A .zip file containing the

toneAC library can be downloaded from https://playground.arduino.

cc/Code/ToneAC. Chapter 3 included details on installing a downloaded

library .zip file using either installation method 1 or method 2.

When using the toneAC() function, the Piezo transducer is connected to

Arduino PWM pins 9 and 10. The toneAC(frequency, volume, duration)

instruction defines the sound frequency, the volume on a 0 (off) to 10 (high)

scale, and the sound duration in milliseconds, with 0 corresponding to

forever. The noToneAC() or toneAC(0) instructions stop the sound.

An electro-Theremin can be imitated by moving one hand above an

LDR to change the light intensity and the associated sound frequency

(see Figure 22-7). A second LDR and voltage divider pair are included in

the circuit to control the sound volume, by moving the other hand above

the second LDR (see Table 22-3 and Listing 22-7).

Chapter 22 Sound and Square WaveS

https://playground.arduino.cc/Code/ToneAC
https://playground.arduino.cc/Code/ToneAC

424

Figure 22-7. Electro-Theremin

Table 22-3. Electro- Theremin

Component Connect to and to

Piezo VCC arduino pin 9

Piezo GND arduino pin 10

LDR bottom arduino 5v

LDR top arduino pin a2, a3

LDR top 4.7kΩ resistor arduino Gnd

Chapter 22 Sound and Square WaveS

425

Listing 22-7. Electro-Theremin

#include <toneAC.h> // include toneAC library

int LDRFpin = A2; // LDR for frequency

int LDRVpin = A3; // LDR for volume

int LDRF, LDRV, freq, volume;

void setup()

{} // nothing in void setup() function

void loop()

{

 LDRF = analogRead(LDRFpin); // LDR for frequency

 LDRV = analogRead(LDRVpin); // LDR for volume

 freq = map(LDRF, 0, 900, 523, 1047); // map sound frequency C5 to C6

 freq = constrain (freq, 523, 1047); // constrain sound frequency

 volume = map(LDRV, 0, 900, 0, 10); // map volume to LDRV

 volume = constrain (volume, 0, 10); // constrain volume

 toneAC (freq, volume, 0); // play sound

}

 Generating Square Waves
Square waves with frequencies 490.1961Hz or 976.5625Hz can be

generated by analogWrite() to Arduino PWM pins 3, 9, 10 and 11 or to

pins 5 and 6, respectively. The duty cycle of the square wave is defined as a

multiple of 256. For example, analogWrite(3, 128) and analogWrite(6, 64)

produce square waves with frequencies 490 and 977Hz with 50% and 25%

duty cycles, respectively.

The PWM library generates square waves with frequencies between

1Hz and 2MHz using the 16-bit Timer1. The PWM library by Sam Knight

is contained within a .zip file available at https://code.google.com/

archive/p/arduino-pwm-frequency-library/downloads. Download the

Arduino PWM Frequency Library .zip file and store on the computer or laptop.

Chapter 22 Sound and Square WaveS

https://code.google.com/archive/p/arduino-pwm-frequency-library/downloads
https://code.google.com/archive/p/arduino-pwm-frequency-library/downloads

426

Extract the PWM folder from the .zip file and install the PWM library

using installation method 2, as described in Chapter 3.

The sketch (see Listing 22-8) produces a square wave with frequency

10kHz on pin 10 with the duty cycle defined by the output of a

potentiometer on analog pin A0. The potentiometer output value is

divided by 4, as maximum values of the potentiometer output and the

pwmWrite() function are 1023 and 255, respectively.

The InitTimersSafe() and SetPinFrequencySafe(pin, freq)

instructions do not impact Timer0, which controls the delay(), millis()

and micros() functions. Either of the two Timer1 pins—Arduino pins 9 or

10—can output the square wave.

Listing 22-8. Square Wave with PWM

#include <PWM.h> // include PWM library

unsigned long freq = 10000; // required frequency (Hz)

int potPin = A0; // potentiometer pin

int PWMpin = 10; // use pin 9 or 10 (Timer1)

int setFreq;

void setup()

{

 pinMode(PWMpin, OUTPUT); // define PWMpin as OUTPUT

 InitTimersSafe(); // does not impact Timer0

 setFreq = SetPinFrequencySafe(PWMpin, freq); // does not impact Timer0

}

void loop()

{ // output square wave with duty cycle

 pwmWrite(PWMpin, analogRead(potPin)/4); // determined by potentiometer

}

Chapter 22 Sound and Square WaveS

427

Square waves can be generated with timer register manipulation, in

a similar procedure to triggering interrupts, as outlined in Chapter 20.

In Fast PWM 8-bit mode, Timer1 counts to 255 (28–1), resets to zero and

starts counting again. When Timer1 matches the value in the OCR1B

register, the square wave has value LOW and when Timer1 overflows or

resets to zero, the square wave has value HIGH (see Figure 22-8). If the

value in the OCR1B register is based on the output of a potentiometer,

then the duty cycle of the square wave can be changed by altering the

potentiometer output. The maximum values of the analog-to-digital

converter (ADC) and the OCR1B register are 1023 and 255, respectively,

so the value from the potentiometer output is either divided by

4 or mapped with the map(analogRead(potPin),0,1023,0,255)

instruction, where potPin is the Arduino pin connected to the

potentiometer.

Figure 22-8. PWM square wave

Chapter 22 Sound and Square WaveS

428

The COM1A1 and COM1B1 registers enable outputs from OCR1A

and OCR1B on pins OC1A and OC1B, which correspond to Arduino pins

9 and 10, respectively (see Figure 18-1). In Listings 22-9 and 22-10, the

OCR1B register is used to generate a square wave, which is output on

Arduino pin 10.

In Fast PWM 8-bit mode, Timer1 overflows in
pre scalar- ´

´
256

16 106

seconds, which is equal to 16μs with prescalar of one, which corresponds

to a square wave with frequency 62.5kHz. If the prescalar is increased to

256, the time for Timer1 to overflow is 4.1ms, resulting in a square wave

with frequency 244Hz.

Listing 22-9 generates a square wave with a frequency of 62.5kHz and

the output from a potentiometer controls the duty cycle of the square wave.

Listing 22-9. Square Wave with Timer1 Fast PWM 8-bit Mode

int PWMpin = 10; // define PWM pin on Arduino pin 10

int potPin = A0; // define potentiometer on pin A0

void setup()

{

 pinMode(PWMpin, OUTPUT); // define PWMpin as OUTPUT

 TCCR1A = 0; // initialise register TCCR1A

 TCCR1B = 0; // initialise register TCCR1B

 // set compare output mode and set pre-scalar to 1 with Fast PWM 8-bit mode

 TCCR1A |= (1<<WGM10) | (1<<COM1B1);

 TCCR1B |= (1<<CS10) | (1<<WGM12);

}

void loop()

{

 OCR1B = analogRead(potPin)/4; // change OCR1B register and duty cycle

}

Chapter 22 Sound and Square WaveS

429

The square wave frequencies generated using the Fast PWM 8-bit

mode are constrained by Timer1 counting to 255 and the values of the

prescalar: 1, 8, 64, 256, and 1024, which result in frequencies of 62500,

7812.5, 976.56, 244, and 61Hz, respectively. However, with the Fast PWM

mode, the overflow value of Timer1 can be varied to generate square

waves with frequencies between 1Hz and 4MHz. In Fast PWM mode,

the value that Timer1 counts up to is set by
16 106´

- ´pre scalar frequency
,

such that Timer1 overflows faster with higher values of the prescalar and

the required square wave frequency, so that a square wave with the

required frequency is generated. The OCR1A register is set to

16 106´
- ´pre scalar frequency

, but reduced by one as the counter starts from

zero. While the OCR1A register controls the square wave frequency, the

OCR1B register controls the duty cycle of the square wave through

mapping the potentiometer output.

The required frequency determines the value of the prescalar, as the

value of the Timer1 overflow must be an integer; otherwise, the resulting

frequency will not equal the required frequency. For example, prescalars

of 1 and 256 are necessary to generate square waves with frequencies of

200kHz and 2Hz, with the Timer1 overflow values equal to 80 and 31250,

respectively.

Listing 22-10 generates a square wave with frequency 50kHz with a

prescalar of one, although a prescalar of 8 or 64 could also be used. The

term F_CPU is the microcontroller clock speed, which is a system constant,

equal to 16MHz. Instructions for setting the TCCR1B register to different

values of the prescalar are given in Table 22-4.

Chapter 22 Sound and Square WaveS

430

Listing 22-10. Square Wave with Timer1 Fast PWM Mode

int PWMpin = 10; // define PWM pin on Arduino pin 10

int potPin = A0; // define potentiometer on pin A0

unsigned long freq = 50000; // required square wave frequency

int prescalar = 1; // define pre-scalar

int overflow;

void setup()

{

 Serial.begin(9600); // define Serial output baud rate

 pinMode(PWMpin, OUTPUT); // define PWMpin as OUTPUT

 TCCR1A = 0; // initialise register TCCR1A

 TCCR1B = 0; // initialise register TCCR1B

 // set compare output mode and set pre-scalar to 1 with Fast PWM mode

 TCCR1A |= (1<<WGM10) | (1<<WGM11) | (1<<COM1B1);

 TCCR1B |= (1<<CS10) | (1<<WGM12) | (1<<WGM13);

 overflow = F_CPU / (freq*prescalar); // Timer1 overflow value

 Serial.println(overflow); // print Timer1 overflow value

 OCR1A = overflow-1; // counter starts at zero

}

Table 22-4. TCCR1B Register and Prescalar Values

Prescalar Instruction

1 tCCr1B |= (1<<CS10) | (1<<WGM12) | (1<<WGM13);

8 tCCr1B |= (1<<CS11) | (1<<WGM12) | (1<<WGM13);

64 tCCr1B |= (1<<CS10) | (1<<CS11) | (1<<WGM12) | (1<<WGM13);

256 tCCr1B |= (1<<CS12) | (1<<WGM12) | (1<<WGM13);

1024 tCCr1B |= (1<<CS10) | (1<<CS12) | (1<<WGM12) | (1<<WGM13);

Chapter 22 Sound and Square WaveS

431

void loop()

{ // change OCR1B register and duty cycle

 OCR1B = map(analogRead(potPin),0,1023,0,overflow);

}

 Square Wave and Servo Motor
A square wave with frequency 50Hz and duty cycle between 2.5% and 12.5%

generates a signal with pulse width between 0.5ms and 2.5ms, which rotates

a servo motor from 0° to 180°, as outlined in Chapter 8. With the servo motor

connected to Arduino pin 10 and Listing 22-10 modified to generate the

required square wave, the servo motor rotation can be controlled with the

potentiometer. A prescalar of 64 is required to generate integer values for

the Timer1 overflow of 5000 and with a required frequency of 50Hz, the duty

cycles of 2.5% and 12.5% are generated with OCR1B values of 125 and 625,

respectively. Changes to Listing 22-10 include defining variables,

unsigned long freq = 50; // square wave frequency

int prescalar = 64; // define pre-scalar

setting the prescalar to 64 in the void setup() function,

TCCR1B |= (1<<CS10) |(1<<CS11) | (1<<WGM12) | (1<<WGM13)

and changing the void loop() function to

 // duty cycle between 2.5% and 12.5%

OCR1B = map(analogRead(potPin),0,1023,.025*overflow,.125*overflow);

delay(10) // time for servo to move

The PWM library could be used to generate the square wave for driving

the servo motor, rather than setting the Timer1 register. A square wave of

frequency 50Hz and a duty cycle up to 12.5% can be generated with the

PWM library, which only requires changing the frequency in Listing 22-8.

unsigned long freq = 50; // required frequency (Hz)

Chapter 22 Sound and Square WaveS

432

And changing the void loop() function to

pwmWrite(PWMpin, analogRead(potPin)/32); // duty cycle up to 12.5%

delay(10) // time for servo to move

 Summary
Sounds of specific frequencies were generated with a Piezo transducer and

with frequencies inversely related to the incident light on a light dependent

resistor to imitate an electro-Theremin. Square waves were produced with

pulse width modulation (PWM) and from timer register manipulation to

control the movement of a servo motor.

 Components List
• Arduino Uno and breadboard

• Piezo transducer

• Switch: 4× tactile

• Resistor: 220Ω and 2×4.7kΩ

• Capacitor: 0.1μF and 22μF

• LED

• Light dependent resistor (or photoresistor): 2×

• Potentiometer: 2×10kΩ

• Servo motor: SG90

• Voltage regulator: L4940V5

• Battery: 9V

Chapter 22 Sound and Square WaveS

433© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_23

CHAPTER 23

DC Motors
The DC (direct current) motor has many applications in

robotics, portable power tools, and electric vehicles. DC

motors are driven by the force generated in a magnetic

field. Passing a current through an electromagnet, which is

a coil of wire wrapped around a metallic rod, generates a magnetic field

and reversing the current changes the polarity of the electromagnet. Given

that same-pole magnets repel and dissimilar- pole magnets attract, then

mounting two electromagnets on a rotor enclosed within a permanent

magnet and alternating the current through the electromagnets turns the

rotor as the magnets sequentially attract and repel.

The direction of rotation is controlled with an H-bridge, which is

essentially formed by two pairs of transistor switches, on opposite sides

of the motor, and the direction of current, through the motor, changes as

each “diagonally opposite” pair of switches opens (see Figure 23-1). The

L298N motor driver board can control two 6V DC motors and if the supply

voltage is less than 12V, the voltage regulator provides a 5V output pin for

powering an Arduino (see Figure 23-2). If the supply voltage is greater than

12V, then the jumper behind power connections must be disconnected.

434

Figure 23-1. H-bridge

The L298N motor driver board controls the direction of rotation

and speed of the motors by incorporating an H-bridge for each motor

with PWM. The order of the control pins, on the L298N motor driver

board, is ENA, IN1, and IN2 for the left motor and IN3, IN4, and ENB

for the right motor (see Table 23-1). For the left motor, setting pin IN1

or IN2 to HIGH and the other pin to LOW turns the motor forward or

backward, respectively. Motor speed is controlled using Pulse Width

Modulation (PWM), outlined in Chapter 1, on the ENA (Enable motor A)

and ENB pins. The instruction to set the speed of the left motor is

analogWrite(ENA, speed), where speed is a value between 0 and 255.

If the ENA and ENB pins are not required for controlling the motor

speed, then jumpers can be placed across the pins to connect them to

5V, resulting in full motor speed. If the two motors turn in the opposite

direction from each other, then the connecting wires of one motor

should be reversed.

Chapter 23 DC Motors

435

Figure 23-2. L298N and DC motors

Table 23-1. L298N and DC Motors

Component Connect to Arduino and to

Nano Uno

L298 12V Battery 9V Battery 9V

L298 GND Battery GND Battery GND Nano or Uno GND

L298 5V Nano VIN Uno VIN

L298 ENA Nano pin D9 Uno pin 9

L298 IN1 Nano pin D8 Uno pin 8

L298 IN2 Nano pin D7 Uno pin 7

(continued)

Chapter 23 DC Motors

436

An Arduino Nano is used in this chapter because it is smaller than

the Arduino Uno (see Figure 23-3). The Arduino Nano has two more

analog inputs than the Arduino Uno and has a mini USB connection.

The pin layouts of the Arduino Nano and Uno are similar, as indicated

in Table 23- 1, so the schematics and sketches are applicable to both the

Arduino Nano and Arduino Uno. Note that from January 2018, Arduino

released a new bootloader for the Arduino Nano and the relevant

processor must be selected.

Within the Arduino IDE, in the Tools ➤ Board menu, select Arduino

Nano. In the Tools ➤ Processor menu, select either ATmega328P (Old

Bootloader) or ATmega328P (if the Arduino Nano was sold by Arduino

before or after January 2018).

Component Connect to Arduino and to

L298 IN3 Nano pin D6 Uno pin 6

L298 IN4 Nano pin D5 Uno pin 5

L298 ENB Nano pin D10 Uno pin 10

L298 motor connect DC motors DC motors

IR sensor OUT Nano pin D2 Uno pin 2

IR sensor GND Nano GND Uno GND

IR sensor VCC Nano VIN Uno VIN

Table 23-1. (continued)

Chapter 23 DC Motors

437

On the L298N motor driver board, the ENA and ENB pins for

controlling the motor speed are connected to PWM pins 9 and 10 on the

Arduino Nano. Digital (D) pins 3, 5, 6, 9, 10 and 11 on the Arduino Nano

can be used for variable output voltage with PWM (see Figure 23-4). The

restrictions on PWM pins outlined in Chapter 18 apply to the Arduino

Nano, which means that analogWrite() on Nano PWM pins D9 and D10

is disabled by the Servo library, on Nano PWM pins D10 and D11 by SPI

and on Nano PWM pins D3 and D11 by the tone() function. The IRRemote

library for infrared remote control also uses Timer2, which disables Nano

PWM pins D3 and D11 for analogWrite().

Figure 23-3. Arduino Nano and Arduino Uno

Chapter 23 DC Motors

438

If the voltage supply to the motors is too low, either by setting the

motor speed too low or the battery power is low, then the motors produce

a buzzing sound and stop turning. A sketch should ensure that the

minimum speed value in an analogWrite() instruction is at least 50.

Likewise, a fully charged 9V battery is required as the voltage drop across

the L298N motor driver board is 2V.

 Motor Control Set in the Sketch
The sketch (see Listing 23-1) uses functions for moving forward or

backward and for turning right or left, for a given period of time, with the

motor() function controlling the speed and direction of rotation of each

motor. The motor speed is set higher when moving forward or backward

than when turning right or left. The route taken by the robot car is defined

in the void loop() function. The motors move forward for 1500ms, then

turn right for 500ms, move forward and turn left, move forward and turn

Figure 23-4. Arduino Nano

Chapter 23 DC Motors

439

left again, move forward and turn right, move forward and then move

backward to the starting position.

Listing 23-1. Route Defined in Sketch

int IN1 = 8; // left motor forward and backward pins

int IN2 = 7;

int IN3 = 6; // right motor forward and backward pins

int IN4 = 5;

int ENA = 9; // control pin left motor

int ENB = 10; // control pin right motor

void setup()

{

 pinMode(IN1, OUTPUT); // define motor pins as OUTPUT

 pinMode(IN2, OUTPUT);

 pinMode(IN3, OUTPUT);

 pinMode(IN4, OUTPUT);

 pinMode(ENA, OUTPUT); // define motor enable pins as OUTPUT

 pinMode(ENB, OUTPUT);

}

void loop()

{

 direction("forward",1500); // move forward for 1500ms

 direction("right",500); // turn right for 500ms

 direction("forward",1000);

 direction("left",500); // turn left for 500ms

 direction("forward",1500);

 direction("left",500);

 direction("forward",1000);

 direction("right",500);

 direction("forward",1500);

 direction("backward",4500); // move backward for 4500ms

}

Chapter 23 DC Motors

440

void direction(String direct, int runTime) // function to set motor direction

{

 if(direct == "forward") motor(1, 0, 1, 0, "fast"); // both motors forward

 else

 if(direct == "backward") motor(0, 1, 0, 1, "fast"); // both motors backward

 else // left forward,

 if(direct == "right") motor(1, 0, 0, 1, "slow"); // right backward

 else // left backward,

 if(direct == "left") motor(0, 1, 1, 0, "slow"); // right forward

 else

 if(direct == "stop") motor(0, 0, 0, 0, " "); // both motors stop

 delay(runTime); // run time (ms) for motors

}

void motor(int leftF, int leftB, int rightF ,int rightB, String speed)

{ // motor function

 float bias = 1.0; // bias on motor speed

 digitalWrite(IN1, leftF); // control pin IN1 left motor forward

 digitalWrite(IN2, leftB); // control pin IN2 left motor backward

 digitalWrite(IN3, rightF); // control pin IN3 right motor forward

 digitalWrite(IN4, rightB); // control pin IN4 right motor backward

 if(speed == "fast")

 {

 analogWrite(ENA, 100); // higher speed when moving

 analogWrite(ENB, 100*bias); // forward or backward

 }

 else

 {

 analogWrite(ENA, 80); // lower speed when turning

 analogWrite(ENB, 80*bias); // compensation on right motor

 }

}

Chapter 23 DC Motors

441

If the right motor turns slower than the left motor, the PWM value is

increased to compensate, by increasing the value of the variable bias.

 Motor Speed
The relationship between motor speed and the analogWrite()

instruction can be derived with a potentiometer, to change the motor

speed (see Figure 23-5), and a Hall effect switch (see Chapter 3) to

determine the time taken for a revolution with a small magnet attached

to the wheel. Motor speed increases non-linearly with potentiometer

value, with a greater change in motor speed at lower potentiometer values

and a maximum motor speed of 230rpm (see Figure 23-6). Measurement

of motor speed with photoelectric encoders is outlined later in the

chapter. Listing 23-2 is based on the Hall effect sketch (see Listing 3-8) in

Chapter 3 and applies to the motor on the right-hand side of the L298N

motor driver board.

Chapter 23 DC Motors

442

Figure 23-5. Potentiometer control of DC motor speed

Figure 23-6. Potentiometer and DC motor speed

Chapter 23 DC Motors

443

Listing 23-2. Hall Effect Sensor and DC Motor Speed

int hallPin = 4; // Hall effect switch pin

int hallState = LOW; // set state to LOW

int IN3 = 6; // motor forward and backward pins

int IN4 = 5;

int ENB = 3; // motor enable pin

int potPin = A6; // potentiometer pin

unsigned long time = 0; // time (ms) per revolution

float hallrpm;

int reading, speed;

void setup()

{

 Serial.begin(9600); // set baud rate for Serial Monitor

 pinMode(hallPin, INPUT_PULLUP); // pull-up resistor on Hall effect switch pin

 pinMode(IN3, OUTPUT); // define motor pins as OUTPUT

 pinMode(IN4, OUTPUT);

 digitalWrite(IN3,1); // set motor to forward rotation

 digitalWrite(IN4,0);

}

void loop()

{

 reading = analogRead(potPin); // read potentiometer

 speed = map(reading, 0, 1023, 0, 255); // map potentiometer value

 analogWrite(ENB,speed); // set motor speed

 reading = digitalRead(hallPin); // read Hall switch

 if(reading != hallState) // Hall switch state changed

 {

 if (reading == HIGH && hallState == LOW) // start of new revolution

 {

 time = millis() - time; // time (ms) since last revolution

 hallrpm = 60000.0/time; // revolutions per minute

 Serial.print(speed);Serial.print("\t"); // potentiometer value

Chapter 23 DC Motors

444

 Serial.println(hallrpm,0); // display motor speed (rpm) with 0DP

 time = millis(); // update revolution time

 }

 hallState = reading; // update Hall switch state

 }

}

 Motor Control with Infrared Remote Control
In Chapter 10, an infrared (IR) remote control was used to turn on or off

LEDs depending on which button was pressed on the remote control.

Similarly, the rotation of the two DC motors can be associated with buttons

on the remote control. To receive the infrared signal, an infrared sensor,

VS1838B, is connected to pin 2 of the Arduino Nano (see Figure 23-2) and

Listing 23-1 is updated to include the following instructions at the start of

the sketch, with the irrecv.enableIRIn()instruction to initialize the IR

receiver included in the void setup() function.

#include <IRremote.h> // include IRemote library

int IRpin = 2; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library

decode_results reading; // IRremote reading

The void loop() function of Listing 23-3 is replaced to read the infrared

signal and the remote control signal is also mapped with a switch case

sequence to the corresponding function for controlling the motors to move

for 500ms. Note that the hexadecimal signal codes are only an example.

Chapter 23 DC Motors

445

Listing 23-3. DC Motor Control with Infrared Remote Control

void loop()

{

 if(irrecv.decode(&reading)) // read the IR signal

 {

 switch(reading.value) // switch ... case for button signals

 {

 case 0xC0E014D: direction("forward",500); break; // forward

 case 0x9FFCDC4D: direction("backward",500); break; // backward

 case 0x348ADD0F: direction("right",500); break; // turn right

 case 0x7E57898D: direction("left",500); break; // turn left

 case 0x4B0AA72C: direction("stop",500); break; // stop

 }

 irrecv.resume(); // receive the next infrared signal

 }

}

As noted, the IRRemote library for infrared remote control uses Timer2,

which disables Nano PWM pins D3 and D11 for analogWrite() on the

L298N motor driver board ENA and ENB pins.

 Motor Control with Wireless Communication
In Chapter 17, nRF24L01 wireless transceiver modules enabled

communication between two devices. The nRF24L01 transceiver modules

can be used, in conjunction with a joystick, such as a KY-023 module, to

control the DC motors remotely. One nRF24L01 module transmits PWM

values derived from the joystick readings to the receiving nRF24L01

module, which controls the motor speeds with the PWM values. The

transmitting nRF24L01 module and joystick are connected to an Arduino

Uno or Nano (see Figure 23-7 and Table 23-2) and the receiving nRF24L01

module, two DC motors, and the L298N motor driver board are attached to

an Arduino Nano (see Figure 23-8 and Table 23-3).

Chapter 23 DC Motors

446

Figure 23-7. Joystick and transmitting nRF24L01 module

Table 23-2. Joystick and Transmitting nRF24L01 Module

Component Connect to

Joystick VCC Nano 5V Uno 5V

Joystick VER (Y) Nano pin a5 Uno pin a3

Joystick HOR (X) Nano pin a6 Uno pin a4

Joystick GND Nano GND Uno GND

nRF24L01 GND Nano GND Uno GND

nRF24L01 CE Nano pin D7 Uno pin 7

nRF24L01 SCK Nano pin D13 Uno pin 13

nRF24L01 MISO Nano pin D12 Uno pin 12

nRF24L01 VCC Nano 3V3 Uno 3.3V

nRF24L01 CSN Nano pin D8 Uno pin 8

nRF24L01 MOSI Nano pin D11 Uno pin 11

Chapter 23 DC Motors

447

Figure 23-8. DC motors and receiving nRF24L01 module

Table 23-3. DC Motors and Receiving nRF24L01 Module

Component Connect to and to

L298 12V Battery 9V

L298 GND Battery GND Nano GND

L298 5V Nano VIN

L298 ENA 5V jumper

L298 IN1 Nano pWM pin D10

L298 IN2 Nano pWM pin D9

L298 IN3 Nano pWM pin D6

L298 IN4 Nano pWM pin D5

(continued)

Chapter 23 DC Motors

448

The motor speed and direction of rotation can be directly controlled

with PWM inputs to the L298N motor driver board IN1, IN2, IN3, and IN4

pins, as the Arduino Nano has several PWM pins. For example, to move

forward at half speed, the instruction is

analogWrite(IN1, 128);

analogWrite(IN2, 0);

analogWrite(IN3, 128);

analogWrite(IN4, 0);

Jumpers are placed across the ENA and ENB pins to 5V, as the ENA and

ENB pins are not required to control motor speed, when using PWM (see

Figure 23-8).

The control pins of the L298N motor driver board are connected to

Arduino Nano PWM pins 5, 6, 9, and 10 to use analogWrite() instructions

in the motor() function. The analogWrite(pin, value) instruction

automatically sets the pinMode status of a pin to OUTPUT, so when only

using the analogWrite(), the pinMode(pin, OUTPUT) instruction is not

Table 23-3. (continued)

Component Connect to and to

L298 ENB 5V jumper

L298 motor connect DC motors

nRF24L01 GND Nano GND

nRF24L01 CE Nano pin D7

nRF24L01 SCK Nano pin D13

nRF24L01 MISO Nano pin D12

nRF24L01 VCC Nano 3V3

nRF24L01 CSN Nano pin D8

nRF24L01 MOSI Nano pin D11

Chapter 23 DC Motors

449

required. Although, inclusion of the pinMode(pin, OUTPUT) instruction

may be helpful to identify which pins are used in the sketch.

The motor speed and direction of rotation can be controlled with

a joystick (see Listing 23-4), which consists of two potentiometers for

controlling the left-right direction (X-axis) and the forward- backward

direction (Y-axis). The joystick values range from 0 to 1023, with 0

corresponding to right and forward, 1023 mapping to left and backward

and 512 equivalent to the “rest” position of the joystick. The left-right, LR,

and forward-backward, FB, joystick readings are converted to PWM values

for the left and right motors as the sum (FB + LR) and difference (FB – LR)

of the FB and LR readings. The sum retains the magnitude of the forward-

backward reading and the difference increases the speed of one motor and

reduces the speed of the other motor to make a turn. Different scalars for

the FB and LR readings are used to alter the sensitivity of the joystick to

movements in the two axes.

Listing 23-4. Joystick and Transmitting nRF24L01

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[][6] = {"12"};

typedef struct // define a structure to contain

{ // PWM values for the

 int right, left; // left and right motors

} dataStruct;

dataStruct data; // name the structure

int LRpin = A5; // Nano A5 Uno A4 (horizontal) left-right (X-axis)

int FBpin = A6; // Nano A6 Uno A3 (vertical) forward-backward (Y-axis)

int LR, FB;

int minPWM = 50; // minimum PWM value

int LRscalar = 2; // scalars for joystick sensitivity

int FBscalar = 2;

Chapter 23 DC Motors

450

void setup()

{

 radio.begin(); // initialise radio

 radio.openWritingPipe(addresses[0]); // open transmitting pipe

}

void loop()

{

 LR = map(analogRead(LRpin), 0, 1023, -255, 255); // joystick left = 0

 FB = map(analogRead(FBpin), 0, 1023, 255, -255); // joystick forward = 0

 data.left = FB/FBscalar + LR/LRscalar; // sum of scaled readings

 data.right = FB/FBscalar - LR/LRscalar; // difference scaled readings

 data.left = constrain(data.left, -255, 255); // constrain PWM values

 data.right = constrain(data.right, -255, 255);

 if(abs(data.left) < minPWM) data.left = 0; // zero if < minimum value

 if(abs(data.right) < minPWM) data.right = 0;

 radio.write(&data, sizeof(data)); // transmit PWM values

 delay(50); // delay 50ms

}

The sketch for the receiving nRF24L01 module is given in Listing 23-5.

Listing 23-5. DC Motors and Receiving nRF24L01

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[][6] = {"12"};

typedef struct // define a structure to contain

{ // PWM values for the

 int right, left; // left and right motors

} dataStruct;

dataStruct data; // name the structure

int IN1 = 10; // left motor forward and backward on PWM pins

int IN2 = 9;

Chapter 23 DC Motors

451

int IN3 = 6; // right motor forward and backward

int IN4 = 5;

void setup()

{

 radio.begin(); // initialise radio

 radio.openReadingPipe(0, addresses[0]); // open receiving pipe

 radio.startListening(); // initialise receive

}

void loop()

{

 if(radio.available()) // signal received

 {

 radio.read(&data,sizeof(data)); // read data values

 // forward

 if(data.left>0 && data.right>0) motor(data.left, 0, data.right, 0);

 else // backward

 if(data.left<0 && data.right<0) motor(0, -data.left, 0, -data.right);

 else // turn left

 if(data.left<0 && data.right>0) motor(0, -data.left, data.right, 0);

 else // turn right

 if(data.left>0 && data.right<0) motor(data.left, 0, 0, -data.right);

 else motor(0, 0, 0, 0); // stop

 }

}

void motor(int leftF, int leftB, int rightF ,int rightB)

{

 analogWrite(IN1, leftF); // control pin IN1 left motor forward

 analogWrite(IN2, leftB); // control pin IN2 left motor backward

 analogWrite(IN3, rightF); // control pin IN3 right motor forward

 analogWrite(IN4, rightB); // control pin IN4 right motor backward

}

Chapter 23 DC Motors

452

 Motor Control with Accelerometer
The direction and degree of tilt of the GY-521 module, incorporating

an accelerometer, can be used to control the direction and speed of

rotation of the motors. The schematic for the GY-521 module with the

transmitting nRF24L01 module (see Figure 23-9) is similar to schematic

with the joystick (see Figure 23-7). Note that jumpers are placed across

the ENA and ENB pins of the L298N motor driver board and 5V, as the

ENA and ENB pins are not required to control motor speed (see

Table 23-4). The sketch (see Listing 23-6) for the GY-521 and transmitting

nRF24L01 modules is based on the accelerometer and gyroscope sketch

(see Listing 3-13) in Chapter 3 with the RF24 library for transmitting the

transformed roll and pitch MPU-6050 values to the Arduino Nano or Uno

to drive the motors. The sketch for the receiving nRF24L01 module is

unchanged (see Listing 23-5).

Figure 23-9. GY-521 and transmitting nRF24L01

Chapter 23 DC Motors

453

The GY-521 module is orientated as in Figure 23-9, with the top- bottom

and left-right axes corresponding to pitch and roll, respectively.

Table 23-4. GY-521 and Transmitting nRF24L01

Component Connect to

GY-521 VCC Nano 5V Uno 5V

GY-521 GND Nano GND Uno GND

GY-521 SCL Nano pin a5 Uno pin a5

GY-521 SDA Nano pin a4 Uno pin a4

nRF24L01 GND Nano GND Uno GND

nRF24L01 CE Nano pin D7 Uno pin 7

nRF24L01 SCK Nano pin D13 Uno pin 13

nRF24L01 MISO Nano pin D12 Uno pin 12

nRF24L01 VCC Nano 3V3 Uno 3.3V

nRF24L01 CSN Nano pin D8 Uno pin 8

nRF24L01 MOSI Nano pin D11 Uno pin 11

Listing 23-6. GY-521 and Transmitting nRF24L01

#include<Wire.h> // include Wire library

int I2Caddress = 0x68; // I2C address of MPU- 6050

float accelX, accelY, accelZ; // values from MPU-6050

float roll, pitch, sumsquare;

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[][6] = {"12"};

Chapter 23 DC Motors

454

typedef struct // define a structure

{

 int right, left; // PWM values for the DC motors

} dataStruct;

dataStruct data;

int minPWM = 50; // minimum PWM value

int FB, LR;

int LRscalar = 1; // scalar for accelerometer sensitivity

void setup()

{

 Serial.begin(9600);

 Wire.begin(); // initiate I2C bus

 Wire.beginTransmission(I2Caddress); // transmit to device at I2Caddress

 Wire.write(0x6B); // PWR_MGMT_1 register

 Wire.write(0); // set to zero to wake up MPU-6050

 Wire.endTransmission(1); // end of transmission

 radio.begin(); // initialise radio

 radio.openWritingPipe(addresses[0]); // open transmitting pipe

}

void loop()

{

 Wire.beginTransmission(I2Caddress); // transmit to device at I2Caddress

 Wire.write(0x3B); // start reading from register 0x3B

 Wire.endTransmission(0); // transmission not finished

 Wire.requestFrom(I2Caddress,6,true); // request data from 6 registers

 accelX=Wire.read()<<8|Wire.read(); // combine AxHigh and AxLow values

 accelY=Wire.read()<<8|Wire.read(); // combine AyHigh and AyLow values

 accelZ=Wire.read()<<8|Wire.read(); // combine AzHigh and AzLow values

Chapter 23 DC Motors

455

 accelX = accelX/pow(2,14);

 accelY = accelY/pow(2,14); // scale X, Y and Z measurements

 accelZ = accelZ/pow(2,14);

 sumsquare = sqrt(accelX*accelX+accelY*accelY+accelZ*accelZ);

 accelX = accelX/sumsquare;

 accelY = accelY/sumsquare; // adjusted accelerometer measurements

 accelZ = accelZ/sumsquare;

 roll = atan2(accelY, accelZ)*180/PI; // roll angle

 pitch = -asin(accelX)*180/PI; // pitch angle

 LR = map(pitch, -90, 90, -255, 255); // tilt module left or right

 FB = map(roll, -90, 90, -255, 255); // tilt module forward or backward

 data.left = FB + LR/LRscalar; // sum of scaled readings

 data.right = FB - LR/LRscalar; // difference of scaled readings

 data.left = constrain(data.left, -255, 255); // constrain PWM values

 data.right = constrain(data.right, -255, 255);

 if(abs(data.left) < minPWM) data.left = 0; // zero PWM values if

 if(abs(data.right) < minPWM) data.right = 0; // less than minimum value

 radio.write(&data, sizeof(data)); // transmit PWM values

 delay(50); // delay 50ms

}

An OLED display, outlined in Chapter 13, can display the motor speed

values, derived from the MCU-6050 accelerometer with the transmitting

nRF24L01 module. The following instructions are included at the start of

Listing 23-6 to define the OLED display.

#include <Adafruit_GFX.h> // include Adafruit GFX library

#include <Adafruit_SSD1306.h> // include Adafruit SSD1306 library

Adafruit_SSD1306 oled(-1) // associate display with Adafruit_SSD1306 library

int FBspeed, LRspeed; // define speed variables for OLED

Chapter 23 DC Motors

456

with instructions to initialize the OLED Display in the void setup()

function (see Listing 23-7) and instructions to display the motor speeds in

the void loop() function (see Listing 23-8).

Listing 23-7. Initialize OLED Display with an I2C Address

oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);

oled.clearDisplay(); // clear OLED display

oled.setTextColor(WHITE); // set font colour

oled.setTextSize(2); // set font size

oled.display(); // start display instructions

Listing 23-8. Display Motor Speeds on OLED

FBspeed = data.left;

LRspeed = data.right;

oled.clearDisplay(); // clear OLED display

oled.setCursor(0,0); // position cursor at (0, 0)

oled.print("left: "); // display text and motor speed

oled.println(FBspeed); // followed by a carriage return

oled.print("right: "); // display text and motor speed

oled.print(LRspeed);

oled.display(); // start display instructions

The OLED display display.print(data.left) instruction displays

a character rather than an integer, which is resolved by including the

FBspeed = data.left and display.print(FBspeed) instructions and

similarly for LRspeed and data.right, in the void loop() function.

Chapter 23 DC Motors

457

 Motor Control with Photoelectric Encoder
The HC-020K (left) and FC-03 (right)

photoelectric encoders contain an

infrared LED and phototransistor

sensor, which passes current when light is detected, and an LM393

comparator that converts the change in current to a digital value. An

encoder wheel, containing a number of slots, is attached to the DC

motor and the photoelectric encoder is positioned around the encoder

wheel. When the DC motor rotates, the photoelectric encoder counts

the number of encoder wheel slots passing between the infrared LED

and phototransistor sensor. With s slots in the encoder wheel and N slots

counted in t seconds, the speed of the DC motor is 60 × N/s × t rpm. For

example, with 20 slots in the encoder wheel, then 10 slots counted in

500ms equates to 60rpm.

A 100nF capacitor is required between the signal (OUT) and GND

pins of the HC-202K photoelectric encoder and between the D0 and

GND pins of the FC-03 photoelectric encoder, otherwise the number of

counts is increased by a factor of approximately four. The A0 output of

the FC- 03 photoelectric encoder does not require a capacitor to be fitted.

The photoelectric encoder signal pins are connected to the interrupt pins

of the Arduino Uno (2 and 3) or Nano (D2 and D3), with the VCC pins

connected to 5V (see Figure 23-10 and Table 23-5).

Chapter 23 DC Motors

458

Table 23-5. DC Motors with Photoelectric Encoders

Component Connect to and to

L298 12V Battery 9V

L298 GND Battery GND Nano GND

L298 5V Nano VIN

L298 ENA 5V jumper

L298 IN1 Nano pWM pin D10

L298 IN2 Nano pWM pin D9

L298 IN3 Nano pWM pin D6

L298 IN4 Nano pWM pin D5

L298 ENB 5V jumper

L298 motor connect DC motors

FC-03 encoder A0 pins Nano pins D2 and D3

FC-03 encoder VCC Nano 5V

FC-03 encoder GND Nano GND

Chapter 23 DC Motors

459

To measure the speed of a DC motor, the two sketches in Table 23-6

use interrupts (as outlined in Chapter 20) with the TimerOne library and

the millis() function to count the number of encoder wheel slots in the

fixed time period of 0.5 seconds. The motor turns at a fixed speed and

is powered on Arduino PWM pins 5 and 6. With the TimerOne library,

the timerISR and counter interrupts occur after the fixed time period

and after the photoelectric encoder detects a slot, respectively. With the

millis() function, counter is the only interrupt and the count variable is

declared as volatile, as it is referenced in both the sketch and the ISR

(outlined in Chapter 20). Note that the TimerOne library measures time in

microseconds, while millis() measures time in milliseconds.

Figure 23-10. DC motors and photoelectric encoders

Chapter 23 DC Motors

460

To measure the speed of two DC motors, rather than only one DC motor,

the Arduino interrupt pins, 2 and 3, are connected to the photoelectric

encoder output corresponding to each motor. The two DC motors are

powered by Arduino PWM pins 5 and 6 and by PWM pins 9 and 10. The

encoder slot counter interrupts must be controlled by the millis() function,

as the TimerOne library disables the analogWrite()instruction on Arduino

PWM pins 9 and 10.

Table 23-6. DC Motors and Photoelectric Encoders with TimerOne

Library or millis() Function

TimerOne library Use millis() Comments

#include <timerone.h>

unsigned long atime = 0;

float fixtime = 0.5; int fixtime = 500; rpm every 0.5s

float chktime;

float rpm; float rpm;

int count=0; volatile int count = 0;

int IN1 = 6; int IN1 = 6; motor pins

int IN2 = 5; int IN2 = 5;

int slot = 20; int slot = 20; number of wheel slots

void setup() void setup()

{ {

 serial.begin(9600); serial.begin(9600); serial baud rate

 timer1.initialize(50000); timerone for 0.5s

 attachInterrupt (0, counter, rIsING); attachInterrupt (0, counter, rIsING); counter interrupts

 timer1.attachInterrupt (timerIsr); timerIsr interrupt

 analogWrite(IN1, 60); analogWrite(IN1, 60); motor set ~60 rpm

 analogWrite(IN2, 0); analogWrite(IN2, 0);

} }

(continued)

Chapter 23 DC Motors

461

The distance travelled by the robot car can be monitored with the

photoelectric encoder. The number of encoder wheel slots that must pass

the photoelectric encoder for the robot car to move a distance, D, is D ×

s/π × d, where s is the number of encoder wheel slots and d is the diameter

of the robot car wheel. For the robot car to turn right or left, the number of

encoder wheel slots that must pass the photoelectric encoder is s × W/4 × d,

where W is the distance between the midpoint of the two wheels. The

value of s × W/4 × d should be rounded up to an integer with the turnSlot =

round(s * W /(4 * d)) instruction.

Table 23-6. (continued)

TimerOne library Use millis() Comments

void loop() void loop()

{ } {

 if (millis() - atime >= fixtime) rpm after fixtime

void timerIsr() rpm after 0.5s

{ {

 noInterrupts(); noInterrupts(); stop interrupts

 chktime = (millis() - atime)/1000.0;

 rpm = 60*count/(slot*fixtime); rpm = 60*count/(slot*chktime); calculate rpm

 serial.print("rpm = "); serial.print("rpm = ");

 serial.println(rpm, 0); serial.println(rpm, 0);

 count = 0; count = 0; reset counter

 atime = millis(); reset elapsed time

 interrupts(); interrupts(); restart interrupts

}

} }

void counter() void counter() interrupt Isr

{ {

 count++; count++; increment count

} }

Chapter 23 DC Motors

462

The photoelectric encoders can be used to move the robot car

through an exact route by determining the number of slots required

to pass the photoelectric encoder to move a given distance. The same

route taken in Listing 23-1, which moved the robot car for a given time

in each direction of the route, is taken in Listing 23-9, but the robot car

is moved a set distance in each direction of the route, with substantially

more “accuracy.”

Listing 23-9 includes two interrupts to count the number of encoder

wheel slots passing the photoelectric encoder of each DC motor. The

direction() function specifies the direction and distance to move, sets

the direction of rotation of each DC motor and then a while() instruction

monitors the values of the counters, which correspond to the number of

encoder wheel slots passing the photoelectric encoder. The DC motors

are not synchronized and the DC motors stop after both photoelectric

encoders count the required number of slots. The DC motor speed is

defined in the motor() function, with the sketch using values of 100 and 80

for forward or backward and for turn right or left, respectively.

Listing 23-9. Distance Travelled by the Robot Car

int IN1 = 10; // left wheel forward and backward

int IN2 = 9;

int IN3 = 6; // right wheel forward and backward

int IN4 = 5;

float W = 13.0; // distance (cm) between mid-point of wheels

float d = 6.7; // diameter (cm) of wheel

int slot = 20; // number of encoder wheel slots

float turnSlot = slot * W /(4 * d); // number of slots to turn right/left

float cmSlot = slot/(PI*d); // number of slots to move one cm

volatile int countR = 0; // counter for encoder wheel slots

volatile int countL = 0;

int FBspeed = 100; // forward/backward speed

int LRspeed = 80; // left/right turn speed

Chapter 23 DC Motors

463

void setup()

{

 attachInterrupt(0, counterR, RISING); // interrupts to count encoder wheel

 attachInterrupt(1, counterL, RISING); // slots passing photoelectric encoder

}

void loop()

{

 direction("forward", 40); // function to define direction

 direction("right", 0); // and distance (cm)

 direction("forward", 30);

 direction("left", 0);

 direction("forward", 20);

 direction("left", 0);

 direction("forward", 30);

 direction("right", 0);

 direction("forward", 50);

 direction("backward", 110);

 direction("stop", 0);

 delay(5000); // delay 5s on completing route

}

void direction(String direct, int dist) // function controlling DC motors

{

 int Nslots; // number of slots to count

 if(direct == "forward" || direct == "backward")Nslots = dist*cmSlot;

 else if(direct == "right" || direct == "left") Nslots = turnSlot;

 else if(direct == "stop")

 {

 Nslots = 0;

 countL = 1; // to stop, set counters above slot limit

 countR = 1;

 }

Chapter 23 DC Motors

464

 Serial.println(Nslots); // set motor then count slots

 if(direct == "forward") motor(1, 0, 1, 0, FBspeed);

 else if(direct == "backward") motor(0, 1, 0, 1, FBspeed);

 else if(direct == "right") motor(1, 0, 0, 1, LRspeed);

 else if(direct == "left") motor(0, 1, 1, 0, LRspeed);

 // wait until slot limit reached by both motors

 while (countR <= Nslots || countL <= Nslots) { }

 if(countR > Nslots && countL > Nslots)

 { // both wheels have moved the required distance

 motor(0, 0, 0, 0, 0); // reset all variables

 delay(500);

 countR = 0;

 countL = 0;

 }

}

void motor(int leftF, int leftB, int rightF ,int rightB, int cspeed)

{

 analogWrite(IN1, leftF * cspeed); // forward speed of left motor

 analogWrite(IN2, leftB * cspeed); // backward speed of left motor

 analogWrite(IN3, rightF * cspeed); // forward speed of right motor

 analogWrite(IN4, rightB * cspeed); // backward speed right motor

}

void counterR()

{ // interrupt to count number of encoder wheel

 countR++; // slots passing right wheel encoder

}

void counterL()

{ // interrupt to count number of encoder wheel

 countL++; // slots passing left wheel encoder

}

Chapter 23 DC Motors

465

 Summary
DC motors powered a robot car controlled by an Arduino Nano or Arduino

Uno with the route taken either defined in the sketch or controlled by

infrared remote control or wirelessly using transceivers with a joystick

or by tilting an accelerometer module. DC motor speed was determined

using a Hall effect sensor and by photoelectric encoders. The distance

travelled was controlled by photoelectric encoders.

 Components List
• Arduino Nano or Uno and breadboard: 2×

• DC motors: 2×

• Motor driver board: L298N

• Battery: 9V

• Infrared sensor: VS1838B

• Infrared remote control

• Hall effect sensor

• Magnet

• Potentiometer: 10kΩ

• Joystick

• Wireless transceiver module: 2× nRF24L01

• Accelerometer and gyroscope module: GY-521

• OLED display: 128×32 pixel

• Photoelectric encoder: 2× HC-020K or 2× FC-03

• Capacitor: 2× 100nF

• Encoder wheel: 2×

Chapter 23 DC Motors

467© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_24

CHAPTER 24

Robot Car
Building a robot car combines devices outlined in

several chapters, with DC motors in Chapter 23, a servo

motor in Chapter 8, an ultrasonic distance sensor in

Chapter 3, an OLED display in Chapter 13, and an RGB

LED in Chapter 14. The obstacle-avoiding robot car

detects the distance to surrounding objects in front of the robot car, and

if the distance is below a threshold, the robot car stops and scans left and

right to determine the direction away from the nearest obstacle. An RGB

LED indicates the direction of the turn. The distances from the robot car

are shown on the OLED display (see Figure 24-1).

With several devices requiring connection to the Arduino Nano, there

are some constraints on pin availability. Arduino Nano PWM pins D9 and

D10 are used by the Servo library for controlling the SG90 servo motor,

which excludes those pins from being used to enable motors on the L298N

motor driver board with PWM. Arduino Nano pins A4 and A5 are the SDA

and SCK pins for I2C communication with the OLED display. Arduino Nano

pins A6 and A7 are for analog input only and not for digital input. The same

constraints apply to the Arduino Uno, apart from the A6 and A7 pins.

468

The motor enable pins, ENA and ENB of the L298N motor driver

board, and the I2C SCK and SDA pins, of the OLED display, are connected

to Arduino Nano PWM and analog pins, respectively, but all other

connections are to Arduino Nano digital pins or analog pins treated as

digital pins (see Figure 24-1). The OLED display VCC pin is connected

to 3.3V, while the Arduino Nano VIN, SG90 servo motor and HC-SR04

ultrasonic distance sensor VCC pins are connected to the 5V rail. Pin

connections are given in Table 24-1, which is also applicable to the

Arduino Uno with the exception of analog pins A6 and A7.

Figure 24-1. Robot car with servo, scanner, RGB, LED, and OLED

Chapter 24 robot Car

469

The SG90 servo motor and HC-SR04 ultrasonic scanner are powered

from the 5V rail. The GND pins of the Arduino Nano, L298N motor

driver board, servo motor, ultrasonic scanner and OLED display are all

connected together.

Table 24-1. Robot Car with Servo, Scanner, RGB LED, and OLED

Connect to Arduino Nano pins Connect to

tX1 VIN 5V rail

rX0 GND oLeD GND

hC-Sr04 GND

rSt rSt

L298N GND
Servo motor GND

GND 5V hC-Sr04 VCC

Servo motor VCC

D2 a7

ENB right motor D3 pWM a6

D4 a5 oLeD SCK

IN4 right motor D5 a4 oLeD SDa

IN3 right motor D6 a3 hC-Sr04 trig pin

IN2 left motor D7 a2 hC-Sr04 echo pin

IN1 left motor D8 a1 Servo motor pin

RGB LED red D9 a0

RGB LED green D10 reF

ENA left motor D11 pWM 3V3 oLeD VCC

RGB LED blue D12 D13

Chapter 24 robot Car

470

The sketch (see Listing 24-1) includes the libraries Servo for the SG90

servo motor, NewPing for the HC-SR04 ultrasonic distance sensor, with

Adafruit GFX and Adafruit SSD1306 for the OLED display. After defining

the libraries and the device pins connected to the Arduino Nano, the

sketch clears the OLED display and defines the OUTPUT pins of the L298N

motor driver board and the RGB LED. In the void loop() function, the

distance in front of the robot car is measured and if greater that 20cm, the

robot car moves forward. Otherwise, the robot car stops, measures the

distances to the left and right of the robot car, then the robot car turns in

the direction with the greater distance, provided it is longer than 15cm. If

all distances are short, then the robot car moves backward and distances

are measured again. An RGB LED indicates when the robot car meets an

obstacle (blue), turns left (green), turns right (red) or moves backward

(yellow). To best visualize the colors, place a ping-pong ball on top of the

RGB LED.

The sketch includes the functions: turn(), direction(), motor(),

scan(), and distance(). The turn() function turns on and off the red,

green, or blue LED to indicate a right or left turn or scanning and calls the

direction() function. The direction() function controls the direction of

rotation of the DC motors based on the keywords forward, backward, left,

or right, which are determined from the distance to the nearest obstacle

as measured by the ultrasonic scanner. The motor() function controls the

speed of rotation of the DC motors with the analogWrite() instruction

to the motor control pins ENA and ENB on the L298N motor driver board

and the digitalWrite() instruction to the DC motor control pins IN1,

IN2, IN3 and IN4. The scan() function moves the servo motor to the

scanning angle, scans the distance and calls the distance() function,

which displays, on the OLED display, the distance in front of the obstacle-

avoiding robot car.

Chapter 24 robot Car

471

The sketch is long, but when broken down into the component parts as

functions, the sketch only contains instructions that have been outlined in

previous projects.

Listing 24-1. Robot Car with Servo, Scanner, RGB LED, and OLED

#include <Servo.h> // include Servo library

Servo servo; // associate servo with Servo library

int servoPin = A1; // servo motor pin

#include <NewPing.h> // include NewPing library

int trigPin = A2; // ultrasound trigger pin

int echoPin = A3; // ultrasound echo pin

int maxdist = 70; // set maximum scan distance (cm)

NewPing sonar(trigPin, echoPin, maxdist); // associate sonar with

 // NewPing library

#include <Adafruit_GFX.h> // include Adafruit GFX library

#include <Adafruit_SSD1306.h> // include Adafruit SSD1306 library

Adafruit_SSD1306 oled(-1); // associate oled with Adafruit_SSD1306 library

int redLED = 10;

int greenLED = 12; // RGB LED pins

int blueLED = 13;

int IN1 = 8; // left motor forward and backward pins

int IN2 = 7;

int IN3 = 6; // right motor forward and backward pins

int IN4 = 5;

int ENA = 11; // left motor enable pin

int ENB = 3; // right motor enable pin

int scanTime = 250; // set time between scans (ms)

int turnTime = 500; // time to make turn or move backward

int motorSpeed;

float bias = 0.95; // bias speed of right motor

float leftDist, rightDist, frontDist, frontDistR, frontDistL;

Chapter 24 robot Car

472

void setup()

{

 servo.attach(servoPin); // attach servo motor pin

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // OLED display and I2C address

 oled.setTextColor(WHITE); // set font colour

 oled.setTextSize(2); // set font size

 oled.clearDisplay(); // clear OLED display

 oled.display(); // start display instructions

 pinMode(redLED, OUTPUT);

 pinMode(greenLED, OUTPUT); // define RGB LED pins as OUTPUT

 pinMode(blueLED, OUTPUT);

 pinMode(trigPin, OUTPUT); // define trigger pin as OUTPUT

 pinMode(IN1, OUTPUT);

 pinMode(IN2, OUTPUT); // define motor pins as OUTPUT

 pinMode(IN3, OUTPUT);

 pinMode(IN4, OUTPUT);

}

void loop()

{

 servo.write(100); // scan front left (100°), return distance

 frontDistL = (sonar.ping_median(5)/2.0)*0.0343;

 delay(50);

 servo.write(80); // scan front right (80°), return distance

 frontDistR = (sonar.ping_median(5)/2.0)*0.0343;

 frontDist = min(frontDistL,frontDistR); // minimum of front distances

 distance("front", frontDist);

Chapter 24 robot Car

473

 if(frontDist >20) direction("forward",100); // move forward if clear

 else

 {

 direction("stop", 100); // stop to start scanning

 digitalWrite(blueLED, HIGH); // turn on blue LED to indicate

 // scanning

 leftDist = scan(170, "left"); // scan 170° and return distance

 rightDist = scan(10, "right"); // scan 10° and return distance

 digitalWrite(blueLED, LOW); // turn off blue LED

 if(rightDist <15 && leftDist <15) // move back if clear

 { // distance <15cm

 digitalWrite(greenLED, HIGH); // turn on red and green LEDs

 turn(redLED, "backward"); // to create yellow colour

 digitalWrite(greenLED, LOW);

 }

 else if(leftDist > rightDist) turn(greenLED, "left"); // turn left

 else if(rightDist > leftDist) turn(redLED, "right"); // turn right

 }

}

void turn (int LED, String direct) // function to turn right or left

{

 digitalWrite(LED, HIGH); // turn on LED

 direction(direct, turnTime); // call function to control motors

 digitalWrite(LED, LOW); // turn off LED

}

void direction(String direct, int runTime) // function to set motor direction

{

 if(direct == "forward") motor(1, 0, 1, 0, 1); // both motors forward fast

Chapter 24 robot Car

474

 else

 if(direct == "backward") motor(0, 1, 0, 1, 1); // both motors

 // backward fast

 else if(direct == "right") motor(1, 0, 0, 1, 0); // left forward,

 // right backward

 else if(direct == "left") motor(0, 1, 1, 0, 0); // left backward,

 // right forward

 else if(direct == "stop") motor(0, 0, 0, 0, 0); // both motors stop

 delay(runTime); // run time (ms) for motors

}

void motor(int leftF, int leftB, int rightF ,int rightB, int speed)

{

 digitalWrite(IN1, leftF); // control pin IN1 left motor forward

 digitalWrite(IN2, leftB); // control pin IN2 left motor backward

 digitalWrite(IN3, rightF); // control pin IN3 right motor forward

 digitalWrite(IN4, rightB); // control pin IN4 right motor back

 if(speed == 1) motorSpeed = 90; // higher speed when moving forward

 else motorSpeed = 80; // or backward than when turning

 analogWrite(ENA, motorSpeed); // left motor speed

 motorSpeed = motorSpeed*bias;

 analogWrite(ENB, motorSpeed); // right motor speed

}

float scan(int angle, String direct) // function to scan distance at angle

{

 servo.write(angle); // rotate servo motor

 delay(scanTime); // delay between scans

 float dist = (sonar.ping_median(5)/2.0)*0.0343; // check distance (cm)

 distance(direct, dist); // display to distance on OLED

 servo.write(90); // rotate servo motor

 delay(scanTime); // delay between scans

 return dist;

}

Chapter 24 robot Car

475

void distance (String direct, float dist) // function to display on OLED

{

 direct = direct +": ";

 oled.clearDisplay(); // clear OLED display

 oled.setCursor(0,0); // position cursor at (0, 0)

 oled.print(direct); // print text

 oled.print(dist, 0); // print number with 0DP

 oled.display(); // start display instructions

}

 PID Controller
The balancing robot, outlined in the next section, requires a PID controller

to manage the process of reacting to changes in the vertical angle of the

robot by altering the direction and speed of rotation of the DC motors.

A brief description and an example of a PID controller are given.

PID controllers are used in many systems to manage process inputs

and control process outputs, with cruise control in a car being an

example. The PID controller monitors the difference between the required

input (called the setpoint) and the observed input, and uses a feedback

mechanism to change the process output. In the example of a car, the

setpoint is the required speed, the input is the actual speed, and the output

is the amount of petrol or diesel injected into the fuel injection system,

which alters the engine speed and the speed of the car.

The difference between the PID setpoint and observed PID input is

the error. There are three components in a PID output—proportional,

integral, and derivative, which are derived from the current error, the

cumulative error, and the rate of change in the error. The PID output

Chapter 24 robot Car

476

is KPe + Kit ∑ e + Kdbe, where Kp, Ki and Kd are the coefficients of the

proportional, integral and derivative terms for the error, e, the cumulative

error, ∑e, and the rate of change in the error, be, respectively, with t the

time interval between successive PID evaluations. The rate of change

in the error, be, is calculated as (error – previous error)/t. If the PID setpoint

is constant, then the rate of change in the error is the negative rate of

change in the PID input or (previous input - input)/t, as error is equal to

setpoint – input.

Changing the proportional coefficient, Kp, directly changes the PID

output, but results in oscillation of the PID input about the PID setpoint.

If the PID output only consists of the proportional component, then the

mean input is always below the setpoint, as the output is proportional

to the error, which is fixed for a given input. Increasing the integral

coefficient, Ki, increases the rate at which the PID input reaches the PID

setpoint, but there is a time lag while the integral component accumulates.

A combination of the proportional and integral components results in the

PID input reaching the PID setpoint quickly, with little oscillation about

the PID setpoint. The derivative component prevents the PID output from

changing too quickly.

An example of a PID control system is to maintain constant ambient

light on a light dependent resistor (LDR) by controlling the brightness of

an LED facing the LDR (see Figure 24-2 and Table 24-2). If the reading of

the incident light on the LDR (input) differs from the required amount

(setpoint), then the LED brightness (output) is updated.

Chapter 24 robot Car

477

Figure 24-2. PID controller with LDR and LED

Table 24-2. PID Controller with LDR and LED

Component Connect to and to

potentiometers GND arduino GND

Kp, Ki potentiometer signals arduino pin a4, a5

potentiometers VCC arduino 5V

LDR top arduino 5V

LDR bottom 4.7kΩ resistor arduino GND

LDR bottom arduino pin a0

LED long leg arduino pWM pin 11

LED short leg 220Ω resistor arduino GND

Chapter 24 robot Car

478

The PID library by Brett Beauregard is recommended for PID

controller sketches, when the PID setpoint is constant. The PID library

is available within the Arduino IDE and is installed using installation

method 3, as outlined in Chapter 3.

The sketch (see Listing 24-2) uses the voltage output from

potentiometers to alter the coefficients Kp and Ki. Note that the PID

coefficients Kp, Ki and Kd and the PID variables setpoint, input and output

must be defined, in a sketch using the PID library, as double rather than

float. The LDR is combined with a 4.7kΩ resistor to form a voltage divider

(see Figure 24-2), with the voltage divider’s output voltage converted to a

digital value, as outlined in Chapter 3.

Increasing the Kp coefficient results in increasing the PID input, but when

Kp exceeds a threshold, the PID input starts to oscillate. Increasing values of

the Ki coefficient reduces the response time of the PID output and the time

taken for the PID input to reach the PID setpoint. Note that the PID setpoint in

Listing 24-2 is constant and that the derivative component, Kd, is set to zero.

Listing 24-2. PID Controller with LDR and LED

#include <PID_v1.h> // include PID library

double Kp=0;

double Ki=0; // PID coefficients

double Kd=0;

double input, output, setpoint; // PID variables

 // associate pid with PID_v1 library

PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT);

int PIDtime = 20; // time (ms) between PID evaluations

int LDRpin = A0; // LDR pin

int KpPin = A4; // Kp potentiometer pin

int KiPin = A5; // Ki potentiometer pin

int LEDpin = 11; // LED on a PWM pin

unsigned long chkTime;

Chapter 24 robot Car

479

void setup()

{

 pid.SetMode(AUTOMATIC); // start PID control

 pid.SetSampleTime(PIDtime); // constant PID evaluation time interval

 setpoint = 500; // constant PID setpoint

 chkTime = millis();

}

void loop()

{

 if(millis()-chkTime > PIDtime) // new PID evaluation

 {

 Kp = analogRead(KpPin) *3.0/1023; // Kp (0 to 3) from potentiometer

 Ki = analogRead(KiPin) *15.0/1023; // Ki (0 to 15) from potentiometer

 input = analogRead(LDRpin); // read LDR value as PID input

 pid.SetTunings(Kp, Ki, Kd); // update PID coefficients

 pid.Compute(); // evaluate PID

 analogWrite(LEDpin, output); // LED brightness is PID output

 chkTime = millis(); // reset time to next PID evaluation

 }

}

PID control with an adjustable setpoint variable and Ki coefficient

values requires calculation of the three PID components, given that the

PID library assumes a constant PID setpoint. In Listing 24-3, the voltage

output from potentiometers varies the setpoint and the Ki coefficient.

To prevent the integral component from accumulating beyond limits,

known as windup, the integral component is constrained when the new

error term is added to the previous integral and when included in the PID

output calculation, with values of 0 and 255 used in the sketch. The PID

output variable is also constrained between 0 and 255. Given that the Ki

coefficient is a variable, the calculation of the integral component error

term incorporates the current Ki coefficient rather than multiplying the

sum of the error terms by a constant Ki coefficient.

Chapter 24 robot Car

480

Note that in Listing 24-3, the error and derivative coefficients, Kp and

Kd, are defined at the start of the sketch, but can be determined from a

potentiometer output as with the integral coefficient, Ki. When using PID

to control the LED brightness, zero values for Kp and Kd are sufficient.

Listing 24-3. PID Control with Variable Setpoint

float Kp=0;

float Ki=0; // PID coefficients

float Kd=0;

float input, output, setpoint; // PID variables

int PIDtime = 20; // time (ms) between PID evaluations

int LDRpin = A0; // LDR pin

int setPin = A4; // setpoint potentiometer pin

int KiPin = A5; // Ki potentiometer pin

int LEDpin = 11; // LED on a PWM pin

unsigned long chkTime;

float pTime, error, lastError, integral, derivative;

void setup()

{

 pTime = PIDtime/1000.0; // PID evaluation time (s)

 chkTime = millis();

}

void loop()

{

 if(millis()-chkTime > PIDtime)

 {

 setpoint = analogRead(setPin); // setpoint from potentiometer

 Ki = analogRead(KiPin) *15.0/1023; // Ki (0 to 15) from potentiometer

 input = analogRead(LDRpin); // read LDR value as PID input

 error = setpoint-input; // PID error

 // constrained PID integral and error

 integral = constrain(integral,0,255) + error*Ki*pTime;

Chapter 24 robot Car

481

 derivative = (error - lastError)/pTime; // PID derivative

 lastError = error; // retain last error

 // evaluate PID output

 output = Kp*error + constrain(integral,0,255) + Kd*derivative;

 output = constrain(output, 0, 255); // constrain PID output

 analogWrite(LEDpin, output); // LED brightness is PID output

 chkTime = millis(); // reset time to next PID evaluation

 }

}

 Balancing Robot
The balancing robot (see Figure 24-3 and Table 24-3)

uses the Arduino Nano, DC motors, the L298N motor

driver board and the GY-521 module, which includes

an MPU-6050 accelerometer and gyroscope sensor,

as outlined in Chapter 3. Wireless communication of

the PID coefficients transmitted with the nRF24L01

module, was outlined in Chapter 17. The GY-521

module is positioned low in the balancing robot and on

the same axis as the DC motors; while the Arduino Nano, L298N motor driver

board, and battery are positioned high in the robot to generate an inverted

pendulum. The pitch angle of the robot, detected by the GY-521 module, is the

PID input, the PID setpoint is the angle of the robot when the robot is balanced

and the PID output is the direction and speed of rotation of the DC motors.

Chapter 24 robot Car

482

Figure 24-3. Balancing robot with nRF24L01 and accelerometer

Table 24-3. Balancing Robot with nRF24L01 and Accelerometer

Connect to Arduino Nano pins Connect to

tX1 VIN 5V rail

rX0 GND GY-521 GND

nrF24L01 GND

rSt rSt

L298N GND GND 5V GY-521 VCC

GY-521 INt D2 a7

D3 a6

D4 a5 GY-521 SCK

(continued)

Chapter 24 robot Car

483

 Determining PID Coefficients
The three PID components are the error or difference between the PID

setpoint and input for the proportional component, the cumulative sum

of errors for the integral component and the difference between the

current error and previous error for the derivative component. The three

PID components are multiplied by the Kp, Ki, and Kd PID coefficients to

determine the PID output.

There are several methods for determining optimal values of the PID

coefficients. The Ziegler-Nichols method sets the integral and derivative

coefficients, Ki and Kd, to zero. The proportional coefficient is increased

from zero, reaching a value, K, when the PID input starts to oscillate.

The period of the input oscillation, T, is measured with an oscilloscope.

The PID coefficients—Kp, Ki, and Kd— are then set to 0.6K, 1.2K/T and

0.075KT, respectively.

Connect to Arduino Nano pins Connect to

IN4 right motor D5 pWM a4 GY-521 SDa

IN3 right motor D6 pWM a3

nrF24L01 Ce D7 a2

nrF24L01 CSN D8 a1

IN2 left motor D9 pWM a0

IN1 left motor D10 pWM reF

nrF24L01 MoSI D11 3V3 nrF24L01 VCC

nrF24L01 MISo D12 D13 nrF24L01 SCK

Table 24-3. (continued)

Chapter 24 robot Car

484

Without an oscilloscope, PID coefficients can be determined

empirically using potentiometers to vary values of the Kp, Ki, and Kd

coefficients (see Figure 24-4). The integral and derivative coefficients,

Ki and Kd, are set to zero and the value of the proportional coefficient,

Kp, is increased from zero until the robot starts to balance. The integral

coefficient, Ki, and then the derivative coefficient Kd are increased to

improve the stability of the robot. Empirical values of Kp, Ki and Kd are

wirelessly transmitted with an nRF24L01 module to a receiving nRF24L01

module connected to the Arduino Nano attached to the balancing robot.

An OLED display connected to the transmitting Arduino Nano displays

values of the PID coefficients Kp, Ki and Kd.

Figure 24-4. nRF24L01 transmit Kp, Ki, and Kd values

Chapter 24 robot Car

485

 Circular Buffer
Noise from a potentiometer results in variation in the transmitted PID

coefficients, which can be reduced by ignoring values that differ from

the current mean value by set amount. The circular buffer holds several

potentiometer values from which the mean value is calculated, with the

size of the circular buffer fixed. The circular buffer replaces the “oldest”

Table 24-4. nRF24L01 Transmit Kp, Ki, and Kd Values

Connect to Arduino Nano pins Connect to

tX1 VIN 5V rail

rX0 GND oLeD GND

nrF24L01 GND

rSt rSt

potentiometers GND GND 5V potentiometers VCC

D2 a7 Kd potentiometer signal

D3 a6 Ki potentiometer signal

D4 a5 oLeD SCK

D5 a4 oLeD SDa

D6 a3 Kp potentiometer signal

nrF24L01 Ce D7 a2

nrF24L01 CSN D8 a1

D9 a0

D10 reF

nrF24L01 MoSI D11 3V3 oLeD VCC

nrF24L01 VCC

nrF24L01 MISo D12 D13 nrF24L01 SCK

Chapter 24 robot Car

486

value with the current value, if the current value differs sufficiently from

the mean value. In the sketch (see Listing 24-4), the circular buffer holds

10 (nVal) values and ignores values that differ from the mean by less than

5 (minVal). For example, if the buffer size is three and the sequence of

potentiometer values is 5, 5, 5, 4, 11, 14, then the mean value is 5 for the

first four values, as the value of 4 is ignored since it differs by only one from

the mean. With value 11, the new mean value is 7 and the buffer consists of

(5, 5, 11), and with the value 14, the new mean is 10 and the buffer consists

of (5, 11, 14).

In Listing 24-4, circular buffers reduce the noise variation on three

potentiometers used to define the Kp, Ki and Kd coefficients, with each

buffer containing 10 (nVal) values and a minimum deviation of at least

5 (minVal) before a new value is included in the circular buffer. The

getKvalues() function updates the circular buffer for each potentiometer

with the Kp, Ki, and Kd coefficients constrained to values less than 40,

10, and 1, respectively. The coefficient values are displayed on the OLED

display and then transmitted to the nRF24L01 receiver module. In

practice, the robot was balanced with PID Kp, Ki, and Kd, coefficients of 32,

2.5, and 0.2 respectively, but the coefficient values are dependent on the

specific robot, and a wide range of values should be examined.

Listing 24-4. Determining PID Coefficients with a Circular Buffer

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[][6] = {"12"};

typedef struct // define a structure

{

 float Kp, Ki, Kd; // PID coefficients

} dataStruct;

dataStruct data;

#include <Adafruit_GFX.h> // include Adafruit GFX library

Chapter 24 robot Car

487

#include <Adafruit_SSD1306.h> // include Adafruit SSD1306 library

Adafruit_SSD1306 oled(-1); // associate oled with Adafruit_SSD1306 library

int Kpins[3] = {A3, A6, A7}; // Kp, Ki and Kd potentiometer pins

const int nVal = 10; // number of values in circular buffer

int val[3][nVal]; // circular buffer for three variables

int value;

int sum[] = {0, 0, 0}; // sum of circular buffer values

int n[] = {0, 0, 0}; // index of current values in buffer

int minVal = 5; // minimum deviation from mean

int K[3]; // mean values of circular buffer

void setup()

{

 radio.begin(); // initialise radio

 radio.openWritingPipe(addresses[0]); // open transmitting pipe

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // OLED display and I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font colour

 oled.setTextSize(1); // set font size

 oled.display(); // start display instructions

 for (int i=0; i<3; i++)

 {

 for (int j=0; j<nVal; j++) val[i][j] = 0; // set circular buffer

 } // values to zero

}

void loop()

{

 getKvalues(); // function to update circular buffer

 data.Kp = K[0] *40.0/1023; // Kp (0 to 40) from potentiometer

 data.Ki = K[1] *10.0/1023; // Ki (0 to 10) from potentiometer

 data.Kd = K[2] *1.0/1023; // Kd (0 to 1) from potentiometer

Chapter 24 robot Car

488

 oled.clearDisplay(); // clear OLED display

 oled.setCursor(0,0); // position cursor at (0, 0)

 oled.print("Kp: "); // display text and Kp value

 oled.println(data.Kp); // followed by a carriage return

 oled.print("Ki: "); // display text and Ki value

 oled.println(data.Ki);

 oled.print("Kd: "); // display text and Kd value

 oled.print(data.Kd);

 oled.display(); // start display instructions

 radio.write(&data, sizeof(data)); // transmit Kp and Kd values

 delay(50);

}

void getKvalues() // function to update circular buffer

{

 for (int i=0; i<3; i++) // repeat for each PID coefficient

 {

 value = analogRead(Kpins[i]); // read current potentiometer value

 if(value>0)

 {

 if(abs(value-K[i]) > minVal) // potentiometer value differs

 { // sufficiently from mean value

 sum[i] = sum[i] - val[i][n[i]]; // subtract "oldest" value from buffer

 val[i][n[i]] = value; // replace "oldest" with current value

 sum[i] = sum[i] + value; // update circular buffer total

 n[i]++; // increment index of current value

 if(n[i] > nVal-1) n[i] = 0; // when at end of circular buffer

 }

 }

 else // reset circular buffer to zero

Chapter 24 robot Car

489

 { // when potentiometer value is zero

 for (int j=0; j<nVal; j++) val[i][j] = 0;

 sum[i]=0;

 }

 K[i] = sum[i]/nVal; // mean values of circular buffer

 }

}

 Quaternion Measurements
Accelerometer measurements provide an estimate of the pitch angle,

as outlined in Chapter 3. The estimated pitch angle can be improved

by combining the accelerometer and gyroscope measurements into

quaternions, which is performed by the Invensense DMP (Digital Motion

Processor) of the MPU-6050 sensor on the GY-521 module. Quaternions

consist of four components, a magnitude and three directional components,

which parameterize the angle of rotation. The quaternion components,

accelerometer and gyroscope measurements are stored by the MPU-6050

sensor in a 10-byte FIFO (first-in, first-out) buffer, when the MPU-6050

sensor interrupt pin is set to HIGH, to indicate that updated positional

measurements are available. Quaternions are outlined in the Appendix.

Estimates of the pitch angle using quaternion components or only

accelerometer measurements were broadly similar, but the latter are

more variable. For example, when the GY-521 module was tilted forward

and backward, the change in estimated pitch angle was smoother using

quaternion components than when using accelerometer measurements

(see Figure 24-5). The accelerometer pitch angles differed from the

quaternion pitch angles between –5° and 9° (see Figure 24-5, secondary

axis). For the balancing robot, noise in the estimated pitch angle

must be minimized, so calculation of the pitch angle from quaternion

measurements is recommended; however, there is an initial lag before the

quaternion components stabilize.

Chapter 24 robot Car

490

Figure 24-5. Estimated pitch angle

The MPU6050 and I2Cdev libraries by Jeff Rowberg enable access

to the MPU-6050 sensor’s FIFO buffer, which holds the quaternion

measurements. A .zip file containing the MPU6050 and I2Cdev libraries

can be downloaded from https://github.com/jrowberg/i2cdevlib/.

Extract the MPU6050 and I2Cdev folders from the .zip file and install

the libraries using installation method 2, as described in Chapter 3.

The balancing robot sketch (see Listing 24-5) includes instructions

from the Examples ➤ MPU6050 ➤ MPU6050_DMP6 sketch in the

MPU6050 library to access the quaternion measurements. Prior to use, the

MPU6050 sensor should be calibrated with the Examples ➤ MPU6050 ➤

IMU_Zero sketch to determine offset values for the gyroscope X, Y, and Z

axes and the accelerometer Z axis. PID Kp, Ki, and Kd coefficients, defined

with potentiometers using circular buffers to reduce noise, are transmitted

with a nRF24L01 module using Listing 24-4 to the receiving nRF24L01

module attached to the balancing robot.

Table 24-5 shows the structure of the FIFO buffer as outlined in the

Arduino ➤ Libraries ➤ MPU6050 ➤ MPU6050_6Axis_MotionApps20.h file.

Chapter 24 robot Car

https://github.com/jrowberg/i2cdevlib/

491

Quaternion values are combined with the following instructions.

qw = ((fifoBuffer[0] << 8) | fifoBuffer[1]);

qx = ((fifoBuffer[4] << 8) | fifoBuffer[5]);

qy = ((fifoBuffer[8] << 8) | fifoBuffer[9]);

qz = ((fifoBuffer[12] << 8) | fifoBuffer[13]);

The symbols <<8 and | indicate that the left-hand value is moved

by 8 positions and added to the right-hand value, as outlined in the

“Accelerometer and Gyroscope” section of Chapter 3.

In the balancing robot sketch (see Listing 24-5), the pitch angle

corresponding to a balanced robot is defined as the PID setpoint and

the pitch angle of the moving robot is defined as the PID input, which is

constrained to have absolute values of less than 25°. Motor speed, which

is the PID output, is constrained to a value of at least 60, otherwise the

motors do not turn sufficiently. The interval between PID evaluations

of 20ms is sufficient to achieve a balancing robot. In practice, PID

coefficients of 32, 2.5, and 0.2 for Kp, Ki, and Kd, respectively, balanced

a robot, with higher Kp values required on carpet surface compared to

wooden flooring.

Listing 24-5 is long, but consists of groups of instructions that have

been used in projects in other Chapters. As usual, the start of the sketch

includes libraries, defines variables and pins associated with the MPU-

6050 accelerometer and gyroscope sensor, the nRF24L01 receiver module,

and the L298N motor driver board. The void setup() function consists

primarily of instructions to access the FIFO buffer of the MPU-6050 sensor,

Table 24-5. FIFO Buffer Structure

Quarternion Gyroscope Accelerometer

Value w x y z x y z x y z

Register 0, 1 4, 5 8, 9 12, 13 16, 17 20, 21 24, 25 28, 26 32, 33 36, 37

Chapter 24 robot Car

492

which were derived from the Examples ➤ MPU6050 ➤ MPU6050_DMP6

sketch. The void loop() function consists of two halves, with the first

half receiving the transmitted PID coefficients: Kp, Ki, and Kd, calculating

the pitch angle from the quaternion values and then the PID output,

calculated from the PID error, integral, and derivative components, to

adjust the DC motor speed.

The second half of the void loop() function combines the eight FIFO

buffer values to form the four scaled quaternion values. The motor()

function sets the DC motor speed on the Arduino Nano PWM pins and the

DMPdataReady() function is an interrupt indicating that data is available

from the MPU-6050 sensor.

Listing 24-5. Balancing Robot

#include <I2Cdev.h> // include I2Cdev library

#include <MPU6050_6Axis_MotionApps20.h> // include MPU6050 library

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 #include <Wire.h> // include Wire library

#endif

MPU6050 mpu; // associate mpu with MPU6050 library

uint8_t mpuIntStatus; // MPU-6050 interrupt status

volatile bool mpuInterrupt = false; // if MPU-6050 interrupt is HIGH

bool DMPinit = false; // DMP initialisation status

uint8_t DMPstatus; // device status (0 = success, !0 = error)

uint16_t fifoPacket; // DMP packet size (default 42 bytes)

uint16_t fifoCount; // number of bytes in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

int I2Caddress = 0x68; // I2C address of MPU- 6050

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[][6] = {"12"};

Chapter 24 robot Car

493

typedef struct // define a structure

{

 float K1, K2, K3; // transmitted PID coefficients

} dataStruct;

dataStruct data;

float Kp = 0, Ki = 0, Kd = 0; // PID coefficients

int pidTime = 20; // interval between PID evaluations (ms)

unsigned long chkTime = 0;

int IN1 = 10; // left wheel forward and backward pins

int IN2 = 9;

int IN3 = 6; // right wheel forward and backward pins

int IN4 = 5;

int inputLimit = 25; // limit on pitch angle (-25, 25)

int outMin = 60; // minimum output to turn on motors

int LEDpin = 3;

float qw = 0, qx = 0, qy = 0, qz = 0, pitch; // quaternion values

 // from MPU-6050

float integral = 0;

float input, output, setpoint, error, lastError, derivative, pTime,

 sumsquare;

int mSpeed;

void setup()

{

 Serial.begin(115200); // set baud rate to 115200

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 Wire.begin(); // initialise I2C

 Wire.setClock(400000); // set I2C clock speed to 400kHz

 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

 Fastwire::setup(400, true); // library for fast I2C access

 #endif

 mpu.initialize(); // initialise mpu

 DMPstatus = mpu.dmpInitialize(); // set DMPstatus variable

Chapter 24 robot Car

494

 mpu.setXGyroOffset(10);

 mpu.setYGyroOffset(-20); // gyro X, Y and Z and accelZ offsets

 mpu.setZGyroOffset(100); // from IMU_Zero in MPU6050 library

 mpu.setZAccelOffset(1730);

 if (DMPstatus == 0) // DMP (Digital Motion Processor)initialised

 {

 mpu.setDMPEnabled(true); // start DMP

 attachInterrupt(0, DMPdataReady, RISING); // interrupt on GY-521 module

 mpuIntStatus = mpu.getIntStatus();

 DMPinit = true; // DMP initialised

 fifoPacket = mpu.dmpGetFIFOPacketSize(); // DMP packet size

 }

 else Serial.print("DMP initialization failed");

 radio.begin(); // initialise radio

 radio.openReadingPipe(0, addresses[0]); // open reading pipe

 radio.startListening();

 motor(0, 0, 0, 0); // initialise motor to zero

 pinMode(LEDpin, OUTPUT); // define LED pin as OUTPUT

 setpoint = 2; // setpoint angle with robot balanced

 integral = 0;

 pTime = pidTime/1000.0; // PID evaluation time (s)

 delay(1000);

}

void loop()

{ // MPU6050 data available

 while (!mpuInterrupt && fifoCount < fifoPacket)

 {

 if(millis()-chkTime > pidTime) // PID evaluation

 {

 if(radio.available()) // transmitted data available

 {

 radio.read(&data,sizeof(data));

Chapter 24 robot Car

495

 Kp = data.K1; // update PID coefficients

 Ki = data.K2;

 Kd = data.K3; // flash LED received transmission

 digitalWrite(LEDpin, !digitalRead(LEDpin));

 }

 pitch = -asin(2.0*(qx*qz-qw*qy))*180/PI; // constrain pitch angle

 input = constrain(-pitch, -inputLimit, inputLimit);

 error = setpoint - input; // PID error and integral components

 integral = constrain(integral,-255,255) + error*Ki*pTime;

 derivative = (error - lastError)/pTime; // PID derivative component

 lastError = error; // update last error

 // evaluate PID output

 output=Kp*error + constrain(integral,-255,255) + Kd*derivative;

 mSpeed = constrain(output, -255,255); // limit motor speed

 if(mSpeed > outMin) motor(mSpeed, 0, mSpeed, 0);

 else if(mSpeed < -outMin) motor(0, -mSpeed, 0, -mSpeed);

 else motor(0, 0, 0, 0); // output low, zero motor speed

 chkTime=millis();

 }

 }

 fifoCount = mpu.getFIFOCount(); // get current FIFO count

 mpuInterrupt = false; // reset interrupt flag

 mpuIntStatus = mpu.getIntStatus(); // check for overflow

 // when getIntStatus fifth bit = 1

 if (bitRead(mpuIntStatus,4) == 1 || fifoCount == 1024)

 {

 mpu.resetFIFO(); // reset FIFO

 Serial.println("FIFO overflow");

 }

 else if(bitRead(mpuIntStatus,1) == 1) // check if DMP data ready

 { // getIntStatus second bit = 1

 while (fifoCount < fifoPacket) fifoCount = mpu.getFIFOCount();

 mpu.getFIFOBytes(fifoBuffer, fifoPacket); // read data packet from FIFO

Chapter 24 robot Car

496

 fifoCount -= fifoPacket; // update FIFO byte number

 qw = ((fifoBuffer[0] << 8) | fifoBuffer[1]);

 qx = ((fifoBuffer[4] << 8) | fifoBuffer[5]); // quaternion values

 qy = ((fifoBuffer[8] << 8) | fifoBuffer[9]);

 qz = ((fifoBuffer[12] << 8) | fifoBuffer[13]);

 qw = qw/16384.0; // divide quaternion by 214

 qx = qx/16384.0;

 qy = qy/16384.0;

 qz = qz/16384.0;

 }

}

void motor(int leftF, int leftB, int rightF ,int rightB)

{ // control motors

 float bias = 1.0;

 analogWrite(IN1, leftF*bias); // bias left or right motor speed

 analogWrite(IN2, leftB*bias); // as required

 analogWrite(IN3, rightF);

 analogWrite(IN4, rightB);

}

void DMPdataReady() // interrupt from MPU- 6050

{

 mpuInterrupt = true;

}

 Summary
An obstacle-avoiding robot car used an ultrasonic distance sensor

mounted on a servo motor to detect obstacles, with the distance-

to- obstacle information provided on an OLED display. Use of a PID

controller was illustrated by maintaining constant ambient light on a

light dependent resistor through controlling the brightness of an adjacent

LED. A circular buffer was described to reduce noise from potentiometer

Chapter 24 robot Car

497

output. Quaternion measurement system provided more stable readings

of the pitch angle from the accelerometer and gyroscope module than

the accelerometer readings alone. A balancing robot was built with the

accelerometer and gyroscope module controlling the DC motors through

a PID controller with a circular buffer to reduce noise on potentiometer

values used to derive the PID coefficients.

 Components List
• Arduino Uno and breadboard

• Arduino Nano and breadboard

• DC motors: 2×

• Motor driver board: L298N

• Battery: 9V

• Ultrasonic distance sensor: HC-SR04

• Servo motor: SG90

• OLED display: 128×32 pixels

• RGB LED or module

• Potentiometers: 3× 10kΩ

• LED

• Light dependent resistor (or photoresistor)

• Resistor: 220Ω and 4.7kΩ

• Wireless transceiver module: 2× nRF24L01

• Accelerometer and gyroscope module: GY-521

Chapter 24 robot Car

499© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_25

CHAPTER 25

Wi-Fi Communication
Wi-Fi technology allows communication

between a device and a wireless local area

network (WLAN). Devices such as personal

computers and printers, digital cameras

and mobile phones can connect to a Wi- Fi access point over a distance

of 20m indoors with greater distances outdoors. Like Bluetooth (see

Chapter 16) and wireless (see Chapter 17) communication, Wi-Fi

operates at 2.4GHz.

Some Arduino Wi-Fi shields that connect to the Arduino Uno are

based on the ESP8266 Wi-Fi microchip. The NodeMCU ESP8266 based

microcontroller is more powerful than the Arduino Uno and can be

programmed using the Arduino IDE. The NodeMCU ESP8266 is used for

Wi-Fi communication in this chapter. The WeMos D1 mini is based on the

ESP8266 microcontroller. It has Wi-Fi communication, and it can be used

instead of the NodeMCU ESP8266.

NodeMCU ESP8266
The NodeMCU ESP8266 operates at 3.3V and is powered through a

micro USB connection, which is also used to upload instructions and

communicate with a computer or laptop. The micro USB cable can be

connected to 5V, given the 3.3V voltage regulator, and there are three

500

3.3V output pins, a voltage input (5V) pin and four ground pins for

connecting to other devices (see Figure 25-1). The general-purpose

input/output (GPIO) pins are used for transmitting and receiving

serial data (GPIO 1 and 3, respectively) with I2C (GPIO 4 and 5) and

SPI (GPIO 12 to 15) communication. There are four PWM pins (GPIO

4, 12, 14, and 15) and one analog-to-digital converter pin (A0). There

are two LEDs: one beside pin D0 and the other beside the micro-USB

connection on pins GPIO 2 and 16, respectively, with the latter equal to

LED_BUILTIN and active LOW. The Reset button is used to restart the

microcontroller. The GPIO pins are not 5V tolerant and the maximum

current supply of a pin is 12mA.

Figure 25-1. NodeMCU ESP8266

Chapter 25 Wi-Fi CommuniCation

501

Several steps are required prior to running sketches on the NodeMCU

ESP8266. First, the CP2012 Virtual COM Port (VCP) USB to UART driver is

installed on the computer.

 1. Download the VCP.zip file from www.silabs.com/

products/development-tools/software/usb-to-

uart-bridge-vcp-drivers.

 2. Extract the CP210x Universal Windows Driver folder.

 3. Double-click the CP210x VCP Installer using either

the x64 or x86 version for 64-bit or 32-bit operating

systems, respectively.

 4. To determine if a computer has a 32-bit or a 64-bit

operating system, select Control Panel ➤ System and

Security ➤ System. The system type is displayed.

 5. Go to github.com/esp8266/Arduino.

 6. In the Installing with Boards Manager section,

copy the http://arduino.esp8266.com/stable/

package_esp8266com_index.json link.

 7. Open the Arduino IDE with a new sketch.

 8. Select File ➤ Preferences.

 9. Paste the link into the Additional Boards Manager

URLs box and click OK.

The ESP8266 libraries are installed in the Arduino IDE.

 1. Select Tools ➤ Board ➤ Boards Manager.

 2. Enter 8266 in Filter to display esp8266 by ESP8266

Community.

 3. Click Install.

Chapter 25 Wi-Fi CommuniCation

http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://github.com/esp8266/Arduino

502

 4. Connect the NodeMCU ESP8266 to the computer or

laptop, but do not use a USB charging cable.

 5. In Tools ➤ Board, select NodeMCU 1.0 (ESP-12E

Module).

 6. In Tools ➤ CPU Frequency, select 160 MHz.

 7. In Tools ➤ Port, choose the appropriate COM

channel.

 8. The NodeMCU ESP8266 setup is verified by running

the blink sketch, available in the Arduino IDE under

File ➤ Examples ➤ ESP8266.

In the Arduino IDE, a pin can be referred to by the GPIO pin number or

by D#, such as int LEDpin = 2 or int LEDpin = D4.

WeMos D1 Mini
WeMos D1 mini development board is based on the ESP-8266EX

microcontroller, and has Wi-Fi functionality (see Figure 25-2). The

WeMos D1 mini operates at 3.3V and is powered through the micro USB

connection. The micro USB cable can be connected to 5V, given the

3.3V voltage regulator, and there is a 3.3V output pin, a 5V output pin

and a ground pin for connecting to other devices. There is one analog-

to- digital converter pin (A0), SPI (GPIO 12 to 15) and I2C (GPIO 4 and 5)

communication, and nine digital input pins, which are all PWM except

GPIO 16. The built-in LED is on pin D4 or GPIO 2 and is active LOW.

The Reset button is used to restart the microcontroller. The GPIO pins

are not 5V tolerant and the maximum current supply of a pin is 12mA.

Chapter 25 Wi-Fi CommuniCation

503

The CH340G USB to UART driver for the WeMos Di mini development

board has to be installed.

 1. Go to wiki.wemos.cc/downloads.

 2. Select CH340G Driver ➤ Windows.

 3. Save the ch341ser_win.zip file on the desktop.

 4. Open the .zip file and move the CH341SER

application to the desktop.

 5. Right-click the CH341SER application.

 6. Select Run as administrator and install the driver.

 7. Restart the computer to install the driver.

The ESP8266 libraries have to be installed, as outlined in the

NodeMCU ESP8266 section.

 1. In the Arduino IDE, from Tools ➤ Board, select

LOLIN (WEMOS) D1 R2 & mini.

 2. In Tools ➤ CPU Frequency, select 160 MHz.

 3. In Tools ➤ Port, select the relevant port.

Figure 25-2. WeMos D1 mini

Chapter 25 Wi-Fi CommuniCation

http://wiki.wemos.cc/downloads

504

Wi-Fi and Web Server
A series of sketches illustrates communicating with a Wi-Fi network,

establishing a web server and managing HTTP (Hypertext Transfer

Protocol) requests. The first sketch (see Listing 25-1) connects to a Wi-Fi

network and updates a webpage. The Wi-Fi network SSID (Service Set

Identifier) and password are required to access the Wi-Fi network. The

SSID is the name of the local wireless network and both the SSID and

password are generally located on the base of the router. The default HTTP

COM port is 80 and the ESP8266WebServer server instruction is sufficient,

rather than ESP8266WebServer server(80). While waiting for the Wi-Fi

connection, the sketch uses a delay of 500ms. When the Wi-Fi connection

is established, the IP (Internet Protocol) address of the Wi-Fi network is

displayed on the serial monitor.

When the IP address is entered to a web browser, such as Mozilla

Firefox, the server.on("/", message) instruction initiates the message()

function, which sends an HTTP status code, the content type and the

content to the web browser. Note that in the server.on() instruction, the

message() function does not have brackets, as the message() function

does not return a variable. In the sketch, the status code 200 indicates a

successful HTTP request by the server, which is that a valid URL (Uniform

Resource Locator, or web address) exists and the content of the plain text

string msg is displayed on the webpage. The status code 404 indicates that

server could not find the requested URL.

Listing 25-1. Connect to Wi-Fi Network and Update Webpage

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // library for webserver functionality

ESP8266WebServer server; // declare webserver

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid

char* password = "xxxx"; // change xxxx to your Wi-Fi password

Chapter 25 Wi-Fi CommuniCation

505

void setup()

{

 Serial.begin(115200); // define Serial output at 115200 baud

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500); // wait for Wi-Fi connection

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display IP address of Wi-Fi network

 server.on("/",message); // message function when webpage loaded

 server.begin(); // initialise server

}

void message() // function for main webpage

{

 String msg = "webserver connected"; // define msg as string

 server.send (200, "text/plain",msg); // send response with plain text

}

void loop()

{

 server.handleClient(); // manage incoming HTTP requests

}

The second sketch builds on Listing 25-1, by turning on or off the built-

in LED and a second LED when the webpage is reloaded and displays the

status of the LEDs on the webpage (see Figure 25-3).

Three changes are required to Listing 25-1. At the start of the sketch,

define the LED pins by including the following instructions.

int LEDpin = 16; // built-in LED on GPIO 16

int LED2pin = D8; // second LED on pin D8 or GPIO 15

Within the void setup() function, add the following instructions.

server.on("/LED", LED); // turn LED on or off when website loads

pinMode(LEDpin, OUTPUT); // built-in LED pin as output

pinMode(LED2pin, OUTPUT); // second LED pin as output

Chapter 25 Wi-Fi CommuniCation

506

Include the instructions (see Listing 25-2) for the void LED() function,

noting that GPIO pin 16 is active LOW.

Listing 25-2. void LED() Function

void LED()

{

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // turn built-in LED on or off

 digitalWrite(LED2pin, !digitalRead(LEDpin)); // turn LED2 on or off

 String msg; // define msg as string

 if (digitalRead(LEDpin) == HIGH) msg = "LEDs off"; // GPIO16 active LOW

 else msg = "LEDs on";

 server.send(200,"text/plain", msg); // send response in plain text

}

Inclusion of the two LEDs requires the two LED pin definition

instructions at the start of the updated sketch, the two pinMode()

instructions in the void setup() function and the void LED() function.

The purpose of the new server.on("/LED", LED) instruction added in

the void setup() function is to call the void LED() function when the

webpage IP address/LED is loaded.

For example, if the IP address of the Wi-Fi network is 192.168.1.3,

then reloading the webpage with IP address 192.168.1.3/LED results in

both the built-in LED and the second LED being turned on or off and the

corresponding LEDs on or LEDs off message is displayed on the webpage.

Note that IP addresses are case sensitive. The GPIO pin 16 is active LOW,

while pin D8 or GPIO pin 15 is active HIGH, so the state of the pin for the

second LED is the opposite state for the built-in LED. If the instruction for

LED2 is digitalWrite(LED2pin, !digitalRead(LED2pin)), then the two

LEDs are not on at the same time.

Chapter 25 Wi-Fi CommuniCation

507

The third sketch (see Listing 25-3) illustrates entering information

by a URL request string to instruct the server to display particular

sensor readings on the webpage. The BMP280 sensor can measure

temperature, pressure or predict altitude. One of the three

measurements is made and displayed on the webpage through a

URL request. If the IP address of the Wi-Fi network is 192.168.1.3,

then loading the webpage with address 192.168.1.3/BMP?sensor=T or

192.168.1.3/BMP?sensor=P or 192.168.1.3/BMP?sensor=A results in

temperature, pressure, or predicted altitude displayed on the webpage.

In the sketch, the String sensor = server.arg("sensor") instruction

searches for the sensor string in the IP address and the subsequent

string is parsed, which is either "T" or "P" or "A", corresponding to the

temperature, pressure, or predicted altitude. Note the ? character in the

address, which separates the URL (192.168.1.3/BMP) from the search

parameter (sensor) and its value ("T" or "P" or "A").

The BMP280 sensor was outlined in Chapter 4 and as the

NodeMCU ESP8266 operates on 3.3V, then the logic level converter

used in Chapter 4 is not required (see Figure 25-3 and Table 25-1).

The NodeMCU ESP8266 and other components in the schematic can

require more power than supplied through the USB computer or laptop

output. A DC-DC step-down (buck) converter set to 3.8V and 1A output

can be used as an external power source. The default I2C address of the

BMP280 module is 0x77, but as the SD0 pin is pulled to GND, the I2C

address is 0x76.

Chapter 25 Wi-Fi CommuniCation

508

Table 25-1. ESP8266 with LED, LDR, and BMP820 Sensor

Component Connect to and to

BMP280 VCC eSp8266 3V3

BMP280 GND eSp8266 GnD GnD rail

BMP280 SDI eSp8266 pin D2

BMP280 SCK eSp8266 pin D1

BMP280 SD0 GnD rail

LDR left eSp8266 pin a0

LDR left 4.7kΩ resistor GnD rail

LDR right eSp8266 3V3

LED long legs eSp8266 pin D7, D8

LED short legs 220Ω resistor GnD rail

Figure 25-3. ESP8266 with LED, LDR and BMP820 sensor

Chapter 25 Wi-Fi CommuniCation

509

Listing 25-3. ESP8266 with LED, LDR, and BMP820 Sensor

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // library for webserver functionality

ESP8266WebServer server; // associate server with ESP8266WebServer library

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid

char* password = "xxxx"; // change xxxx to your Wi-Fi password

#include <Wire.h> // include Wire library

#include <Adafruit_Sensor.h> // include Unified Sensor library

#include <Adafruit_BMP280.h> // include BMP280 library

Adafruit_BMP280 bmp; // associate bmp with Adafruit_BMP280 library

int BMPaddress = 0x76; // I2C address of BMP280

float reading;

String letter, msg;

void setup()

{

 Serial.begin(115200); // define Serial output at 115200 baud

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500); // wait for Wi-Fi

 // connection

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display IP address of Wi-Fi network

 server.on("/BMP", BMP); // display temperature, pressure or altitude

 server.begin(); // initialise server

 bmp.begin(BMPaddress); // initialise BMP280 sensor

}

void BMP() // function for /BMP webpage

{ // look for string "sensor" in URL and value T, P or A

 letter = server.arg("sensor"); // T entered on browser, read temperature

Chapter 25 Wi-Fi CommuniCation

510

 if(letter == "T") reading = bmp.readTemperature();

 // P entered on browser, read pressure

 else if(letter == "P") reading = bmp.readPressure()/100.0;

 else if(letter == "A") // A entered on browser, read altitude

 {

 reading = 10.0 + bmp.readPressure()/100.0; // assumed sea level pressure

 reading = bmp.readAltitude(reading); // predicted altitude

 }

 msg = letter +": "+ String(reading); // string "T" or "P" or "A" and reading

 server.send(200,"text/plain", msg); // activated by sensor=T, P or A

}

void loop()

{

 server.handleClient();

}

Note that in each of the sketches (see Listing 25-1 and 25-3), the void

loop() function contains only the server.handleClient() instruction and

instructions for each webpage are included in the separate message(), LED(),

and BMP() functions. In earlier chapters, variables were declared at the start of

the sketch, but to emphasize that all instructions for a webpage are included in

a function, the required variables are declared within the each function.

Wi-Fi and HTML
Listings 25-1, 25-2, and 25-3 display plain text on the webpage, as defined

by the server.send(200, "text/plain", msg) instruction, where msg is

a string containing the text to display. The server.send() instruction can

also provide HTML (Hyper Text Markup Language) for building webpages.

HTML is outside the scope of the text, but www.w3schools.com

is recommended for information on HTML and CSS (Cascading Style

Sheets), which are used to build and define the style of webpages.

Chapter 25 Wi-Fi CommuniCation

http://www.w3schools.com

511

Briefly, an HTML page consists of a head section, where the webpage

title and styles are defined, and a body section, which contains the

webpage content. The sections are bracketed with <head> </head> and

<body> </body>. Style defines font types and sizes, headers, spacing, and

so forth, and is bracketed by <style> </style>. A specific item within a

webpage can be separately formatted and bracketed by .

HTML code for the webpage can be included in the main sketch, but it can

also be included as an additional file; for example, htmlCode.h, which makes

both the main sketch and HTML code for the webpage easier to interpret. The

additional file is created in the Arduino IDE by selecting the triangle below

the serial monitor button, on the right-hand side of the IDE, and choosing

New Tab from the drop-down menu. New Tab should be titled htmlCode.h.

The htmlCode.h file is accessed by the main sketch, with the following

instructions.

char* pageCode = // three lines to include character pointer

#include "htmlCode.h" // html code for webpage

; // line only includes a semi-colon

pageCode is a pointer to the memory address of the HTML code, which

is implemented with the server.send (200, "text/html", pageCode)

instruction.

For example, Listing 25-4 includes the HTML code for a webpage as a

string literal, which consists of the HTML code bracketed by R"(and)",

noting the double apostrophes before and after the single brackets. The

string literal must only contain the HTML code without comments. The

webpage consists of two buttons to control an LED, with the buttons both

named LED, but with values of ON and OFF.

Chapter 25 Wi-Fi CommuniCation

512

Listing 25-4. HTML Code for Webpage As String Literal

R"(

<!DOCTYPE html>

<html>

<head>

<title>Arduino Applied</title>

<style> body {font-family: Arial}

.button {padding: 15px 15px; font-size: 20px}

.button:focus {background-color: lime}

</style>

</head>

<body>

<h1>Arduino Applied</h1>

LED

<form action='/' method='post'>

<input type='submit' class='button' name='LED' value='ON'>

 

<input type='submit' class='button' name='LED' value='OFF'}>

</form>

</body>

</html>

)"

When a button is selected on the webpage, as detected by the server.

hasArg() instruction, the value of the selected button is obtained as a URL

request by the server.arg() instruction, as used in Listing 25-3, and the

LED is turned on or off (see Listing 25-5). Note that the instruction server.

send(200, "text/html", pageCode) is sending HTML code and not plain

text, as in Listings 25-1, 25-2, and 25-3.

Chapter 25 Wi-Fi CommuniCation

513

Listing 25-5. Control an LED with a Webpage Button

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // library for webserver functionality

ESP8266WebServer server; // associate server with ESP8266WebServer library

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid

char* password = "xxxx"; // change xxxx to your Wi-Fi password

int LEDpin = D8; // LED pin D8 or GPIO 15

String LEDvalue = "OFF"; // default value

char* pageCode = // three lines to include

#include "htmlCode.h" // html code for webpage without comments

; // line only includes a semi-colon

void setup()

{

 Serial.begin(115200); // define Serial output at 115200 baud

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500); // wait for Wi-Fi

 // connection

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display IP address of Wi-Fi network

 pinMode(LEDpin, OUTPUT); // LED pin as output

 server.on("/", webpage); // run webpage function as webpage loaded

 server.begin(); // initialise server

}

void webpage() // function to collect data for webpage

{

 button(); // obtain LED button status

 server.send (200, "text/html", pageCode); // publish webpage

}

Chapter 25 Wi-Fi CommuniCation

514

void button() // function to obtain LED button status

{ // read LED button state

 if (server.hasArg("LED")) LEDvalue = server.arg("LED");

 if (LEDvalue == "ON") digitalWrite(LEDpin, HIGH); // turn LED on or off

 else digitalWrite(LEDpin, LOW);

 delay(1000); // delay for 1s to retain button colour

}

void loop()

{

 server.handleClient();

}

If the HTML code for the webpage does not include any variables,

then the HTML code can be incorporated as a string literal, as shown in

Listings 25-4 and 25-5. However, if a variable is included in the HTML

code, then the HTML code must be included in the main sketch.

In Listing 25-6, the webpage consists of a list of time information, a

list of BMP280 sensor data and buttons to control an LED. Date and time

information is obtained from the Network Time Protocol (NTP) service

with information provided by a local server pool. Details of server pools are

available at www.pool.ntp.org and the IP address of the local server pool

is required in the sketch. The NTP data is accessed using the NTPtimeESP

library by Andreas Spiess. A .zip file containing the library is available at

github.com/SensorsIot/NTPtimeESP. The NTPtimeESP library is installed

using library installation method 1 or 2, as described in Chapter 3.

The two parameters of the NTP.getNTPtime() instruction are time

zone and 0 or 1 for European Summer Time. In the two string arrays,

months and weekdays, the first element, [0], is blank so that the months[]

and weekday[] variables directly refer to elements in the corresponding

array, such as "May" is equal to months[5], which is the sixth element

of the array. Date and time information are converted into strings in

the format dd mmm yy and hh:mm:ss, respectively, for inclusion in the

HTML code.

Chapter 25 Wi-Fi CommuniCation

http://www.pool.ntp.org
http://github.com/SensorsIot/NTPtimeESP

515

The HTML code for the webpage is contained in the string page using

the String buildPage() function. Note that the buildPage() function

returns a string, so the function is defined as String buildPage(), in

contrast to void webpage() that does not return a variable. In the String

buildPage() function, the string page is incremented, line by line, to

include the HTML code for the webpage and to incorporate the date and

time strings with the BMP280 sensor measurements. Each increment

of HTML code is bracketed by double apostrophes and followed by

a semicolon. For example, page += "<style> body {font- family:

Arial}";. The date and time information strings and the strings for BMP280

sensor measurements are not bracketed by double apostrophes, because

otherwise the webpage would display the name of the string or the name of

the measurement, rather than the value of the string or measurement.

The webpage includes time and sensor information grouped into two

lists and in the HTML code the lists are bracketed with and

items within a list are bracketed by .

The sketch (see Listing 25-6) is structured to include libraries and

define variables in the first section, the void setup() function connects

to the local Wi-Fi network and calls the webpage() function, when the

webpage of the local Wi-Fi network is loaded. The webpage() function

calls the button() function to update the LED state, updates the BMP280

measurements, calls the getTime() function to obtain date and time

information from the NTP service, and then the webpage is updated by the

String buildPage() function.

If the IP address of the Wi-Fi network is 192.168.1.3, then the

webpage loaded is titled Arduino Applied. The date, time, and BMP280

measurements are displayed, and updated every two seconds. Clicking

the ON or OFF LED button turns on or off the LED, connected to the

NodeMCU ESP8266 on GPIO pin D8. The NodeMCU ESP8266 does not

need to be connected to a computer or laptop, as the information for

the webpage is forwarded to the web browser on the computer or laptop

displaying the webpage by using the local Wi-Fi network.

Chapter 25 Wi-Fi CommuniCation

516

Listing 25-6. HTML Webpage

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // library for webserver functionality

ESP8266WebServer server; // associate server with ESP8266WebServer library

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid

char* password = "xxxx"; // change xxxx to your Wi-Fi password

#include <Wire.h> // Wire library

#include <Adafruit_Sensor.h> // Unified Sensor library

#include <Adafruit_BMP280.h> // BMP280 library

Adafruit_BMP280 bmp; // associate bmp with Adafruit_BMP280 library

int BMPaddress = 0x76; // I2C address of BMP280

int LEDpin = D8; // LED pin GPIO 15 defined as D8

String LEDvalue = "OFF";

#include <NTPtimeESP.h> // include NTPtime library

 // associate NTP with NTPtime library

NTPtime NTP("uk.pool.ntp.org"); // UK server pool for NTPtime

String stringTime, stringDate, stringDay;

String days[] = {" ","Sunday","Monday","Tuesday","Wednesday",

 "Thursday","Friday","Saturday"};

String months[] = {" ","Jan","Feb","Mar","Apr","May","Jun","Jul",

 "Aug","Sep","Oct","Nov","Dec"};

strDateTime dateTime;

float temperature, pressure, altitude, BasePressure;

byte hh, mm, ss, month, day, dayofweek;

int yr;

void setup()

{

 Serial.begin(115200); // define Serial output at 115200 baud

 WiFi.begin(ssid, password); // initialise Wi-Fi and wait for

 while (WiFi.status() != WL_CONNECTED) delay(500); // wait for Wi-Fi

 // connection

Chapter 25 Wi-Fi CommuniCation

517

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display IP address of Wi-Fi network

 pinMode(LEDpin, OUTPUT); // LED pin as output

 server.on("/", webpage); // run webpage function as webpage loaded

 server.begin(); // initialise server

 bmp.begin(BMPaddress); // initialise BMP280 sensor

}

void webpage() // function to collect data for webpage

{

 button(); // obtain LED button status

 temperature = bmp.readTemperature(); // BMP280 measurements

 pressure = bmp.readPressure()/100.0; // temperature and pressure

 BasePressure = pressure + 10.0; // assumed sea level pressure

 altitude = bmp.readAltitude(BasePressure); // predicted altitude

 getTime(); // obtain date and time

 server.send (200, "text/html", buildPage()); // publish webpage

 delay(1000); // delay 1000ms

}

void getTime() // function to get NTP time

{

 dateTime = NTP.getNTPtime(0, 1); // get date and time

 if(dateTime.valid)

 {

 hh = dateTime.hour; // extract hour (0 to 24)

 mm = dateTime.minute; // extract minutes

 ss = dateTime.second; // extract seconds

 yr = dateTime.year; // extract year

 month = dateTime.month; // extract month

 day = dateTime.day; // extract day (1 to 31)

 dayofweek = dateTime.dayofWeek; // extract day of week (1 to 7)

 if(ss<10) stringTime = ":0"+String(ss); // leading zero for seconds <10

 else stringTime = ":"+String(ss);

Chapter 25 Wi-Fi CommuniCation

518

 if(mm<10) stringTime = String(hh)+":0"+String(mm) + stringTime;

 else stringTime = String(hh)+":"+String(mm) + stringTime;

 stringDate = String(day)+" "+String(months[month])+"

 "+String(yr);

 stringDay = days[dayofweek]; // convert data to strings

 }

}

void button() // function of LED button status

{ // read LED button state

 if (server.hasArg("LED")) LEDvalue = server.arg("LED");

 if (LEDvalue == "ON") digitalWrite(LEDpin, HIGH); // turn LED on or off

 else digitalWrite(LEDpin, LOW);

}

String buildPage() // function to build webpage

{

 String page = "<!DOCTYPE html><html><head>"; // head section and

 page += "<meta http-equiv='refresh' content='1'>"; // webpage refresh rate (s)

 page += "<title>Arduino Applied</title>";

 page += "<style> body {font-family: Arial}"; // define styles

 page += ".button {padding: 15px 15px; font-size: 20px}

</style></head>";

 page += "<body><h1> Arduino Applied </h1>"; // body section

 page += "Time of day";

 // date and time

 page += "Time: "

 +stringTime+"";

 page += "Date: "+stringDate+"";

 page += "Day of week: "+stringDay+"";

 page += "<p>Sensor</p>";

 //sensor readings

 page += "Temperature: ";

Chapter 25 Wi-Fi CommuniCation

519

 page += ""+String(temperature)

 +"°C";

 page += "Pressure: "+String(pressure)+" hPa";

 page += "Altitude: "+String(altitude)+" m";

 page += "LED";

 page += "<form action='/' method='post'>"; // LED buttons

 page += "<input type='submit' class='button' name='LED' value='ON'>";

 page += " ";

 page += "<input type='submit' class='button' name='LED' value='OFF'>";

 page += "</form>";

 page += "</body></html>";

 return page; // return HTML code

}

void loop()

{

 server.handleClient();

}

Wi-Fi and Internet Access
Communication between devices on different Wi-Fi networks requires a

different solution than communication between devices within a Wi-Fi

network. The MQTT (Message Queuing Telemetry Transport) protocol

enables communication between devices and an MQTT broker to allow

information to be passed between one device and the MQTT broker and

between the MQTT broker and a second device, with the two devices on

different Wi-Fi networks. The MQTT broker enables information to be

passed between devices without breaching firewall safeguards. When a

device on a Wi-Fi network requests information from the Internet, the

information is allowed through the network’s firewall as the request

Chapter 25 Wi-Fi CommuniCation

520

came from the Wi-Fi network. Provision of information to the MQTT

broker is termed publish and subscribe is the term to access information

from the MQTT broker. Adafruit.io and Cayenne are two MQTT brokers

and the Cayenne MQTT broker is used in the chapter.

Cayenne (see mydevices.com/cayenne/features) provides a

dashboard to display information from devices connected to a NodeMCU

ESP8266 (see Figure 25-4). The Cayenne dashboard is visible locally or

remotely on cayenne.mydevices.com/cayenne/dashboard/start or with

the Cayenne app, available from Google Play. Information from devices can

be displayed numerically, as a dial and graphically, with binary variables

displayed as ON/OFF. A device can be switched on or off from the Cayenne

dashboard, providing both local and remote access to a device.

An IFTTT (If This, Then That) function enables triggering of events based

on the output from devices connected to a NodeMCU ESP8266 and visible

on the Cayenne dashboard. For example, if the incident light increases

above a threshold on a light dependent resistor, connected to a NodeMCU

ESP8266, due to a door opening or time of day, then an IFTTT instruction

is sent to the MQTT broker to forward an email or text message to an email

address or mobile phone number stored on the Cayenne dashboard.

Figure 25-4. Cayenne dashboard and app

All MQTT brokers require a username and password. For Cayenne,

information is available at mydevices.com/cayenne. Accessing Cayenne

with the NodeMCU ESP8266 requires the Cayenne-MQTT-ESP library, with

a .zip file containing the library available at github.com/myDevicesIoT/

Chapter 25 Wi-Fi CommuniCation

http://mydevices.com/cayenne/features
http://mydevices.com/cayenne/dashboard/start
http://mydevices.com/cayenne
http://github.com/myDevicesIoT/Cayenne-MQTT-ESP

521

Cayenne-MQTT-ESP. The Cayenne-MQTT-ESP library is installed using

library installation method 1 or 2, as described in Chapter 3.

Communication between the NodeMCU ESP8266 and Cayenne

MQTT is through virtual channels, which can be arbitrarily numbered

V0, V1, V2, and so forth. The instruction to send data to the Cayenne

dashboard is Cayenne.virtualWrite(virtual channel, variable,

type code, unit code), where the type and unit codes define attributes

of the variable. Several variables are given in Table 25-2, with the

corresponding type and unit codes. For example, if the variable light is

a measure of luminosity in lux, then the instruction to send, on virtual

channel V3, the value of light to the Cayenne dashboard is Cayenne.

virtualWrite(V3, light, "lum", "lux").

Including type and unit code in the Cayenne.virtualWrite()

instruction automatically configures the Cayenne dashboard with the

variable description and unit of measurement. Note that Cayenne.

virtualWrite() instructions are limited to 60 per minute, so Listings 25-7

and 25-8 have a two-second interval between the MQTT messages.

Table 25-2. Variable Type Names and Codes

Description Type Name Type Code

Barometric pressure tYpe_BarometriC_preSSure “bp”

Luminosity tYpe_LuminoSitY “lum”

Relative humidity tYpe_reLatiVe_humiDitY “rel_hum”

Temperature tYpe_temperature “temp”

Description Unit Name Unit Code

Hectopascal unit_heCtopaSCaL “hpa”

Lux unit_LuX “lux”

Fahrenheit unit_Fahrenheit “f”

Celsius unit_CeLSiuS “c”

Chapter 25 Wi-Fi CommuniCation

http://github.com/myDevicesIoT/Cayenne-MQTT-ESP

522

The instructions to read an integer variable on virtual channel 3 in the

Cayenne dashboard is

CAYENNE_IN(3) // define virtual channel number 3

{

 int variable = getValue.asInt(); // read value of integer variable

}

getValue.asDouble() and getValue.asString() read a real number

and a string, respectively, with the channel number not including a "V", as

included in the Cayenne.virtualWrite() instruction.

Information on declaring devices or variables, such as LED status or

an LDR reading, on the Cayenne dashboard is available at mydevices.

com/cayenne/docs/features/#features-dashboard. Cayenne dashboard

devices are defined by following these steps.

 1. Select Add new at the top left-hand side of the

dashboard.

 2. Select Device/Widget ➤ Custom Widgets ➤ Button.

 3. Enter the chosen device name.

 4. Select Data ➤ Digital Actuator ➤ Unit ➤ Digital (0/1).

 5. Select the virtual channel number to correspond

with the sketch.

 6. Choose an icon and select Add Widget.

To define a Cayenne dashboard variable, follow these steps.

 1. Select Add new ➤ Device/Widget ➤ Custom Widgets

➤ Value.

 2. Enter the chosen device name.

 3. Enter Analog Sensor.

Chapter 25 Wi-Fi CommuniCation

http://mydevices.com/cayenne/docs/features/#features-dashboard
http://mydevices.com/cayenne/docs/features/#features-dashboard

523

 4. Select the virtual channel number.

 5. Choose an icon and select Add Widget.

Figure 25-5 shows examples of a defined variable, light, and a device,

LED, for the Cayenne dashboard.

Figure 25-5. Cayenne variables and devices

Listing 25-7 displays on a Cayenne webpage or app (see Figure 25- 4)

temperature and pressure measurements from a BMP280 sensor, ambient

light using a light dependent resistor, a time counter and a button to turn on

or off an LED. The sensor readings are displayed on the Cayenne dashboard.

Chapter 25 Wi-Fi CommuniCation

524

Listing 25-7. Cayenne, ESP8266 with LED, LDR, and BMP820

Sensor

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char wifipass[] = "xxxx"; // change xxxx to your Wi-Fi password

char username[] = "xxxx"; // change xxxx to your Cayenne username

char mqttpass[] = "xxxx"; // change xxxx to your Cayenne password

char clientID[] = "xxxx"; // change xxxx to your Cayenne client identity

#include <Adafruit_Sensor.h> // include Adafruit_Sensor library

#include <Adafruit_BMP280.h> // include Adafruit_BMP280 library

Adafruit_BMP280 bmp; // associate bmp with Adafruit_BMP280 library

int LEDpin = D8; // LED pin

int LDRpin = A0; // light dependent resistor pin

int flashPin = 2; // flashing LED pin GPIO 2

unsigned long count = 0;

int interval = 2000; // 2s interval between MQTT messages

unsigned long lastTime = 0;

float temp, pressure, BasePressure, altitude;

int light;

void setup()

{

 bmp.begin(0x76); // initiate bmp with I2C address

 // initiate Cayenne MQTT

 Cayenne.begin(username, mqttpass, clientID, ssid, wifipass);

 pinMode(LEDpin, OUTPUT); // define LED pins as output

 digitalWrite(LEDpin, LOW);

 pinMode(flashPin, OUTPUT);

}

void loop()

{

 Cayenne.loop(); // Cayenne loop() function

Chapter 25 Wi-Fi CommuniCation

525

if(millis()-lastTime > interval)

{

 temp = bmp.readTemperature(); // BMP280 temperature and pressure

 pressure = bmp.readPressure()/100.0;

 BasePressure = pressure + 10.0; // assumed sea level pressure

 altitude = bmp.readAltitude(BasePressure); // predicted altitude (m)

 light = analogRead(LDRpin); // ambient light intensity

 light = constrain(light, 0, 1023); // constrain light reading

 count++; // increment counter

 if(count>99) count = 0;

 digitalWrite(flashPin, LOW); // turn flashing LED on then off

 delay(10);

 digitalWrite(flashPin, HIGH);

 // send readings to Cayenne on virtual channels

 Cayenne.virtualWrite(V1, temp, "temp", "c"); // define temperature reading

 // channel2 is flashPin so V2 is not used to avoid confusion

 Cayenne.virtualWrite(V3, pressure, "bp", "pa"); // define pressure reading

 Cayenne.virtualWrite(V4, altitude);

 Cayenne.virtualWrite(V5, light, "lum", "lux"); // define luminosity reading

 Cayenne.virtualWrite(V6, count);

 lastTime=millis(); // update time

 }

}

CAYENNE_IN(0) // Cayenne virtual channel 0

{

 digitalWrite(LEDpin, getValue.asInt()); // turn LED on or off

}

Listing 25-8 uses the Cayenne MQTT functionality to mimic an

alarm system, which is triggered by the light intensity reading on a

light dependent resistor, such as when a door is opened. If the light

intensity increases above a threshold of 300 and the alarm setting on

Cayenne MQTT is set to ON as indicated by the blue LED, then the

Chapter 25 Wi-Fi CommuniCation

526

red LED is turned on with an email and/or text notification that the

event has occurred. If the alarm setting is off, then there is no response

to changes in light intensity. The NodeMCU ESP8266 on-board LED

is flashed every two seconds to indicate that the microcontroller is

powered on.

If the alarm setting is on, then the light intensity reading is sent

to Cayenne on virtual channel 1, but with a value of zero if the alarm

is turned off. Virtual channels 0 and 3 of the Cayenne dashboard

contain the LED and alarm states, which are used to turn on or off the

corresponding LEDs or to indicate the alarm state (blue LED) and when

the alarm has been triggered (red LED). The alarm, LED and email/

text notification triggers are defined in the Cayenne dashboard’s IFTTT

function.

Figure 25-6 shows the Cayenne dashboard with the alarm set to ON

and a light intensity reading of 166, which is not high enough to trigger the

LED to be turned on.

Figure 25-6. Alarm, LED, and light intensity

Chapter 25 Wi-Fi CommuniCation

527

Listing 25-8. Alarm, LED, and Light Intensity

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char wifipass[] = "xxxx"; // change xxxx to your Wi-Fi password

char username[] = "xxxx"; // change xxxx to your Cayenne username

char mqttpass[] = "xxxx"; // change xxxx to your Cayenne password

char clientID[] = "xxxx"; // change xxxx to your Cayenne client identity

int LEDpin = 15; // LED pin GPIO 15 or D8

int alarmPin = 13; // alarm pin GPIO 13 or D7

int LDRpin = A0; // LDR on pin A0

int flashPin = 2; // flashing LED pin GPIO 2

int reading, alarm;

int interval = 2000; // 2s interval between LDR readings

unsigned long LDRtime = 0;

void setup()

{

 Serial.begin(9600); // initiate Cayenne MQTT

 Cayenne.begin(username, mqttpass, clientID, ssid, wifipass);

 pinMode(LEDpin, OUTPUT); // define LED pins as output

 pinMode(alarmPin, OUTPUT);

 pinMode(flashPin, OUTPUT);

 alarm = 0; // set alarm as "OFF"

}

void loop()

{

 Cayenne.loop(); // Cayenne loop() function

 if(millis()-LDRtime>interval)

 {

 LDRtime = millis();

 reading = analogRead(LDRpin);

// if alarm ON, then send LDR reading to Cayenne on channel V1, otherwise send zero

Chapter 25 Wi-Fi CommuniCation

528

 if (alarm == 1) Cayenne.virtualWrite(V1, reading, "lum", "lux");

 else Cayenne.virtualWrite(V1, 0, "lum", "lux");

 delay(20);

 }

 digitalWrite(flashPin, LOW); // LED GPIO 2 active LOW

 delay(10); // flash to indicate power on

 digitalWrite(flashPin, HIGH);

}

CAYENNE_IN(0) // Cayenne virtual channel 0

{

 digitalWrite(LEDpin, getValue.asInt()); // get LED status

}

CAYENNE_IN(3) // Cayenne virtual channel 3

{

 alarm = getValue.asInt(); // get alarm state

 digitalWrite(alarmPin, alarm);

}

The IFTTT (If This, Then That) function to trigger an event on the

Cayenne dashboard is defined on the Cayenne dashboard and not in the

sketch. Information on the IFTTT features of the Cayenne dashboard

is available at mydevices.com/cayenne/docs/features/#features-

triggers.

Four IFTTT triggers are required by the alarm system. When the light

intensity increases above a threshold of 300, with the alarm setting on, the

email and text notification of the event is triggered and a second trigger

turns on the red LED on virtual channel 0, which triggers the alarm on

virtual channel 3 to turn off, which then triggers the blue LED to turn off.

Cayenne IFTTT triggers are accessed by following these steps.

 1. Select User Menu ➤ Triggers and Alerts at the top

right-hand side of the Cayenne dashboard.

 2. Select New Trigger.

Chapter 25 Wi-Fi CommuniCation

http://mydevices.com/cayenne/docs/features/#features-triggers
http://mydevices.com/cayenne/docs/features/#features-triggers

529

 3. Drag the ESP8266 device into the if box.

 4. Select the trigger, such as light in Figure 25-7.

 5. Select the threshold.

 6. Select either Sensor above or Sensor below.

 7. Drag the ESP8266 device into the then box.

 8. Select the action, such as LED in Figure 25-7.

 9. Select either On(1) or Off (0).

 10. Select Save.

When sending a notification as a text message, include the mobile

phone number plus the +country code in the Add custom recipient box.

Figure 25-7. Cayenne IFTTT trigger

Chapter 25 Wi-Fi CommuniCation

530

Figures 25-7 and 25-8 illustrate the IFTTT trigger to turn on the LED,

on virtual channel 0, when the light intensity, on virtual channel 1, exceeds

the threshold of 300 and the corresponding triggered email notification,

respectively.

Figure 25-8. Cayenne IFTTT notification

Summary
A NodeMCU ESP8266–based microcontroller is connected to a Wi-Fi

network to establish a web server and manage HTTP requests to control

a device and display requested sensor information on a webpage. HTML

code for a webpage was included in a sketch to provide information from

an external network, such as date and time. Access to an MQTT broker

enabled sensor data to be uploaded to a webpage, with a sensor value

above a threshold triggering an email or text message notification of

the event.

Chapter 25 Wi-Fi CommuniCation

531

Components List
• NodeMCU ESP8266

• LED: 2×

• Resistor: 2× 220Ω and 4.7kΩ

• Light dependent resistor (or photoresistor)

• Temperature sensor: BMP280

Chapter 25 Wi-Fi CommuniCation

533© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5

APPENDIX

 Resistor Banding
Resistors are color coded for identification of their value, with the color

bands read from left to right (see Figure A-1). With four bands, there can

be a larger space between bands three and four. Gold and silver bands are

always on the right-hand end of the resistor. Checking the resistance with a

multimeter is recommended. The order of colors, from red to violet, is the

same as in a rainbow. The diagram and a color band calculator is available

www.digikey.co.uk.

Figure A-1. Resistor colour banding

https://doi.org/10.1007/978-1-4842-3960-5
http://www.digikey.co.uk

534

The sequence of six resistor values between 100, 150, 220, 330, 470

and 680Ω is the E6 series, with resistor values having 20% tolerance.

For example, the 220Ω resistor has an upper tolerance level of 264Ω,

which equals the lower tolerance level of the next resistor in the series,

the 330Ω resistor. The preferred resistor values between 10Ω and 100Ω,

100Ω, and 1kΩ, and so forth, are calculated as L × 10N/6, where L is the

lower value of the range and N is the Nth resistor in the E6 series. If the

resistor values are plotted on the logarithmic (base 10) scale, then the

slope of the line is 1/6.

A similar procedure, L × 10N/12, is used to calculate the12 preferred

values of the E12 series, which has 10% tolerance. The E12 series between

100Ω and 1kΩ includes the E6 series plus the additional six values of 120,

180, 270, 390, 560, and 820Ω.

Resistors have different power ratings, with the ¼W and ½W resistors

measuring 6.3mm and 9.2mm in length.

 Libraries
The majority of the required libraries can be uploaded within the

Arduino IDE, with the other libraries available through GitHub (www.

github.com) or specific websites. Several libraries are already built-in to

the Arduino IDE.

Appendix ResistoR BAnding

http://www.github.com
http://www.github.com

535

Table A-1. Libraries with Information on the Author and Library

Source

Library Author and source if not available through the
Arduino IDE

AccelStepper Mike McCauley

Adafruit BMP280 Adafruit

Adafruit GFX Adafruit

Adafruit SSD1306 Adafruit

Adafruit ST7735 Adafruit

Adafruit Unified Sensor Adafruit

AltSoftSerial paul stoffregen

Cayenne_MQTT_ESP mydevices

DHTlib (dht) Rob tillaart

github.com/Robtillaart/Arduino

DS3231 Henning Karlsen

I2Cdev Jeff Rowberg

github.com/jrowberg/i2cdevlib

IRremote Ken shirriff

LiquidCrystal Adafruit, built-in

LiquidCrystal_I2C Frank de Brabander

LiveOV7670 indrek Luuk

github.com/indrekluuk/LiveoV7670

Low-Power Rocket scream electronics

MD_KeySwitch majicdesigns

(continued)

Appendix ResistoR BAnding

536

Table A-1. (continued)

Library Author and source if not available through the
Arduino IDE

MD_MAX72XX majicdesigns

MD_Parola majicdesigns

MFRC522 Miguel Balboa

MPU6050 Jeff Rowberg

github.com/jrowberg/i2cdevlib

NeoGPS slashdevin

NewPing tim eckel

NTPtimeESP Andreas spiess

github.com/sensorsiot/ntptimeesp

PID Brett Beauregard

PinChangeInterrupt nicoHood

PWM sam Knight

code.google.com/archive/p/arduino-pwm-frequency-

library/downloads

RF24 J Coliz

SD sparkFun electronics, built-in

Servo Michael Margolis, built-in

SPI Built-in

Stepper tom igoe, built-in

TimerOne paul stoffregen

toneAC tim eckel

playground.arduino.cc/Code/toneAC

Wire Built-in

Appendix ResistoR BAnding

537

 Quaternion Measurements
Rotation in three dimensions can be described by rotation about the Z, Y,

and X axes, corresponding to the yaw, pitch, and roll angles. An example of

rotation about the three axes is an aircraft turning on the runway (yaw or

heading), taking off (pitch or attitude), and turning in flight (roll or bank).

Rotation about the axes can be written as R(yaw).

=
cos sin

sin cos

yaw yaw

yaw yaw

() - ()
() ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

0

0 0 1

,

R(pitch) =

cos sin

sin cos

pitch pitch

pitch pitch

() ()

- () ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

0 1 0

0
 and

R(roll) =
1 0 0

0

0

cos sin

sin cos

roll roll

roll roll

() - ()
() ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

If the order of the rotation sequence is about the Z axis, then about the

Y axis and finally about the X axis, then the rotation matrix RYPR = R(yaw)

R(pitch) R(roll) includes the following terms.

R

yaw pitch

yaw pitch

pitch
YPR =

() () ¼ ¼

() () ¼ ¼
- ()

cos cos

sin cos

sin sinn cos cos cosroll pitch roll pitch() () () ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Appendix ResistoR BAnding

538

If the rotation sequence is about the Z axis, then about the X axis and

finally about the Y axis, then the rotation matrix RYRP = R(yaw), R(roll),

R(pitch) includes the following terms.

R

yaw roll

yaw roll

pitch
YRP =

¼ - () () ¼
¼ () () ¼

- ()

sin cos

cos cos

sin cos rroll roll pitch roll() () () ()

é

ë

ê
ê
ê

ù

û

ú
ú
úsin cos cos

The difference between the RYPR and RYRP matrices indicates the

importance of defining the rotation sequence.

The rotation can also be parameterized by a quaternion, where w, x, y,

and z are the quaternion magnitude, and three-directional components,

such that the new position of a point, p, with coordinates (X, Y, Z) following

the rotation is Rp.

The rotation matrix, R, is expressed in terms of the quaternion

components as

R =

1 2 2 2

2 1 2 2

2

2 2

2 2

- +() -() +()
+() - +() -()
-

y z xy wz wy xz

wz xy x z yz wx

xz wy(() +() - +()

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú2 1 2 2 2wx yz x y

 =

R R R

R R R

R R R

11 12 13

21 22 23

31 32 33

é

ë

ê
ê
ê

ù

û

ú
ú
ú

The angle and axis of rotation is α = 2 arccos (w) and

x

y

z

é

ë

ê
ê
ê

ù

û

ú
ú
ú

æ
è
ç

ö
ø
÷a

a
/ sin

2
.

Appendix ResistoR BAnding

539

Interpretation of rotation matrix R depends on the rotation sequence.

If R is equated to RYPR or RYRP, then given the quaternion, the rotation

angles or Euler angles are as follows.

YPR

roll

pitch

yaw

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

arctan

arcsin

arctan

2

1 2

2

2

2 2

wx yz

x y

xz wy

wz

+()
- +()

æ

è
ç
ç

ö

ø
÷
÷

- -()()
++()

- +()
æ

è
ç
ç

ö

ø
÷
÷

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

xy

y z1 2 2 2

 =

arctan

arcsin

arctan

R R

R

R R

32 33

31

21 11

/

/

()
- ()

()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

YRP

roll

pitch

yaw

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

arcsin

arctan

arctan

2

2

1 2

2

2 2

wx yz

xz wy

x y

x

+()()
- -()
- +()

æ

è
ç
ç

ö

ø
÷
÷

- yy wz

x z

-()
- +()

æ

è
ç
ç

ö

ø
÷
÷

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú1 2 2 2

 =

arcsin

arctan

arctan

R

R R

R R

32

31 33

12 22

()
-()
-()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

/

/

To complete the loop of quaternion to rotation matrix to Euler angles

to quaternion, then given the Euler angles, the quaternion is

w

x

y

z

roll pitch yaw rollé

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

() () () +cos cos cos sin/ / /2 2 2 // / /

/ / /

2 2 2

2 2 2

() () ()
() ()

sin sin

sin cos cos

pitch yaw

roll pitch yaw(() - () () ()
()

cos sin sin

cos sin

roll pitch yaw

roll pitch

/ / /

/ /

2 2 2

2 2(() () + () () ()
()

cos sin cos sin

cos

yaw roll pitch yaw

roll

/ / / /

/

2 2 2 2

2 ccos sin sin sin cospitch yaw roll pitch yaw/ / / / /2 2 2 2 2() () - () () ()

é

ëë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

Appendix ResistoR BAnding

540

Quaternion components produced by the MPU-6050 DMP are

multiplied by 214, while accelerometer measurements are multiplied by 213.

The square root of the sum of squares of the quaternion components,

each divided by 214, is essentially unity, but not for the accelerometer

measurements.

Defining A a a aX Y Z= + +2 2 2 , where aX, aY, and aZ are the accelerometer

measurements, each divided by 213, and AX = aX/|A| and similarly for aY

and aZ, then roll and pitch angles are estimated only from accelerometer

measurements as

YPR
roll

pitch

é

ë
ê

ù

û
ú =

arctan

arcsin

A A

A
Y Z

X

/()
- ()

é

ë
ê

ù

û
ú =

arctan

arctan

A A

A A

Y Z

X X

/

/

()
- -()

é

ë

ê
ê

ù

û

ú
ú1 2

YRP
roll

pitch

é

ë
ê

ù

û
ú =

arcsin

arctan

A

A A
Y

X Z

()
-()

é

ë
ê

ù

û
ú/

 =
arctan

arctan

A A

A A

Y Y

X Z

/

/

1 2-()
-()

é

ë

ê
ê

ù

û

ú
ú

Note that the yaw angle cannot be estimated with only the

accelerometer measurements.

To express an angle in degrees, rather than radians, multiply the angle

by 180/π.

As an example, with the GY-521 module tilted up along the Y axis,

for a positive pitch, the quaternion measurements of 8312, 7278, 5139,

and –10953 were divided by 214, with the resulting R matrix equal to

- -
- - -
-

é

ë

ê
ê
ê

ù

û

0 091 0 957 0 762

0 400 0 288 0 870

0 912 0 031 0 409

. . .

. . .

. . .

úú
ú
ú

. The estimated roll, pitch and yaw angles are

4.39°, 65.81°, and –102.77°, with the YPR representation. Note that with

the YRP representation, the estimated roll, pitch, and yaw angles are 1.80°,

65.87°, and –106.78°, respectively, emphasizing the importance of defining

the rotation order.

Appendix ResistoR BAnding

541

The corresponding accelerometer measurements were –7281, 316,

and 3074. After dividing the accelerometer measurements by 213 and

scaling, the estimated roll and pitch angles were 5.87° and 67.00°, which

were of the same order of magnitude as the angles from the quaternion

components.

 Who’s Who in Electronics
The names of variables used in electronics are listed in Table A-2 with

details of those accredited with the discoveries. The corresponding dates

indicate that the late 1700s and early 1800s must have been fascinating

times in science. The list only includes variables outlined in the text, as

otherwise the list would be substantially longer to include scientists such

as James Clark Maxwell.

Table A-2. Variables Used in Electronics, with Information on the

Founders

Variable Name and Birth–Death Country Symbol

Baud rate Jean-Maurice-Émile Baudot

(1845–1903)

France Bd baud

Bluetooth King Harald Bluetooth

(10th century),

symbol combines the runic

characters H and B

scandinavia = +

Boolean george Boole (1815–1864) england

Capacitance Michael Faraday (1791–1867) england F farad

Charge Charles–Augustin de

Coulomb (1736–1806)

France C coulomb

(continued)

Appendix ResistoR BAnding

542

 Sources of Electronic Components
Components can be bought online from a variety of suppliers, such as

those at the following websites.

• store.arduino.cc

• www.rs-online.com

• www.aliexpress.com

• cpc.farnell.com

• www.banggood.com

• www.digikey.com

• www.gearbest.com

• www.jameco.com

Table A-2. (continued)

Variable Name and Birth–Death Country Symbol

Current André–Marie Ampère

(1775–1836)

France A amp

Energy James prescott Joule

(1818–1889)

england J joule

Frequency Heinrich Hertz (1857–1894) germany Hz hertz

Gray code Frank gray (1887–1969) UsA

Hall effect edwin Hall (1855–1938) UsA

Power James Watt (1736–1819) scotland W watt

Resistance georg ohm (1789–1854) germany Ω ohm

Voltage Alessandro Volta (1745–1827) italy V volt

Appendix ResistoR BAnding

https://www.store.arduino.cc
http://www.rs-online.com
http://www.aliexpress.com
https://www.cpc.farnell.com
http://www.banggood.com
http://www.digikey.com
http://www.gearbest.com
http://www.jameco.com

543

The longer delivery time from some sources may be offset by lower

prices.

A starter kit (see Figure A-2) provides sufficient components for several

chapters of the book.

Figure A-2. Example of an Arduino starter kit

Appendix ResistoR BAnding

545© Neil Cameron 2019
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5

Index

A
Analog to digital converter (ADC),

1, 2, 31, 32, 42, 43, 161, 172,
198, 326, 397, 398, 406, 427,
500, 502

Angle
pitch, 73, 74, 481, 489, 491, 497
roll, 73, 74

Arduino Nano, 436–438, 444, 445,
448, 452, 465, 467, 468, 470,
481, 482, 484, 492, 497

Arduino starter kit, 543
ATmega328P, 1, 325–328

interrupt pins, 327
pin layout, 326–328
timers, 326–328, 387, 390, 397

B
Blink sketch, 6, 8–11, 15, 331, 502
Bluetooth, 1, 48, 289–310, 499
Bluetooth apps, 292–295, 302–305
Bootloader, 332–336, 436
Breadboard, 3–4, 15, 29, 78, 100,

118, 136, 156, 163, 176, 187,
201, 217, 236, 243, 259, 275,
288, 310, 323, 337, 369, 395,
410, 432, 465, 497

Brown out detector (BOD),
397, 406

Build “Arduino”, 325–337
Bypass capacitor, 220, 222

C
Camera, 277–288

frames per second, 277, 288
image capture, 281–284, 288

Capacitor
bypass, 220, 222
decoupling, 158, 159
electrolytic, 27, 83, 159, 220, 330
RC filter, 254, 290

Channel scanning, 312–314
Circular buffer, 485–489, 496
Colour, 261–275

codes, 9, 255
565 format, 264–266
Hexadecimal codes, 266
recognition sensor, 267–275
RGB format, 261–264

Component
3144, 58, 78
Arduino Nano, 436–438, 444,

445, 448, 452, 465, 467, 468,
470, 481, 482, 484, 492, 497

ATmega16U2, 1, 397

https://doi.org/10.1007/978-1-4842-3960-5

546

BMP280, 88–91, 100, 507, 508,
514, 515, 523, 531

28BYJ-48, 165, 175, 176, 187
DHT11, 37–42, 78, 228, 230, 236
DS3231, 226, 227, 230, 236
FC-03, 457, 458, 465
FT232R FTDI, 328, 337, 370, 410
GY-521, 77, 78, 452–455, 465,

481, 489, 497, 540
HC-05, 289, 290, 292–295,

302–305, 307, 310
74HC595, 107–109, 112, 115,

118, 127, 128, 132–134, 136,
146–148, 156, 300

HC-020K, 457, 465
HC-SR04, 50, 52, 54, 78,

243–247, 259, 468, 470, 497
HR-SC501, 69, 410
ILI9341, 252–258, 266
KY-023, 445
LD33V, 362, 363, 370
LM393, 61, 78, 457
LM35DZ, 31–33, 52, 78, 80, 82,

100, 128, 136, 220, 222,
223, 236

L298N, 433–438, 441, 445, 448,
452, 465, 467, 469, 470, 481,
482, 491, 497

L4940V5, 158–160, 176, 243, 245,
259, 301, 310, 323, 362, 363,
370, 432

MAX7219, 300–310
MFRC522, 203–205, 208,

212–214, 217

16MHz clock crystal, 328, 329,
362, 399, 408

MPU-6050, 72, 73, 452, 481,
489–492

NodeMCU ESP8266, 499–502,
507, 515, 520, 526, 530, 531

nRF24L01, 311, 312, 314–319,
321–323, 445–450, 452–456,
465, 481–486, 490, 491, 497

OV7670, 277, 279, 281, 284–288
SG90, 157, 176, 259, 323, 432,

467, 468, 470, 497
SSD1306 chip, 249
ST7735, 237–239, 242–246,

259, 264, 268, 270, 274,
275, 277–281, 284, 288,
360–369

TCRT500, 67, 78, 197
TCS230, 267, 270, 275
ublox NEO-7M, 339, 342, 344,

347, 351
VS1838B, 64, 190, 195, 196, 201,

444, 465
WeMos D1 mini, 499, 502–503

csv file, 219, 225, 228, 361

D
Data logging, 219, 232–234, 236,

357–360
Data structure, 314, 315, 317,

319, 321
DC motor, 433–465, 467, 470, 475,

481, 492, 497
Decoupling capacitor, 158, 159

Component (cont.)

Index

547

4-digit 7-segment display, 119–135,
142, 147, 415

8x8 dot matrix, 137–156
character set, 153
column scanning, 150, 151
row scanning, 139, 150
scroll text, 150–156

Duty cycle, 12, 378, 388, 390, 415,
425–427, 431

E
Electricity basics, 7–8
Encoder

photoelectric, 441, 457–464
rotary, 177–186, 372,

380–383, 395
External power, 158, 159, 167,

243, 301, 507

F
Filename

FAT32, 219, 242
increment, 222, 232–234,

357, 361
Forward voltage drop, 9, 105

G
Global navigation satellite system,

339–369
GLONASS, 339, 341, 342, 347
GPIO line, 326

GPS, 238, 339, 341, 343, 347
route display, 1, 368

H
Hexadecimal, 87, 97, 107, 110, 113,

118, 190, 193, 195, 196, 250,
266, 444

I
I2C, 2, 72–74, 87–93, 100, 193,

195, 201, 204, 205, 217,
226, 250, 259, 279, 325,
327, 397, 398, 456, 467,
500, 502, 507

If This, Then That (IFTTT), 520, 526,
528–530

Impedance, 222
Infrared

distance module, 67–68
emitter, 67, 195–200
passive sensor, 69–72, 77, 78,

406, 410
receiver, 67, 195–200
sensor, 64–66, 69–72, 77,

78, 189–200, 406–410,
444, 465

Internet access, 519–530
Interrupt, 371–395

additional pins, 327, 379
Interrupt service routine (ISR), 326,

371, 372, 375, 376, 378, 380,
407, 459, 461

Index

548

J, K
Joystick, 445, 446, 449, 450, 452, 465

L
Library installation, 39–42, 514, 521
Liquid crystal display, 79–100

character set, 96–99
colours, 255
cursor positioning, 93–95
display images, 237, 277
I2C bus, 87–93, 100, 193
PWM, 83–85
“radar”, 243
scroll text, 85–87
Serial data entry, 95, 96
TFT, 237–243, 246, 247, 252–258,

264, 268, 270, 274, 275,
277–281, 284, 288, 360, 361,
363, 369

TFT touch, 252–258
Logic level converter, 48, 89, 252,

254, 289–291, 344–346, 507

M
Message Queuing Telemetry

Transport (MQTT),
519–521, 525

Motor
accelerometer control, 452–456
DC, 433–464
driver board, 168, 433, 434, 437,

438, 441, 445, 448, 452,
467–470, 481, 492

H bridge, 175, 433, 434
infrared control, 444, 445
photoelectric encoder control,

457–464
servo, 157–175, 208, 243–249,

275, 321, 322, 431, 432, 437,
467–470

speed (rpm), 441–444
stepper, 157–175, 179, 182–186
wireless control, 445–451

MQTT broker, 519, 520

N
Network Time Protocol (NTP),

514, 515
NMEA message, 341–343, 346, 347,

351, 353, 361
NodeMCU ESP8266, 499–502, 507,

515, 520, 521, 526

O
Ohm’s Law, 8, 9, 49
OLED display, 249–252, 455–456,

467–470, 484, 486

P
PID

coefficients, 476, 478–481,
483–485, 490, 491

control, 475–481
windup, 479

Index

549

Piezo buzzer, 416
Piezo transducer, 412, 413, 415,

416, 420, 423
Pin output current, 1, 159
Potentiometer, 48, 61, 67, 69, 79,

87, 161–164, 172–175,
306–307, 321, 322, 426–431,
441, 442, 449, 478, 479,
485–486, 490

Power saving, 326, 397–410
current requirements, 398–400
options, 401–402
sleep modes, 402–404

Pull-down resistor, 17–19, 25, 37,
197, 284, 400, 402

Pull-up resistor, 18, 37, 58, 59,
179, 279, 328, 383, 401,
402, 420

Pulse width modulation (PWM),
12–14, 46, 83–85, 105–107,
113–116, 179, 183, 195, 262,
292, 295, 296, 326, 328, 415,
416, 423, 425–432, 434, 437,
441, 445, 448, 449, 459, 460,
467, 492, 500, 502

Q
Quaternion, 489–496, 537–541

R
Radio frequency identification

(RFID), 203–217
Radio transceiver, 311, 312, 314

Reactance, 222
Real-time clock (RTC), 226–230
Resistor-capacitor filter, 254, 290
Resistor colour banding, 533, 534
Robot

balancing, 475, 481–483,
489–492

car, 438, 461, 462, 467–497
obstacle avoiding, 467, 470

Rotary encoder, 177–187, 372,
380–383

S
Scroll text

8x8 dot matrix, 150–156
liquid crystal display, 85–87
MAX7219 dot matrix, 300–301
message speed, 306–307

SD card, 219–236
increment filename, 232–234
list files, 234–235

7-segment LED display, 101–118
character set, 110, 116–118, 138
PWM, 105–107, 113–116

Sensor
accelerometer, 72–77
colour recognition, 267–275
gyroscope, 72–77
Hall effect, 57–61
humidity, 37–38
infrared, 64–66
infrared distance, 67–68
infrared emitter, 67, 195–200

Index

550

light dependent resistor, 42–48
passive infrared, 69–72
sound, 61–64, 69
temperature, 31–35, 37, 51, 52,

56, 77, 80–82, 126, 128, 193,
222, 226, 321

temperature and pressure,
88–93, 523

ultrasonic distance, 50–55
Serial Monitor, 31, 41, 53, 54, 59, 61,

90, 95, 96, 125, 151, 152,
173, 208, 213, 214, 225, 237,
268, 273, 279, 292, 312, 315,
317, 334, 335, 339–342, 352,
372, 375, 377, 378, 388, 416,
504, 511

Serial Peripheral Interface (SPI), 2,
88, 204–205, 219, 237, 300,
311, 319, 325, 327, 328, 332,
397, 437, 500, 502

Serial plotter, 31, 33
Servo motor, 157–176, 208,

243–249, 275, 321, 322,
431–432, 467–470

Shift register, 107–116, 120,
126–135, 142–150, 300

Sketch
++, 22
--, 22
==, 22
analogRead() function, 45, 162
analogReference() function,

32, 222

analogWrite() disable, 328,
437, 460

AND, 21
array, 48
attachInterrupt() function, 372,

376, 379
bitRead() function, 139, 152
<< bit shifting, 149,

392–393, 429
constrain() function, 307, 420
delay() function, 172, 262, 326,

371, 372, 384
for, 48
functions, 123–125
getValue.asDouble()

function, 522
getValue.asInt() function, 522,

525, 528
getValue.asString()

function, 522
if...else, 27, 86, 124, 293
INPUT_PULLUP, 58, 179
LSBFIRST, 111, 112, 149
map() function, 46, 161, 173,

307, 420
millis() function, 384–387
% modulus, 22, 97, 122
MSBFIRST, 111, 149
noInterrupts()

function, 378
! not equal to, 22, 212
openReadingPipe()

function, 315
open sketch, 14

Sensor (cont.)

Index

551

openWritingPipe()
function, 315

OR, 21
parseFloat() function, 90
parseInt() function, 90, 213
pow() functuion, 57
print() function, 95, 348
replace() function, 348
save sketch, 14
Serial.available() function, 90,

96, 151, 213
Serial.Read() function, 95, 96, 151
setRotation() function, 240,

243, 255
setTextColor() function, 239, 274
startListening, 315, 317
stopListening, 317
string() function, 193, 362
switch...case, 299
text.length() function, 87
toCharArray() function, 362
toFloat() function, 348
toInt() function, 348
tone() function, 328, 414–416, 437
while, 125
write() function, 94

Software serial, 344, 351
Sound, 411–432

electro-Theremin, 423–425
musical notes, 416–420

Speed of sound, 50, 54, 56–57
Square wave, 411–432

falling edge, 177, 178, 380
rising edge, 177

Stepper
coil activation, 165–169, 175
full-step, 166–167, 169–170, 172,

175, 183
half-step, 166, 167, 169, 170, 175
wave driving, 166, 167

Stepper motor, 157–175, 179,
182–186

Switch, 17–29
ball, 27–29
debounce hardware, 25–27
debounce software, 17, 22–25
tilt, 27

T
Thevenin resistance, 50
Timers, 387–389

Fast PWM mode, 429
overflow, 390, 427, 429, 431
prescalar, 390–393, 428–429, 431
register manipulation,

390–394, 427

U
u-blox u-center, 341–343
USART, 325, 397, 398

V
Variable

Boolean, 35
byte, 35

Index

552

constant, 37
integer, 36, 37
real, 36, 37

Virtual channel, 521–523, 526,
528, 530

Voltage divider, 42–44, 48–50, 114,
115, 222, 253, 254, 289–291,
345, 423, 478

Voltage regulator, 158, 159, 219,
243, 289, 301, 363, 397, 433,
499, 502

W, X, Y, Z
Weather station, 228–232, 357
WeMos D1 mini, 499, 502–503
WiFi, 499–531

HTML, 510–519
If This, Then That (IFTTT), 520,

526, 528–530
internet access, 519–530
MQTT broker, 519–521
URL request, 507, 512

Wireless communication, 311–323,
445–451, 481

Variable (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction
	Arduino Uno
	Breadboards
	Arduino IDE Software
	Arduino IDE Sketch
	Run the Blink Sketch
	Electricity Explained
	Revise the Blink Sketch
	Pulse Width Modulation
	Opening and Saving Sketches
	Summary
	Components List

	Chapter 2: Switches
	Tactile Switch
	Comparison Operators
	Debouncing a Switch
	Hardware Switch Debounce
	Ball Switch
	Summary
	Components List

	Chapter 3: Sensors
	Temperature Sensor
	Variables
	Humidity Sensor
	Library Installation
	Library Installation Method 1
	Library Installation Method 2
	Library Installation Method 3

	Light Dependent Resistor
	Light Dependent Resistor and Several LEDs
	Voltage Divider
	Ultrasonic Distance Sensor
	Speed of Sound
	Hall Effect Sensor
	Sound Sensor
	Infrared Sensor
	Infrared Distance Module
	Passive Infrared Sensor
	Accelerometer and Gyroscope
	Summary
	Components List

	Chapter 4: Liquid Crystal Display
	Contrast Adjustment with PWM
	Scrolling Text
	LCD with I2C Bus
	I2C with Temperature and Pressure Sensor
	16×4 LCD Cursor Positioning
	Display Entered Values on LCD
	LCD Character Set
	Additional Characters
	Summary
	Components List

	Chapter 5: 7-Segment LED Display
	Basic Schematic
	PWM and LED Brightness
	Shift Register
	Shift Register, PWM, and LED Brightness
	Alphanumeric Characters
	Summary
	Components List

	Chapter 6: 4-Digit 7-Segment Display
	Functions
	One Shift Register
	Two Shift Registers
	Summary
	Components List

	Chapter 7: 8×8 Dot Matrix Display
	One Shift Register
	Two Shift Registers
	Scrolling Text
	Summary
	Components List

	Chapter 8: Servo and Stepper Motors
	Servo Motors
	Servo Motor and a Potentiometer
	Stepper Motor
	Stepper Motor and a Potentiometer
	Stepper Motor Gear Ratio
	Summary
	Components List

	Chapter 9: Rotary Encoder
	Rotary Encoder and Stepper Motor
	Summary
	Components List

	Chapter 10: Infrared Sensor
	Infrared Emitter and Sensor
	Infrared Emitter and Receiver
	Summary
	Components List

	Chapter 11: Radio Frequency Identification
	Display Content of MIFARE Classic 1K and 4K
	Mimic RFID and Secure Site
	Master Card Validation
	Read and Write to Classic 1KB Card
	Summary
	Components List

	Chapter 12: SD Card Module
	Temperature and Light Intensity Logging
	Date and Time Logging
	Logging Weather Station Data
	Increment File Name for Data Logging
	Listing Files on an SD Card
	Summary
	Components List

	Chapter 13: Screen Displays
	TFT LCD Screen
	Displaying Images from an SD Card
	Screen, Servo Motor, and Ultrasonic Distance Sensor
	OLED Display
	Touch Screen
	Summary
	Components List

	Chapter 14: Sensing Colors
	Red Green Blue (RGB) LED
	565 Color Format
	Color-Recognition Sensor
	Summary
	Components List

	Chapter 15: Camera
	Camera Image Capture Setup
	Capturing Camera Images
	Summary
	Components List

	Chapter 16: Bluetooth Communication
	Bluetooth Terminal HC-05 App
	ArduDroid App
	Message Scrolling with MAX7219 Dot Matrix Module
	MAX7219 and Bluetooth Terminal HC-05 App
	Message Speed and Potentiometer
	MAX7219 and ArduDroid App
	Summary
	Components List

	Chapter 17: Wireless Communication
	Transmit or Receive
	Transmit and Receive
	Summary
	Components List

	Chapter 18: Build Arduino
	ATmega328P Pin Layout
	Building an Arduino
	Installing the Bootloader
	Summary
	Components List

	Chapter 19: Global Navigation Satellite System
	GNSS Messages on Serial Monitor
	u-blox u-center
	Arduino and GNSS
	GNSS Data Logging to SD Card
	GNSS and ST7735 Screen
	Displaying GNSS Data
	Summary
	Components List

	Chapter 20: Interrupts and Timed Events
	Interrupts
	Types of Interrupt
	Additional Interrupt Pins
	Interrupts and Rotary Encoder
	Timed Events: delay()
	Timed Events: millis()
	Timed Events: Timer1
	Timer Register Manipulation
	Summary
	Components List

	Chapter 21: Power Saving
	avr/sleep Module
	LowPower Library
	Power Down and an Infrared Sensor
	Summary
	Components List

	Chapter 22: Sound and Square Waves
	Piezo Transducer and Buzzer
	Musical Notes
	Sensor and Sound
	Generating Square Waves
	Square Wave and Servo Motor
	Summary
	Components List

	Chapter 23: DC Motors
	Motor Control Set in the Sketch
	Motor Speed
	Motor Control with Infrared Remote Control
	Motor Control with Wireless Communication
	Motor Control with Accelerometer
	Motor Control with Photoelectric Encoder
	Summary
	Components List

	Chapter 24: Robot Car
	PID Controller
	Balancing Robot
	Determining PID Coefficients
	Circular Buffer
	Quaternion Measurements
	Summary
	Components List

	Chapter 25: Wi-Fi Communication
	NodeMCU ESP8266
	WeMos D1 Mini
	Wi-Fi and Web Server
	Wi-Fi and HTML
	Wi-Fi and Internet Access
	Summary
	Components List

	Appendix: Resistor Banding
	Libraries
	Quaternion Measurements
	Who’s Who in Electronics
	Sources of Electronic Components

	Index

